Modal Logic

Midlands Graduate School in Foundations of CS, April 2003

Natasha Alechina School of Computer Science & IT University of Nottingham nza@cs.nott.ac.uk

What is modal logic?

- Variety of different systems
- · Difficult to give a definition which fits all of them
- Superficial answer: a logic which has a modality or several modalities in it

MGS Modal Logic: lecture 1

2

4

What is a modality?

- Modality is a connective which takes a formula (or formulas) and produces a new formula with a new meaning.
- Just as \neg is a connective which takes a formula ϕ and produces a new formula $\neg \phi$, or \rightarrow takes ϕ and ψ and produces a formula $\phi \rightarrow \psi$.
- The only difference is that in classical logic, the truth value of ¬φ is uniquely determined by the value of φ, and the value of φ→ψ is a function of the values of φ and ψ.
- Modalities are not truth-functional.

MGS Modal Logic: lecture 1

Examples (unary modalities)

- $\Box \phi$: "it is necessary that ϕ "
- $\Diamond \varphi$: "it is possible that φ "
- $G\phi$: "always in the future, ϕ will be true"
- $F\phi$: "at some point in the future, ϕ will be true"
- $P\varphi$: "at some point in the past, φ was true"
- $K_i \phi$: "agent i knows that ϕ "
- $B_i \phi$: "agent i believes that ϕ "
- $[prog]\,\phi$: "after any execution of the program prog, the state satisfies property ϕ "
- <prog> ϕ : "there is an execution of the program prog, which results in a state satisfying property ϕ "

MGS Modal Logic: lecture 1

Computation tree logic CTL*

- · Talks about computation trees as above
- Choose initial state and unwind a Kripke structure into a tree
- Can quantify over paths and say things like
 - AG ϕ : on all paths starting here in all states ϕ holds
 - EG $\boldsymbol{\varphi} :$ there is a path starting here along which $\boldsymbol{\varphi}$ holds
 - AF ϕ : on all paths starting here φ holds at least once
 - EF $\phi :$ there is a path starting here where ϕ holds at least once
 - AGF ϕ : on all paths starting here there is always a state ahead where ϕ holds (ϕ holds infinitely often).

MGS Modal Logic: lecture 1

Reasoning about knowledge

- What if we want to verify a communication protocol...
- Agent A sends agent B a message and B sends A an acknowledgement
- Now A knows that B has received the message, but A does not know whether B knows that A knows that B has received the message ... etc.
- Classical examples involve muddy children/wise men and Byzantine generals.

MGS Modal Logic: lecture 1

35

33

Basic epistemic logic

- Instead of □ we have modal operator K for Knows. Truth definition the same as for □.
- Usually we consider several agents, so we have a multimodal logic: several operators $K_{\rm i},$ each interpreted using accessibility relation $R_{\rm i}$
- Each accessibility relation R_i is assumed to be an equivalence relation (reflexive, transitive and symmetric).

MGS Modal Logic: lecture 1

37

MGS Modal Logic: lecture 1

- · All these logics talk about graphs
- They talk about them from a `*local' point of view*: what can we see from a given point? Quantifiers (for all.... exists...) are restricted by edge relation or path; we quantify not over all points in the structure, but over ones accessible from a given point.
- On technical level, unlike say first order logic, all those logics are decidable. They can express fewer things but this means that they are easier to reason with.

MGS Modal Logic: lecture 1