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What is modal logic?

* Variety of different systems
« Difficult to give a definition which fits all of them

» Superficial answer: alogic which has amodality or severa
modalitiesin it
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What is a modality?

* Modality is a connective which takes aformula (or
formulas) and produces a new formulawith a new
meaning.

¢ Just as - is a connective which takes a formula ¢ and
produces anew formula- @, or — takes @and Y and
produces aformula @ — .

« Theonly differenceisthat in classica logic, the truth value
of = @isuniquely determined by the value of ¢, and the
value of @ - Wisafunction of the values of @and Y.

* Modalities are not truth-functional .
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Examples (unary modalities)

* O@: “itisnecessary that ¢’

* 0@:“itispossiblethat ¢

* Go: “awaysinthefuture, @ will betrue’

* Fo: “at some point in the future, @will be true”

e Pg: “at some point in the past, @ was true’

* K;@:“agenti knowsthat ¢’

* B,@:"agenti believesthat ¢

e [prog] @: “after any execution of the program pr og, the
state satisfies property @

* <prog>@: “thereis an execution of the program pr og,
which results in a state satisfying property ¢’
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Binary modalities

* @ - Y (intuitionistic implication)
¢ U(e,W) : “until @ becomestrue, Y holds’
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The plan (for today)

» Define basic modal logic

 Describe various systems of modal logic
* Explain how they are used

» Try to explain what they have in common

After the break:

» Completeness and decidability of basic modal logic
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The plan (for tomorrow)

¢ Bisimulation

* Processes

« Propositional dynamic logic (PDL)
« Computation treelogic (CTL*)

* Model checking.
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Basic modal logic: the language

Alphabet:

* A set of propositional variables Prop={p,, p, ...}

* Boolean connectives— and — (0J, [J, and —~ are definable)
e (Unary) modality O (¢ isdefinable)

Well-formed formula@:

@=pOProp | -@ | ¢~ ¢, | O¢
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Just for completeness...

© e =me- 0
cole = (e~ @)
C e =0 0) U@ @)

Basic modal logic:models

Kripke structures (possible worlds structures) are models of
basic modal logic.

A Kripke structureisatripleM = (W,R,V) where

* W isanon-empty set (possible Worlds)

e 0@ :=- 070
* ROW X W isan accessibility Relation
e V:(Propx W) - {true, false} isaValuation function.
Thisisjust agraph (W,R) with afunction V which tells

which propositional variables are true at which vertices.
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Example Example
Wy W, Ws wy={p} w,={p,a} w3 ={p}

V(p, w,) = true, V(q, w,) = false
V(p, w,) = true, V(q, w,) = true
V(p, wy) = true, V(q, w,) = false
V(p, w,) =fase V(q, w,) =true
V(p, wg) = fase, V(q, wg) = true

Wsg
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ws={ o}
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Basic modal logic: meaning of formulas

GivenM = (W,R,V) and w OW, we define what does it mean
for aformulato be true (satisfied) in aworld w of amodel
M:

M, w |= piff V(p,w) = true;

Mw |= =@ iff M\w £ @;

Mw |= @ - iff either M,w [Z @or M,w |= ;

M.,w |= Ogiff for al v accessible from w (for all v such that

Example

wy={p} w={p,q} 0 p w3 ={p}

M, w, |= Oq
M, w, [=-0Op
M, w, [=-0O-p

RW,v)), MV |= ¢ ws={a} M, w, |= 0p
M,w, =0 0Op
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Validity (and satisfiability) Examples

* Aformulagistrueinamodel M if itis satisfied in al of
M’sworlds

e Aformulagisvdidif itistruein al models.

* A formulaissatisfiableif its negation is not valid (if it is
satisfied in at least one world of one model).

e Op- Opisvaid (just an example of apropositional
tautology)

e O(p - p)isvdid (because p - pistrueinall accessible
worlds, wherever you are).

* 0Op - pisnotvalid (theset { Op, - p} issatisfiablein
some worlds).
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Example Example
wy={p} w={pat  w;={p} w, ={p} w={pa  wy={p}
M,w,[=0Op& p
w,={q} w,={a}
ws={ q} ws={ o}
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Aside

* Tomake Op — pvalid, need to require that R is reflexive.
e Thenif M,w |£ p, from R(w,w) alsoM,w |2 Op .
¢ Other correspondencies:
— Op - O O pcorresponds to transitivity of R (easier
toseein¢ form, 0 0 p - ¢ p:if you can get
somewhere in two steps, you can get there is one step).

— Op - ¢ pcorrespondsto seridlity of R (for every
world there is an accessible world)

— p - O ¢ p corresponds to symmetry
—0p - O ¢ pcorresponds to R being euclidean
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Euclidean relation

e O0p->0O0p
o Ox Oy Oz (RX,Y)OR(X,2) - R(y,2))
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What can you express in basic modal
logic?

Useful intuition:

 possible worlds are states in a computation,

* Risthetransition relation,

« V tellsus which properties are true of which state.

Let’s see what we can express in basic modal logic - this will
also allow usto motivate more complicated systems.
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Running example

* Suppose we have two processes/agents A and B.
» Each hasalocal boolean variable (A has g, B hasb).

» All they are doing is: flip the value of their variable; sleep
for abit; then flip the value back again.

* Weassume that their actions are interleaved (not executed
simultaneously).
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Running example

W, Ws

W,
W, 4
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What can we say about this system in
basic modal logic?

e 0-malla

e 0=b0O0b

* alb - O(-aO-b)

e alb - 00 (alb)

Basically, which states we can reach and in how many steps.
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What we cannot say

* Can't say something is “reachable’ in principle: have to
say “reachablein n steps”.

« Can't say which action (by which process) will get usto
which state.

» Can't say “thereis an execution trace starting at w, where
bisaways false”

« Can't say what agent A “knows” about agent B (this would
make more sense if A and B were trying to communicate
and make sure messages were received etc.)
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Adding actions
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Propositional dynamic logic

« Instead of one accessihility relation R, structures have
many acessibility relations. Each R; corresponds to some
statement (atomic action) i, for example a='a

* Corresponding modalities are[i] and <i>, for example
[a=!a] @ (always after executing a=!a, ¢ holds) and
<a=!a>@ (it is possible by executing a=!ato arrivein a
state where ¢ holds).

—a-<b=!b>aanda - [b=!b]a
—a-[a=lgd-a
—alb - [a=!a(-alb)

* S0 we can axiomatise pre- and post-conditions of actions.
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Multimodal logic

e Ingenera, in multimodal logic (including PDL) each
accessibility relation R; givesrise to modalities [i] and <i>
with the following truth definitions:

M, w |= [i] @iff for al v with Ri(w,v), M,v |= ¢

M, w |= <i> @iff for somev with Ri(w,v), M,v |= @

* Asbefore, <i> @isdefinableas- [i] = @.

» Actioni isdeterministic: <i> @ - [i] ¢
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Propositional dynamic logic contd.

« Inaddition to atomic statements, we can use composition ;,
union O and iteration * to form new program modalities.
* For example,
— a- [(a=!a);(a="'a)] a if aholds, then after executing
a= latwice, aholds again
—alb - [(a='a) O(b ='b)] (~al=b): if aand b hold,
then after executing a= !laor b =!b, either aisfalseor b
isfase
— a - [(b="!b)*] a: if aholds, then after O or finitely
many iterations of b = !b, astill holds
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Talking about traces

» However, PDL cannot express the fact for example that
there is a particular execution trace where process B does
not have a chanceto run at all.
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Unwinding a state diagram

W, W3

w, w,
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Unwinding a state diagram

Wy o Wy W,y » Wy W
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Computation tree logic CTL*

« Taks about computation trees as above

« Chooseinitial state and unwind a Kripke structure into a
tree
« Can quantify over paths and say things like
— AGg: on dl paths starting here in all states ¢ holds
— EG ¢: there is a path starting here along which ¢ holds
— AF @: on al paths starting here @ holds at least once

— EF @ there is a path starting here where @ holds at least
once

— AGF @ on dl paths starting here there is always a state
ahead where @ holds (@ holds infinitely often).
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Computation tree logic CTL*

» Useful for expressing safety and liveness properties and
verifying whether some protocol satisfies them
e More detailsin lecture on model checking
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Reasoning about knowledge

* What if we want to verify acommunication protocol...

« Agent A sends agent B amessage and B sends A an
acknowledgement

* Now A knows that B has received the message, but A
does not know whether B knows that A knows that B has
received the message ... etc.

¢ Classical examplesinvolve muddy children/wise men and
Byzantine generals.
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Basic epistemic logic

 Instead of O we have modal operator K for Knows. Truth
definition the same asfor OJ.

» Usually we consider several agents, so we have a
multimodal logic: severa operators K;, each interpreted
using accessibility relation R;

» Each accessibility relation R; isassumed to be an
equivalence relation (reflexive, transitive and symmetric).
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Intuition

* Suppose we have agents A and B with local states state(A)
and state(B). The global state of the system (possible world
w) consists of w, = state(A) at w, wg = state(B) at w, and
perhaps some more variables.

« Then two global statesw and v are connected by R, if
W,=Va.

Mw [= K, @if indl statesv wherev,=w,, M,v |= ¢.

« Somehow A manages to correlate its state with @. It only
goesinto state w, when @is true and never when @isfalse.
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Epistemic accessibility relations

() (o),

Y/ >/
state(A) = {a}
()

y (-a) 1 S2B) = (1)
Y O/

W)l
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Epistemic accessibility relations

state(A) ={a}
W4State(B) ={b}

M,w; |= K, (Kg b OKg =b)
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What do these logics have in common

« All theselogics talk about graphs

* They talk about them from a“local’ point of view: what
can we see from a given point? Quantifiers (for all....
exists...) arerestricted by edge relation or path; we
quantify not over all pointsin the structure, but over ones
accessible from a given point.

* Ontechnical level, unlike say first order logic, all those

logics are decidable. They can express fewer things but
this means that they are easier to reason with.
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