Introduction to the Workshop on Logics for Resource-Bounded Agents

Natasha Alechina and Brian Logan

ESSLLI 2015, Barcelona

Natasha Alechina & Brian Logan

Introduction to LRBA

ESSLLI 2015

Topics of the workshop

logics for modelling resource-bounded reasoners

- epistemic logics for modelling resource-bounded reasoners
- logics for modelling bounded memory, forgetting etc.
- logics for reasoning about resources

Timetable and brief introduction to the talks

Tuesday: Nils Bulling, Verifying Resource-Bounded Agents Stéphane Demri, Reversal-Bounded Counter Machines

Wednesday: Fernando Velázquez-Quesada, Forgetting Propositional Formulas Sophia Knight, A Strategic Epistemic Logic for Bounded Memory Agents

Thursday: Lasha Abzianidze, A Logic of Belief with the Complexity Measure Igor Sedlár, Substructural Epistemic Logics

Friday: Dario Della Monica, *Model Checking Coalitional Games in* Shortage Resource Scenarios Valentin Goranko, Resource Bounded Reasoning in Concurrent Multi-Agent Systems

Natasha Alechina & Brian Logan

3

3

イロト イポト イヨト イヨト

Outline

logics for modelling resource bounded reasoners

- logical omniscience
- Step Logic
- Algorithmic Knowledge
- Justification Logic
- Dynamic Syntactic Epistemic Logic
- logics for reasoning about resources
 - RB-ATL
 - RB±ATL
- open problems

くぼう くほう くほう

Logics for modelling resource-bounded reasoners

- this will be familiar to people who attended Fernando's course last week
- often, in this approach knowledge and beliefs are modelled syntactically rather than using possible worlds semantics
- we will give a brief survey of this area
- the talks by Fernando Velázquez-Quesada, Sophia Knight, Lasha Abzianidze, and Igor Sedlár belong to this area

Logics for reasoning about resources

- another area of the workshop is reasoning about actions that cost resources
- at least from our point of view, the two areas are very connected
- we started investigating syntactic epistemic logics where actions of deriving a formula and communicating had explicit costs, and storing formulas cost memory
- we then generalised it to Coalition Logic (CL) and Alternating Time Temporal Logic (ATL) where action have costs (RB-CL, RB-ATL, RB±ATL)

6

< ロ > < 同 > < 回 > < 回 > < 回 > <

Logics for reasoning about resources

- resource quantities are numerical, and in addition to states we get vectors of numbers (resource amounts) updated by transitions
- this is why model-checking of such systems is related to decision problems for counter machines and vector addition systems with state
- the talks by Nils Bulling, Stéphane Demri, Hoang Nga Nguyen, Dario Della Monica and Valentin Goranko belong to this area

7

Epistemic logic: logical omniscience

- epistemic logic studies belief and knowledge modalities
- it usually interprets 'agent knows (believes) that φ' as 'φ is true in all knowledge (belief)-accessible possible worlds'
- clearly, tautologies are all true in all accessible worlds, so the agent believes all tautologies
- also, if the agent believes φ, and ψ is a logical consequence of φ, then ψ is true in all φ-worlds, so the agent believes ψ as well
- so the agent believes all logical theorems and can derive infinitely many consequences infinitely fast (logical omniscience problem)

э

8

< ロ > < 同 > < 回 > < 回 > < 回 > <

Logical omniscience: is this a problem?

- Hintikka 1975: philosophical problem (human reasoners)
- however, idealised reasoners can be considered logically omniscient (capable of arbitrary correct inferences)
- after all, not many people complain that epistemic logic does not account for logical mistakes

9

When logical omniscience is a problem

- Iogical modelling and verfication of AI agents
- if we ascribe beliefs to the agent incorrectly (for example assume that it believes arbitrary logical consequences of its beliefs when it does not) then we may model its behaviour incorrectly
- so if we ascribe to the agent an ability to reason in logic, then:
 - either the agent should really be able to reason (and exactly to the extent that the logic predicts)
 - or, its internal belief language and belief tests in its action selection should be so trivial that it does not matter

イロト イポト イヨト イヨト

Solutions to the logical omniscience problem

- impossible worlds (beliefs still closed under logical consequence but in a weaker logic)
- neighbourhood semantics (beliefs are closed under logical equivalence: if the agent believes one tautology, it believes them all)
- explicit knowledge defined using awareness (syntactic notion -'awareness set' is an arbitrary set of formulas)
- algorithmic knowledge, syntactic knowledge/beliefs (beliefs are tokens to be manipulated rather than propositions corresponding to sets of possible worlds)

・ロト ・四ト ・ヨト ・ ヨト

Step logic

- Elgot-Drapkin & Perlis 1990
- the idea is to represent stages in agent's reasoning (corresponding to time points):

$$\frac{i: A, A \to B}{i+1: B}$$

■ if at time *i* the agent knows *A* and $A \rightarrow B$, then at time *i* + 1 the agent will know *B*

・ロト ・四ト ・ヨト・

Algorithmic Knowledge

- Halpern, Moses, and Vardi 1994: agents' explicit knowledge is given by an algorithm they use to answer queries
- Pucella 2006: deductive algorithmic knowledge
- explicit knowledge of agents comes from a logical theory expressed by a deductive system consisting of deduction rules
- agents' explicit knowledge is closed with respect to this set of rules (similar to Konolige 1986)

< □ > < 同 > < 回 > < 回 > < 回 >

Logical omniscience as a complexity problem

- Artemov, Kuznets, Krupski since 2006, inspired by Justification Logic
- a proposition can be feasibly knowable if it is provable in polynomial time
- to be more precise:
 - a system weakly avoids logical omniscience, if for every provable
 K A, A has a polynomial size proof
 - a system strongly avoids logical omniscience, if there is a polynomial algorithm such that which for every provable K A, produces a proof of A

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Consider an agent reasoning in S4

- $\blacksquare \ K \ (A \to B) \to (K \ A \to K \ B)$
- $\blacksquare K A \rightarrow A$
- $\blacksquare \ K \ A \to K \ K \ B$
- Necessitation: if A is an axiom, $\vdash_{S4} K A$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Feasible knowledge in S4. (Artemov et al)

- $\blacksquare [k_1](A \to B) \to ([k_2]A \to [k_1 \cdot k_2]B)$
- $\blacksquare [k]A \to A$
- $\blacksquare [k]A \rightarrow [!k][k]B$
- if A is an axiom, $\vdash_{S4_{\bullet}} [\bullet]A$
- S4. (with [k] read as knowledge operator) weakly avoids logical omniscience)
- justification logic (• replaced by axiom names) strongly avoids logical omniscience

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Dynamic syntactic epistemic logic

- Ho Ngoc Duc 1997: ' ϕ is true after some train of thought of agent *i*'
- **adds** a generic operator $\langle F_i \rangle$, for each agent *i*, to the language
- *F_i K_i* φ means that agent *i* can get to know the formula φ some time in the future
- Duc presents a formal logical system DES4_n for this language, intended to be a dynamic version of S4_n
- DES4_n describes agents who do not necessarily know any consequences of their knowledge now, but can get to know any such consequence in the future
- a sound and complete semantics for DES4_n is given in Ågotnes & Alechina 2006

・ロト ・ 同ト ・ ヨト ・ ヨト

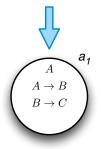
More work on epistemic logics without omniscience

- Alechina & Logan 2001 (modal version of step logic)
- Ågotnes 2004 (PhD thesis on syntactic knowledge, knowing inference rules)
- Jago 2006 (PhD thesis on resource-bounded reasoning)
- Velázquez Quesada 2011 (PhD thesis on dynamics of information)

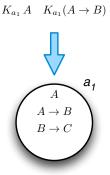
< □ > < 同 > < 回 > < 回 > < 回 >

The basic idea of dynamic syntactic epistemic logic

Agent a_1 's epistemic state

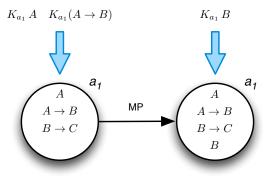


The basic idea of dynamic syntactic epistemic logic



프 🖌 🖌 프

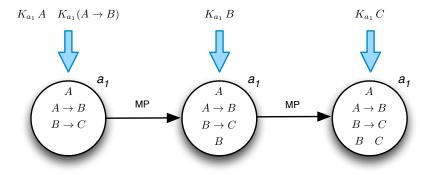
Suppose the agent only knows Modus Ponens



∃ ► < ∃ ►</p>

< 6 b

Eventually it can derive all consequences by MP



< ロト < 同ト < ヨト < ヨト

Resources required for reasoning

- so far, we only looked at the number of steps/proof length
- what about memory required for reasoning?
- what about communication (in a multi-agent setting)?

B b d B b

Resource Logics

variants of Alternating-Time Temporal Logic (ATL) where transitions have costs (or rewards) and the syntax can express resource requirements of a strategy, e.g.:

agents A can enforce outcome φ if they have at most b_1 units of resource r_1 and b_2 units of resource r_2

 various flavours of resource logics exist: RBCL, RB-ATL, RB±ATL (Alechina et al.), RAL (Bulling & Farwer), PRB-ATL (Della Monica et al.), QATL* (Bulling & Goranko)

イロト 不得 トイヨト イヨト 二日

Verification Using Resource Logic

- one of the main problems in resource logics is model-checking
- model-checking problem: given a structure, a state in the structure and a formula, does the state satisfy the formula?
- using model-checking, we can verify resource requirements of a multi-agent system (specify the system as a model, and write a formula expressing a system objective)

< □ > < 同 > < 回 > < 回 > < 回 >

Model-checking for Resource Logics

- for most resource logics the model-checking problem is undecidable: in particular, various flavours of RAL, and QATL*
- here, we present two resource logics with decidable model-checking problems:
 - RB-ATL which allows only consumption of resources
 - RB±ATL which allows unbounded production of resources

・ 同 ト ・ ヨ ト ・ ヨ ト

RB-ATL: syntax

- $Agt = \{a_1, \ldots, a_n\}$ a set of *n* agents
- $Res = \{res_1, \ldots, res_r\}$ a set of *r* resources,
- Π a set of propositions
- $B = \mathbb{N}_{\infty}^{r}$ a set of resource bounds, where $\mathbb{N}_{\infty} = \mathbb{N} \cup \{\infty\}$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

RB-ATL: syntax

Formulas of RB-ATL are defined by the following syntax

$$\varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \lor \psi \mid \langle\!\langle \mathbf{A}^{\mathbf{b}} \rangle\!\rangle \bigcirc \varphi \mid \langle\!\langle \mathbf{A}^{\mathbf{b}} \rangle\!\rangle \varphi \mathcal{U} \psi \mid \langle\!\langle \mathbf{A}^{\mathbf{b}} \rangle\!\rangle \Box \varphi$$

where $p \in \Pi$ is a proposition, $A \subseteq Agt$, and $b \in B$ is a resource bound.

< ロト < 同ト < ヨト < ヨト

RB-ATL: meaning of formulas

- ((A^b)) Οψ means that a coalition A can ensure that the next state satisfies φ under resource bound b
- ((A^b))ψ₁ U ψ₂ means that A has a strategy to enforce ψ while maintaining the truth of φ, and the cost of this strategy is at most b
- ((A^b))□ψ means that A has a strategy to make sure that φ is always true, and the cost of this strategy is at most b

イロト イポト イヨト イヨト

Resource-bounded concurrent game structure

A RB-CGS is a tuple $M = (Agt, Res, S, \Pi, \pi, Act, d, c, \delta)$ where:

- Agt is a non-empty set of n agents, Res is a non-empty set of r resources and S is a non-empty set of states;
- \blacksquare Π is a finite set of propositional variables and $\pi: \Pi \to \wp(S)$ is a truth assignment
- Act is a non-empty set of actions which includes *idle*, and $d: S \times Agt \rightarrow \wp(Act) \setminus \{\emptyset\}$ is a function which assigns to each $s \in S$ a non-empty set of actions available to each agent $a \in Agt$
- $c: S \times Agt \times Act \rightarrow \mathbb{Z}^r$ (the integer in position *i* indicates consumption of resource res_i by the action a)
- $\delta : (s, \sigma) \mapsto S$ for every $s \in S$ and joint action $\sigma \in D(s)$ gives the state resulting from executing σ in *s*.

3

30

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Additional assumptions and notation

- for every $s \in S$ and $a \in Agt$, $idle \in d(s, a)$
- $c(s, a, idle) = \overline{0}$ for all $s \in S$ and $a \in Agt$ where $\overline{0} = 0^r$
- we denote joint actions by all agents in *Agt* available at *s* by $D(s) = d(s, a_1) \times \cdots \times d(s, a_n)$
- for a coalition A, $D_A(s)$ is the set of all joint actions by agents in A
- $out(s,\sigma) = \{s' \in S \mid \exists \sigma' \in D(s) : \sigma = \sigma'_A \land s' = \delta(s,\sigma')\}$

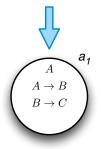
•
$$cost(s, \sigma) = \sum_{a \in A} c(s, a, \sigma_a)$$

イロト イポト イヨト イヨト 二日

RB-ATL

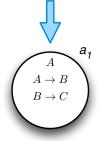
Example: dynamic syntactic epistemic logic in RB-ATL

Agent a_1 's epistemic state



RB-ATL

Example: dynamic syntactic epistemic logic in RB-ATL

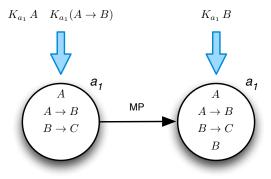


∃ ► < ∃ ►</p>

Example dynamic syntactic epistemic logic in RB-ATL

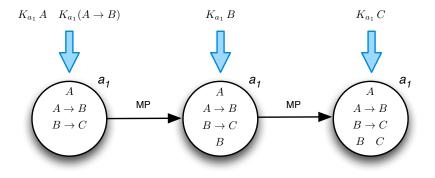
Application of MP is an action that costs 1 unit of time and 1 unit of memory

$$\langle\!\langle \{a_1\}^{time:1,memory:1} \rangle\!\rangle \bigcirc K_{a_1}B$$



Example: dynamic syntactic epistemic logic in RB-ATL

$$\langle\!\langle \{a_1\}^{time:1,memory:1}\rangle\!\rangle \bigcirc K_{a_1}B \\ \langle\!\langle \{a_1\}^{time:2,memory:2}\rangle\!\rangle \top \mathcal{U} K_{a_1}C$$

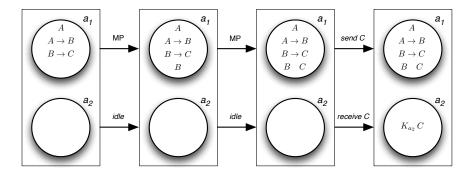


∃ ► < ∃ ►</p>

RB-ATL

Example: extending to multi-agent case

$$\langle\!\langle \{a_1, a_2\}^{time:3, memory:3, energy:1} \rangle\!\rangle \top \mathcal{U} K_{a_2} K_{a_1} C$$



36

イロト イポト イヨト イヨ

Strategies and their costs

- a strategy for a coalition $A \subseteq Agt$ is a mapping $F_A : S^+ \to Act$ such that, for every $\lambda s \in S^+$, $F_A(\lambda s) \in D_A(s)$
- a computation $\lambda \in S^{\omega}$ is consistent with a strategy F_A iff, for all $i \ge 0, \lambda[i+1] \in out(\lambda[i], F_A(\lambda[0, i]))$
- *out*(*s*, *F*_A) the set of all consistent computations λ of *F*_A that start from *s*
- given a bound $b \in B$, a computation $\lambda \in out(s, F_A)$ is *b*-consistent with F_A iff, for every $i \ge 0$, $\sum_{j=0}^{i} cost(\lambda[j], F_A(\lambda[0, j])) \le b$
- F_A is a *b*-strategy if all $\lambda \in out(s, F_A)$ are *b*-consistent

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Truth definition

- $M, s \models \langle \langle A^b \rangle \rangle \bigcirc \phi$ iff $\exists b$ -strategy F_A such that for all $\lambda \in out(s, F_A)$: $M, \lambda[1] \models \phi$
- $M, s \models \langle \langle A^b \rangle \rangle \phi \mathcal{U} \psi$ iff $\exists b$ -strategy F_A such that for all $\lambda \in out(s, F_A), \exists i \ge 0$: $M, \lambda[i] \models \psi$ and $M, \lambda[j] \models \phi$ for all $j \in \{0, \dots, i-1\}$
- $M, s \models \langle \langle A^b \rangle \rangle \Box \phi$ iff $\exists b$ -strategy F_A such that for all $\lambda \in out(s, F_A)$ and $i \ge 0$: $M, \lambda[i] \models \phi$

イロト 不得 トイヨト イヨト 二日

Model-checking RB-ATL

The model-checking problem for RB-ATL is the question whether, for a given RB-CGS structure *M*, a state *s* in *M* and an RB-ATL formula ϕ , $M, s \models \phi$.

Theorem (Alechina, Logan, Nguyen, Rakib 2010): The model-checking problem for RB-ATL is decidable

< ロ > < 同 > < 回 > < 回 > < 回 > <

Model-checking algorithm for RB-ATL

function RB-ATL-LABEL(M, ϕ) for $\phi' \in Sub^+(\phi)$ do case $\phi' = p, \ \neg \psi, \ \psi_1 \wedge \psi_2$ standard, see [Alur et al. 2002] case $\phi' = \langle\!\langle A^b \rangle\!\rangle \bigcirc \psi$ $[\phi']_M \leftarrow Pre(A, [\psi]_M, b)$ case $\phi' = \langle \langle A^b \rangle \rangle \psi_1 \mathcal{U} \psi_2$ $[\phi']_M \leftarrow \text{UNTIL-STRATEGY}(M, \langle\!\langle A^b \rangle\!\rangle \psi_1 \mathcal{U} \psi_2)$ case $\phi' = \langle\!\langle A^b \rangle\!\rangle \Box \psi$ $[\phi']_M \leftarrow \text{BOX-STRATEGY}(M, \langle\!\langle A^b \rangle\!\rangle \Box \psi)$ return $[\phi]_M$

イロト 不得 トイヨト イヨト 二日

 $Sub^+(\phi_0)$

 $Sub^+(\phi_0)$ includes all subformulas of ϕ_0 , $Sub(\phi_0)$, and in addition:

- if $\langle\!\langle A^b \rangle\!\rangle \Box \psi \in Sub(\phi_0)$, then $\langle\!\langle A^{b'} \rangle\!\rangle \Box \psi \in Sub^+(\phi_0)$ for all b' < b
- if $\langle \langle A^b \rangle \rangle \psi_1 \mathcal{U} \psi_2 \in Sub(\phi_0)$, then $\langle \langle A^{b'} \rangle \rangle \psi_1 \mathcal{U} \psi_2 \in Sub^+(\phi_0)$ for all b' < b

 $Sub^+(\phi_0)$ is partially ordered in increasing order of complexity and of resource bounds (e.g., if $b' \leq b$, $\langle\langle A^{b'} \rangle\rangle \Box \psi$ precedes $\langle\langle A^{b} \rangle\rangle \Box \psi$)

イロト 不得 トイヨト イヨト 二日

 $Pre(A, \rho, b)$

Pre(A, ρ , b) is a function which takes a coalition A, a set $\rho \subseteq S$ and a bound b, and returns the set of states s in which A has a joint action σ_A with $cost(s, \sigma_A) \leq b$ such that $out(s, \sigma_A) \subseteq \rho$

< ロ > < 同 > < 回 > < 回 > < 回 > <

UNTIL-STRATEGY (RB-ATL)

function UNTIL-STRATEGY($M, \langle\!\langle A^b \rangle\!\rangle \psi_1 \mathcal{U} \psi_2$) case $\phi' = \langle \langle A^0 \rangle \rangle \psi_1 \mathcal{U} \psi_2$: $\rho \leftarrow [false]_M; \tau \leftarrow [\psi_2]_M$ while $\tau \not\subseteq \rho$ do $\rho \leftarrow \rho \cup \tau; \ \tau \leftarrow Pre(A, \rho, \bar{0}) \cap [\psi_1]_M$ return ρ case $\phi' = \langle\!\langle A^b \rangle\!\rangle \psi_1 \mathcal{U} \psi_2$ where $b > \bar{0}$: $\rho \leftarrow [false]_M; \tau \leftarrow [false]_M$ foreach b' < b do $\tau \leftarrow Pre(A, [\langle \langle A^{b'} \rangle \rangle \psi_1 \mathcal{U} \psi_2]_M, b - b') \cap [\psi_1]_M$ while $\tau \not\subseteq \rho$ do $\rho \leftarrow \rho \cup \tau; \ \tau \leftarrow Pre(A, \rho, 0) \cap [\psi_1]_M$ return ρ

Natasha Alechina & Brian Logan

ESSLLI 2015

43

BOX-STRATEGY (RB-ATL)

function BOX-STRATEGY($M, \langle \langle A^b \rangle \rangle \Box \psi$) case $\phi' = \langle \langle A^0 \rangle \rangle \Box \psi$: $\rho \leftarrow [true]_M; \ \tau \leftarrow [\psi]_M$ while $\rho \not\subseteq \tau$ do $\rho \leftarrow \tau; \ \tau \leftarrow Pre(A, \rho, \bar{0}) \cap [\psi]_M$ return ρ case $\phi' = \langle \langle A^b \rangle \rangle \Box \psi$ where $b > \overline{0}$: $\rho \leftarrow [false]_M; \tau \leftarrow [false]_M$ foreach b' < b do $\tau \leftarrow Pre(A, [\langle \langle A^{b'} \rangle \rangle \Box \psi]_M, b - b') \cap [\psi]_M$ while $\tau \not\subseteq \rho$ do $\rho \leftarrow \rho \cup \tau; \ \tau \leftarrow Pre(A, \rho, \bar{0}) \cap [\psi]_M$ return ρ

RB±**ATL**

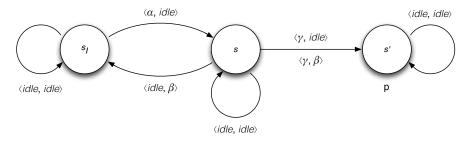
- RB-ATL considers only consumption of resources
- a natural question is what happens if actions can produce as well as consume resources
- RB±ATL is a generalisation of RB-ATL where actions can produce resources

< ロト < 同ト < ヨト < ヨト

RB±ATL: syntax and semantics

- syntax and semantics are the same as RB-ATL, but production of resources is allowed
- $c: S \times Agt \times Act \rightarrow \mathbb{Z}^r$ (the integer in position *i* indicates consumption or production of resource *res_i* by the action *a*)
- if one agent consumes 10 units of resource and another agent produces 10 units of resource, the cost of their joint action is 0
- b-strategies are defined as before (the prefix of every computation generated by the strategy costs less than b)

Example: two agents a_1 , a_2 , two resources r_1 , r_2



Actions available to the first agent:

 $d(s_{l}, a_{1}) = \{\alpha, idle\}, d(s, a_{1}) = \{\gamma, idle\}, d(s', a_{1}) = \{idle\}$

Natasha Alechina & Brian Logan

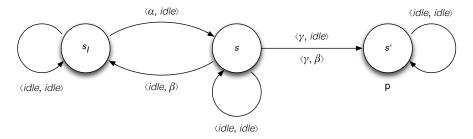
Introduction to LRBA

ESSLLI 2015

47

< ロ ト < 同 ト < 三 ト < 三 ト

Example: two agents a_1 , a_2 , two resources r_1 , r_2



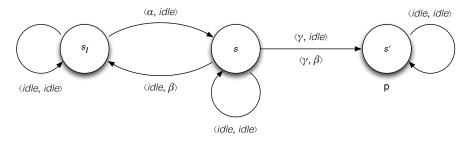
Actions available to the first agent:

 $d(s_{l}, a_{1}) = \{\alpha, idle\}, d(s, a_{1}) = \{\gamma, idle\}, d(s', a_{1}) = \{idle\}$

Actions available to the second agent:

$$d(s_1, a_2) = \{ idle \}, d(s, a_2) = \{ \beta, idle \}, d(s', a_2) = \{ idle \}$$

Example: two agents a_1 , a_2 , two resources r_1 , r_2



Costs of actions:

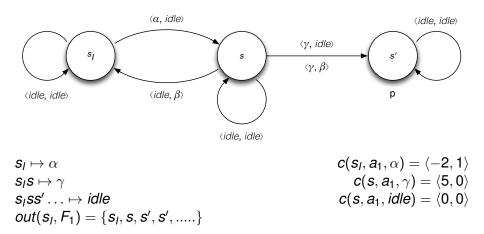
$$c(s_{I}, a_{1}, \alpha) = \langle -2, 1 \rangle, c(s, a_{1}, \gamma) = \langle 5, 0 \rangle, c(s, a_{2}, \beta) = \langle 1, -1 \rangle$$

ESSLLI 2015

э

49

Example: strategy F_1 for a_1



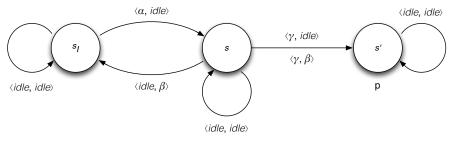
ESSLLI 2015

イロト イロト イヨト イヨト

50

3

Example: strategy F_1 for a_1



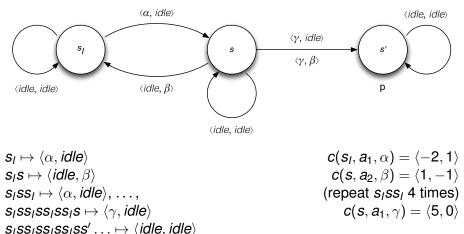
$$\begin{array}{l} F_1 \text{ is a } \langle 3,1\rangle \text{-strategy:} \\ \langle -2,1\rangle \leq \langle 3,1\rangle \\ \langle -2,1\rangle + \langle 5,0\rangle \leq \langle 3,1\rangle \\ \langle -2,1\rangle + \langle 5,0\rangle + \langle 0,0\rangle \dots \leq \langle 3,1\rangle \end{array}$$

 $\begin{array}{l} \boldsymbol{c(s_l, a_1, \alpha)} = \langle -2, 1 \rangle \\ \boldsymbol{c(s, a_1, \gamma)} = \langle 5, 0 \rangle \\ \boldsymbol{c(s, a_1, idle)} = \langle 0, 0 \rangle \end{array}$

イロト イポト イヨト イヨト

э

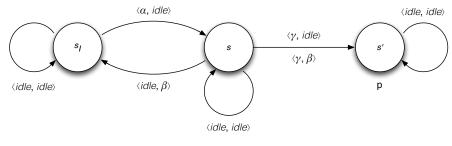
A strategy F for $A = \{a_1, a_2\}$



Natasha Alechina & Brian Logan

3

A strategy *F* for $A = \{a_1, a_2\}$



 $out(s_l, F) = \{s_l, s, s_l, s, s_l, s, s_l, s, s', s', \dots\}$ F is a $\langle 0, 1 \rangle$ -strategy

Natasha Alechina & Brian Logan

ESSLLI 2015 53

э

Model-checking RB±ATL

- The model-checking problem for RB \pm ATL is the question whether, for a given RB-CGS structure *M*, a state *s* in *M* and an RB \pm ATL formula ϕ , *M*, *s* $\models \phi$.
- Theorem (Alechina, Logan, Nguyen, Raimondi 2014): The model-checking problem for RB±ATL is decidable

Model-checking algorithm for RB \pm ATL

function RB±ATL-LABEL(
$$M$$
, ϕ)
for $\phi' \in Sub(\phi)$ do
case $\phi' = p$, $\neg \psi$, $\psi_1 \land \psi_2$
standard, see [Alur et al. 2002]
case $\phi' = \langle\!\langle A^b \rangle\!\rangle \bigcirc \psi$
 $[\phi']_M \leftarrow Pre(A, [\psi]_M, b)$
case $\phi' = \langle\!\langle A^b \rangle\!\rangle \psi_1 \mathcal{U} \psi_2$
 $[\phi']_M \leftarrow \{ s \mid s \in S \land UNTIL \pm STRATEGY(node_0(s, b), \langle\!\langle A^b \rangle\!\rangle \psi_1 \mathcal{U} \psi_2)\}$
case $\phi' = \langle\!\langle A^b \rangle\!\rangle \Box \psi$
 $[\phi']_M \leftarrow \{ s \mid s \in S \land BOX \pm STRATEGY(node_0(s, b), \langle\!\langle A^b \rangle\!\rangle \Box \psi)\}$
return $[\phi]_M$

Search tree nodes

- UNTIL±STRATEGY and BOX±STRATEGY proceed by depth-first and-or search of M
- for each tree node n, s(n) returns its state, p(n) returns the nodes on the path to n and e_i(n) returns the resource availability on the *i*-th resource in s(n) as a result of following p(n)
- $node_0(s, b)$ returns the root node $(s(n_0) = s, p(n_0) = []$ and $e_i(n_0) = b_i$ for all resources i)
- node(n, σ, s') returns a node n' where s(n') = s', $p(n') = [p(n) \cdot n]$ and for all resources $i, e_i(n') = e_i(n) - cost_i(\sigma)$.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

UNTIL±STRATEGY (RB±ATL)

```
function UNTIL\pmSTRATEGY(n, \langle\!\langle A^b \rangle\!\rangle \psi_1 \mathcal{U} \psi_2)
     if s(n) \not\models \langle \langle A \rangle \rangle \psi_1 \mathcal{U} \psi_2 or
         \exists n' \in p(n) : s(n') = s(n) \land (\forall j : e_i(n') \ge e_i(n)) then
           return false
     for i \in \{i \in \text{Res} \mid \exists n' \in p(n) : s(n') = s(n) \land (\forall j : e_i(n') \leq e_i(n)) \land
                                                         e_i(n') < e_i(n) do
           e_i(n) \leftarrow \infty
     if s(n) \models \psi_2 or e(n) = \overline{\infty} then
           return true
     for \sigma \in \{\sigma \in D_A(s(n)) \mid cost(\sigma) \leq e(n)\} do
           strat \leftarrow true
           for s' \in out(s(n), \sigma) do
                 strat \leftarrow strat \land UNTIL\pmSTRATEGY(node(n, \sigma, s'), \langle\langle A^b \rangle\rangle \psi_1 \mathcal{U} \psi_2)
           if strat then
                 return true
     return false
```

Natasha Alechina & Brian Logan

BOX±STRATEGY (RB±ATL)

function BOX \pm STRATEGY(*n*, $\langle\!\langle A^b \rangle\!\rangle \Box \psi$) if $s(n) \not\models \langle \langle A \rangle \rangle \Box \psi$ or $\exists n' \in p(n) : s(n') = s(n) \land (\forall j : e_i(n') > e_i(n))$ then return false if $\exists n' \in p(n) : s(n') = s(n) \land (\forall j : e_i(n') \leq e_i(n))$ then return true for $\sigma \in \{\sigma \in D_A(s(n)) \mid cost(\sigma) \leq e(n)\}$ do strat ← true for $s' \in out(s(n), \sigma)$ do strat \leftarrow strat \land BOX \pm STRATEGY(node(n, σ, s'), $\langle\!\langle A^b \rangle\!\rangle \Box \psi$) if strat then return true return false

Complexity

- the model-checking problem for RB±ATL is EXPSPACE-hard
- special cases have lower complexity:
 - one resource: PSPACE
 - no production (RB-ATL): PTIME in formula and transition system, exponential in the number of resources

< ロ ト < 同 ト < 三 ト < 三 ト

Open problems

There are many open problems in both areas

- other tractable cases of resource reasoning
- modelling combinations of reasoning and acting in resource logics
- accounting for the costs of observation and communication in dynamic epistemic logic
- etc.

・ 同 ト ・ ヨ ト ・ ヨ ト

Infinite bound versions

Since the infinite resource bound version of RB-ATL modalities correspond to the standard ATL modalities, we write

- $\blacksquare \langle\!\langle \mathbf{A}^{\bar{\infty}} \rangle\!\rangle \bigcirc \phi \text{ as } \langle\!\langle \mathbf{A} \rangle\!\rangle \bigcirc \phi$
- $\blacksquare \langle\!\langle \mathbf{A}^{\bar{\infty}} \rangle\!\rangle \phi \, \mathcal{U} \, \psi \text{ as } \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \, \mathcal{U} \, \psi$
- $\blacksquare \langle\!\langle \pmb{A}^{\bar{\infty}} \rangle\!\rangle \Box \phi \text{ as } \langle\!\langle \pmb{A} \rangle\!\rangle \Box \phi$

• □ ▶ • @ ▶ • □ ▶ • □ ▶

Auxiliary functions: *split(b)*

split(*b*) is a function that takes a resource bound *b* and returns the set of all pairs $(d, d') \in \mathbb{N}_{\infty} \times \mathbb{N}_{\infty}$ such that:

- 1 d + d' = b
- 2 $d_i = d'_i = \infty$ for all $i \in \{1, \ldots, r\}$ where $b_i = \infty$
- 3 *d* has at least one non-0 value

The set of all pairs (d, d') is partially ordered in increasing order of d' (i.e., if $d'_1 < d'_2$, then (d_1, d'_1) precedes (d_2, d'_2))

イロト 不得 トイヨト イヨト 二日

Auxiliary functions: $Sub^+(\phi_0)$

 $Sub^+(\phi_0)$ includes all subformulas of ϕ_0 , $Sub(\phi_0)$, and in addition:

- if $\langle\!\langle A^b \rangle\!\rangle \Box \psi \in Sub(\phi_0)$, then $\langle\!\langle A^{d'} \rangle\!\rangle \Box \psi \in Sub^+(\phi_0)$ for all d' such that $(d, d') \in split(b)$
- if $\langle\!\langle A^b \rangle\!\rangle \psi_1 \mathcal{U} \psi_2 \in Sub(\phi_0)$, then $\langle\!\langle A^{d'} \rangle\!\rangle \psi_1 \mathcal{U} \psi_2 \in Sub^+(\phi_0)$ for all d' such that $(d, d') \in split(b)$

 $Sub^+(\phi_0)$ is partially ordered in increasing order of complexity and of resource bounds (e.g., if $b' \leq b$, $\langle\!\langle A^{b'} \rangle\!\rangle \Box \psi$ precedes $\langle\!\langle A^b \rangle\!\rangle \Box \psi$)

イロト 不得 トイヨト イヨト 二日

 $Pre(A, \rho, b)$

 $Pre(A, \rho, b)$ is a function which takes a coalition A, a set $\rho \subseteq S$ and a bound b, and returns the set of states s in which A has a joint action σ_A with $cost(s, \sigma_A) \leq b$ such that $out(s, \sigma_A) \subseteq \rho$

< ロ > < 同 > < 回 > < 回 > < 回 > <

UNTIL-STRATEGY (RB-ATL)

function UNTIL-STRATEGY($M, \langle\!\langle A^b \rangle\!\rangle \psi_1 \mathcal{U} \psi_2$) case $\phi' = \langle \langle A^b \rangle \rangle \psi_1 \mathcal{U} \psi_2$ where $\forall i \ b_i \in \{0, \infty\}$: $\rho \leftarrow [false]_M; \tau \leftarrow [\psi_2]_M$ while $\tau \not\subseteq \rho$ do $\rho \leftarrow \rho \cup \tau; \ \tau \leftarrow Pre(A, \rho, b) \cap [\psi_1]_M$ return ρ case $\phi' = \langle \langle A^b \rangle \rangle \psi_1 \mathcal{U} \psi_2$ where $\exists i \ b_i \notin \{0, \infty\}$: $\rho \leftarrow [false]_M; \tau \leftarrow [false]_M$ foreach $d' \in \{d' \mid (d, d') \in split(b)\}$ do $\tau \leftarrow Pre(A, [\langle\!\langle A^{d'} \rangle\!\rangle \psi_1 \mathcal{U} \psi_2]_M, d) \cap [\psi_1]_M$ while $\tau \not\subseteq \rho$ do $\rho \leftarrow \rho \cup \tau; \tau \leftarrow Pre(A, \rho, \bar{0} \stackrel{\infty}{\leftarrow} b) \cap [\psi_1]_M$ return ρ

65

BOX-STRATEGY (RB-ATL)

function BOX-STRATEGY(
$$M$$
, $\langle\!\langle A^b \rangle\!\rangle \Box \psi$)
case $\phi' = \langle\!\langle A^b \rangle\!\rangle \Box \psi$ where $\forall i \ b_i \in \{0, \infty\}$:
 $\rho \leftarrow [true]_M; \ \tau \leftarrow [\psi]_M$
while $\rho \not\subseteq \tau$ do
 $\rho \leftarrow \tau; \ \tau \leftarrow Pre(A, \rho, b) \cap [\psi]_M$
return ρ
case $\phi' = \langle\!\langle A^b \rangle\!\rangle \Box \psi$ where $\exists i \ b_i \notin \{0, \infty\}$:
 $\rho \leftarrow [false]_M; \ \tau \leftarrow [false]_M$
foreach $d' \in \{d' \mid (d, d') \in split(b)\}$ do
 $\tau \leftarrow Pre(A, [\langle\!\langle A^{d'} \rangle\!\rangle \Box \psi]_M, d) \cap [\psi]_M$
while $\tau \not\subseteq \rho$ do
 $\rho \leftarrow \rho \cup \tau; \ \tau \leftarrow Pre(A, \rho, \bar{0} \stackrel{\infty}{\leftarrow} b) \cap [\psi]_M$
return ρ

Natasha Alechina & Brian Logan

ESSLLI 2015

э

66