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What is modal logic?

• Variety of different systems

• Difficult to give a definition which fits all of them

• Superficial answer: a logic which has a modality or several
modalities in it
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What is a modality?

• Modality is a connective which takes a formula (or
formulas) and produces a new formula with a new
meaning.

• Just as ¬ is a connective which takes a formula φ and
produces a new formula ¬ φ, or → takes φ and ψ and
produces a formula φ→ψ.

• The only difference is that in classical logic, the truth value
of   ¬ φ is uniquely determined by the value of φ, and the
value of φ→ψ is a function of the values of φ and ψ.

• Modalities are not truth-functional.
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Examples (unary modalities)

• !φ : “it is necessary that φ”
• ◊φ : “it is possible that φ”
• Gφ : “always in the future, φ will be true”
• Fφ : “at some point in the future, φ will be true”
• Pφ : “at some point in the past, φ was true”
• Ki φ : “agent i knows that φ”
• Bi φ : “agent i believes that φ”
• [prog] φ : “after any execution of the program prog, the

state satisfies property φ”
• <prog> φ : “there is an execution of the program prog,

which results in a state satisfying property φ”
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Binary modalities

• φ → ψ  (intuitionistic implication)

• U(φ,ψ) : “until φ becomes true, ψ holds”

U(φ,ψ)

t0 t1

φ

ψ
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The plan (for today)

• Define basic modal logic

• Describe various systems of modal logic

• Explain how they are used

• Try to explain what they have in common

After the break:

• Completeness and decidability of basic modal logic
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The plan (for tomorrow)

• Bisimulation

• Processes

• Propositional dynamic logic (PDL)

• Computation tree logic (CTL*)

• Model checking.
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Basic modal logic: the language

Alphabet:

• A set of propositional variables Prop={p1, p2 ...}

• Boolean connectives ¬  and → (∧ , ∨ , and ↔ are definable)

• (Unary) modality !  (◊ is definable)

Well-formed formula φ :

φ:= p∈ Prop | ¬φ | φ1→ φ2 | !φ
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Just for completeness...

•  φ1∨  φ2     := ¬  φ1→ φ2

• φ1 ∧  φ2     := ¬ ( φ1→ ¬  φ2)

•  φ1 ↔ φ2     :=  (φ1→ φ2) ∧  (φ2→ φ1)

•  ◊φ  := ¬  !¬φ
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Basic modal logic:models

Kripke structures (possible worlds structures) are models of
basic modal logic.

A Kripke structure is a triple M = (W,R,V) where

• W is a non-empty set (possible Worlds)

• R ⊆  W x W is an accessibility Relation

• V: (Prop x W) → {true, false} is a Valuation function.

This is just a graph (W,R) with a function V which tells
which propositional variables are true at which vertices.
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Example

w5

w2 w3

w4

V(p, w1) = true, V(q, w1) = false
V(p, w2) = true, V(q, w2) = true
V(p, w3) = true, V(q, w3) = false
V(p, w4) = false, V(q, w4) = true
V(p, w5) = false, V(q, w5) = true

w1
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Example

w5={q}

w2={p,q} w3 = {p}

w4={q}

w1 = {p}
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Basic modal logic: meaning of formulas

Given M = (W,R,V)  and w ∈ W, we define what does it mean
for a formula to be true (satisfied) in a world w of a model
M:

M, w |= p iff V(p,w) = true;

M,w |= ¬φ iff M,w |≠ φ;

M,w |= φ → ψ iff either M,w |≠ φ or M,w |= ψ;

M,w |= !φ iff for all v accessible from w (for all v such that
R(w,v)), M,v |= φ
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Example

w5={q}

w2={p,q} w3 = {p}

w4={q}

w1 = {p}

M, w1 |= !q

M, w1 |= ¬!p

M, w1 |= ¬!¬p

M, w1 |= ◊p

M, w1 |= ◊ ! p

! p
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Validity (and satisfiability)

• A formula φ is true in a model M if it is satisfied in all of
M’s worlds

• A formula φ is valid if it is true in all models.

• A formula is satisfiable if its negation is not valid (if it is
satisfied in at least one world of one model).
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Examples

• ! p → ! p is valid (just an example of a propositional
tautology)

• !( p → p) is valid (because  p → p is true in all accessible
worlds, wherever you are).

• !p → p is not valid (the set {!p, ¬  p} is satisfiable in
some worlds).
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Example

w5={q}

w2={p,q} w3 = {p}

w4={q}

w1 = {p}
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Example

w5={q}

w2={p,q} w3 = {p}

w4={q}

w1 = {p}

M, w4 |= !p ∧¬ p
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Aside

• To make !p → p valid, need to require that R is reflexive.

• Then if M,w |≠ p, from R(w,w) also M,w |≠ !p .

• Other correspondencies:

– !p → ! ! p corresponds to transitivity of R (easier
to see in ◊ form, ◊ ◊ p →  ◊ p: if you can get
somewhere in two steps, you can get there is one step).

– !p →  ◊ p corresponds to seriality of R (for every
world there is an accessible world)

– p → ! ◊ p corresponds to symmetry

– ◊ p → ! ◊ p corresponds to R being euclidean
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Euclidean relation

• ◊ p → ! ◊ p

• ∀ x ∀ y ∀ z (R(x,y)∧  R(x,z) → R(y,z))

x

y

z
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What can you express in basic modal
logic?
Useful intuition:

• possible worlds are states in a computation,

• R is the transition relation,

• V tells us which properties are true of which state.

Let’s see what we can express in basic modal logic - this will
also allow us to motivate more complicated systems.
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Running example

• Suppose we have two processes/agents A and B.

• Each has a local boolean variable (A has a, B has b).

• All they are doing is: flip the value of their variable; sleep
for a bit; then flip the value back again.

• We assume that their actions are interleaved (not executed
simultaneously).
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Running example

¬a
¬  b

a
¬  b

a
b

¬a
 bw1

w2 w3

w4
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What can we say about this system in
basic modal logic?
• ◊¬a ∧  ◊a

• ◊¬b ∧  ◊b

• a ∧  b → !(¬a ∨  ¬ b)

• a ∧  b → ◊◊ (a ∧  b)

Basically, which states we can reach and in how many steps.
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What we cannot say

• Can’t say something is “reachable” in principle: have to
say “reachable in n steps”.

• Can’t say which action (by which process) will get us to
which state.

• Can’t say “there is an execution trace starting at w1 where
b is always false”

• Can’t say what agent A “knows” about agent B (this would
make more sense if A and B were trying to communicate
and make sure messages were received etc.)
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Adding actions

¬a
¬  b

a
¬  b

a
b

¬a
 b

b = !b

b = !b

b = !b

b = !b

a = !a a = !a a = !a a = !a
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Propositional dynamic logic

• Instead of one accessibility relation R, structures have
many acessibility relations. Each Ri corresponds to some
statement (atomic action) i, for example  a = !a.

• Corresponding modalities are [i] and <i>, for example
[a=!a] φ (always after executing a=!a, φ holds) and
<a=!a>φ (it is possible by executing a=!a to arrive in a
state where φ holds).

– a → <b = !b> a and a → [b = !b] a

– a → [a = !a] ¬  a

– a ∧  b → [a = !a](¬a ∧  b)

• So we can axiomatise pre- and post-conditions of actions.
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Multimodal logic

• In general, in multimodal logic (including PDL) each
accessibility relation Ri gives rise to modalities [i] and <i>
with the following truth definitions:

M, w |= [i] φ iff for all v with Ri(w,v), M,v |= φ
M, w |= <i> φ iff for some v with Ri(w,v), M,v |= φ
• As before, <i> φ is definable as ¬  [i] ¬  φ .

• Action i is deterministic: <i> φ → [i] φ
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Propositional dynamic logic contd.

• In addition to atomic statements, we can use composition ;,
union ∪  and iteration * to form new program modalities.

• For example,

– a → [(a = !a);(a = !a)] a: if a holds, then after executing
a= !a twice, a holds again

– a ∧  b → [(a = !a) ∪ (b = !b)] (¬a∨  ¬b): if a and b hold,
then after executing a= !a or b = !b, either a is false or b
is false

– a → [(b = !b)*] a : if a holds, then after 0 or finitely
many iterations of b = !b, a still holds
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Talking about traces

• However, PDL cannot express the fact for example that
there is a particular execution trace where process B does
not have a chance to run at all.
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Unwinding a state diagram

¬a
¬  b

a
¬  b

a
b

¬a
 b

w1 w4

w3w2

MGS Modal Logic: lecture 1 32

Unwinding a state diagram

¬a
¬  b

a
¬  b

¬  a
¬  b

¬a
 b

w1

w4

w1

w2

a
b

¬  a
¬  b

a
 bw3

w1

w3

w2

w4

w2

w4

w2

w4

w2

w4

...

...

→ w1→w2 → w1→w2...

...

...

...

...

...
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Computation tree logic CTL*

• Talks about computation trees as above

• Choose initial state and unwind a Kripke structure into a
tree

• Can quantify over paths and say things like
– AGφ : on all paths starting here in all states φ holds
– EG φ: there is a path starting here along which φ holds
– AF φ : on all paths starting here φ holds at least once
– EF φ: there is a path starting here where φ holds at least

once
– AGF φ: on all paths starting here there is always a state

ahead where φ holds (φ holds infinitely often).
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Computation tree logic CTL*

• Useful for expressing safety and liveness properties and
verifying whether some protocol satisfies them

• More details in lecture on model checking
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Reasoning about knowledge

• What if we want to verify a communication protocol...

• Agent A sends agent B a message and B sends A an
acknowledgement

•  Now A knows that B has received the message,  but A
does not know whether B knows that A knows that B has
received the message … etc.

• Classical examples involve muddy children/wise men and
Byzantine generals.
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Basic epistemic logic

• Instead of ! we have modal operator K for Knows. Truth
definition the same as for !.

• Usually we consider several agents, so we have a
multimodal logic: several operators Ki, each interpreted
using accessibility relation Ri

• Each accessibility relation Ri  is assumed to be an
equivalence relation (reflexive, transitive and symmetric).
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Intuition

• Suppose we have agents A and B with local states state(A)
and state(B). The global state of the system (possible world
w) consists of wA = state(A) at w, wB = state(B) at w, and
perhaps some more variables.

• Then two global states w and v are connected by RA if
wA=vA.

M,w |=  KA φ if in all states v where vA= wA, M,v |= φ.

• Somehow A manages to correlate its state with φ. It only
goes into state wA when φ is true and never when φ is false.
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Epistemic accessibility relations

¬a
¬  b

a
¬  b

a
b

¬a
 bw1

w2 w3

w4

state(A) = {a}

state(B) = {b}

MGS Modal Logic: lecture 1 39

Epistemic accessibility relations

¬a
¬  b

a
¬  b

a
b

¬a
 bw1

w2 w3

w4

state(A) = {a}

state(B) = {b}

RA

RB

M,w1 |= KA (KB b ∨  KB ¬ b )

MGS Modal Logic: lecture 1 40

What do these logics have in common

• All these logics talk about graphs

• They talk about them from a `local’ point of view: what
can we see from a given point? Quantifiers (for all….
exists…) are restricted by edge relation or path; we
quantify not over all points in the structure, but over ones
accessible from a given point.

• On technical level, unlike say first order logic, all those
logics are decidable. They can express fewer things but
this means that they are easier to reason with.


