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Modal logic and first order logic

• Modal logic: local view of the structure (“where can I get 
by following links from here”).

• First order logic: global view of the structure (can see 
everything, quantifiers do not follow edges).

• Meaningful equivalence between structures:

– first order logic: (partial) isomorphism

– modal logic: two structures should have the same 
“edge-following behaviour”

MGS Modal Logic: lecture 3 2

Equivalence between transition 
systems
• Trace equivalence?
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choice between b and c is 
made at different points
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Bisimilation

• Let M = (W,R,V) and M’ = (W’,R’,V’) be to Kripke 
structures. A non-empty binary relation Z is called a 
bisimulation between M and M’ if the following conditions 
are satisfied:

– if Z(w,w’) then w and w’ satisfy the same propositional 
letters

– if Z(w,w’) and R(w,v) in M, then there exists v’ in M’
such that R’(w’,v’) and Z(v,v’) (the forth condition)

– if Z(w,w’) and R’(w’,v’) in M’, then there exists v in M 
such that R(w,v) and Z(v,v’) (the back condition)
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In pictures: forth condition

w = {p,q}

v = {p,¬q}M

w’ = {p,q}

M’

R

Z
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In pictures: forth condition

w = {p,q}

v = {p,¬q}M

w’ = {p,q}

v’ = {p,¬q}M’

R R’
Z

Z
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In pictures: back condition

w = {p,q}

M

w’ = {p,q}

v’ = {p,¬q}M’

R’

Z
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In pictures: back condition

w = {p,q}

v = {p,¬q}M

w’ = {p,q}

v’ = {p,¬q}M’

R R’
Z

Z
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Bisimilar structures

• We shall call M and M’ bisimilar if there is a non-empty 
bisimulation relation between them.

• Sometimes we consider rooted structures: structures where 
there is a distinguished root/initial state of the system.

• For rooted structures, M and M’ are bisimilar if there is a 
bisimulation Z such that (root of M, root of M’) are in Z.

• Let us look at rooted examples.
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Examples: are M and M’ bisimilar?

w = {p,q}

v = {p,¬q}

M

w’ = {p,q}

v’ = {p,¬q}

M’

x = { p,q}

y = {¬ p,q} y’ = {¬ p,q}

x’ = {p,q}u’ = {p,q}

u = {p,¬q}

root
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Examples: are M and M’ bisimilar?

M M’

easier if we colour worlds satisfying same 
propositional variables the same colour!
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Are M and M’ bisimilar?

M M’
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Are M and M’ bisimilar?

M M’
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Are M and M’ bisimilar?

M M’
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Bisimulation and modal logic

• Suppose M and M’ are to Kripke structures and Z is a 
bisimulation between M and M such that Z(w,w’).

• Theorem: for every formula φof basic modal logic, 

M,w |= φ iff M’,w’ |= φ
• In other words, modal logic cannot distinguish bisimilar 

structures (can describe them up to bisimulation 
equivalence).
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Proof

M,w |= φ iff M’,w’ |= φ if Z(w,w’)

• Proof by induction on φ.

– φ is a propositional variable: from Z(w,w’) w and w’
satisfy the same propositional variables

– φ is ¬ψ : M,w |= ¬ψ iff M,w |≠ ψ iff (by the inductive 
hypothesis) M’,w’ |≠ ψ iff M,w |= ¬ψ

– φ is ψ→χ: M,w |= ψ→χ iff M,w |≠ ψ or M,w |= χ iff 
(by the inductive hypothesis) M’,w’ |≠ ψor M’,w’ |= χ
iff M’,w’ |= ψ→χ.
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Proof continued

M,w |= φ iff M’,w’ |= φ if Z(w,w’)

• Proof by induction on φ.

– φ is []ψ: M,w |= []ψ iff for all v such that R(w,v), M,v 
|= ψ. Suppose M,w |= []ψ and M’,w’ |≠ []ψ. Then there 
is a world v’ in M’ such that R’(w’,v’) and M’,v’ |≠ ψ. 
By the back condition, there is a v in M such that 
R(w,v) and Z(v,v’). By the inductive hypothesis, M,v |≠
ψ. So M,w |≠ []ψ: a contradiction.

– Similarly for M’,w’ |= []ψ and M,w |≠ []ψ. 
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Reverse?

• Modal logic does not distiguish bisimilar structures.

• Is the reverse true: if two structures are indistinguishable 
by modal formulas, they are bisimilar?

• This is true for finite structures. If two finite structures 
satisfy the same modal formulas, then they  are bisimilar.
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Counterexample for the infinite case

...

a branch of length 
n for every n

...

a branch of length 
n for every n, plus 
an infinite branch



4

MGS Modal Logic: lecture 3 19

Some other illuminating properties

• Define modal depth of φas the maximal depth of nesting 
of modalities in φ.

• For example, 

◊(p ∧ [] ¬p) ∧ ◊(¬p ∧ [] p) ∧ []((p ∧ []¬p) ∨ (¬p ∧ [] p))

has modal depth 2.

• A formula of modal depth n can’t see further than n steps 
from the current world. If we change something about the 
worlds accessible in more than n steps, the truth value of 
formula will not change.
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Example

p

¬p

¬p

p

◊(p ∧ []¬p) ∧ ◊(¬p ∧ []p) ∧ []((p ∧ []¬p) ∨ (¬p ∧ []p))
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Example

p

¬p

¬p

p

¬p

◊(p ∧ []¬p) ∧ ◊(¬p ∧ []p) ∧ []((p ∧ []¬p) ∨ (¬p ∧ []p))
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Example

p

¬p

¬p

p

p

◊(p ∧ []¬p) ∧ ◊(¬p ∧ []p) ∧ []((p ∧ []¬p) ∨ (¬p ∧ []p))
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Illuminating properties continued

• Tree model: every satisfiable formula has a tree model.

• We obtain it by unravelling the original model into a tree 
(and proving that it is bisimilar to the original model).

• By our previous result, we already know that every 
satisfiable formula has a finite model.

• If we unravel a finite cyclic model, we get an infinite tree.

• However, we know that the formula only cares about 
worlds accessible in n steps, where n is the formula’s 
modal depth.

• So we can chop the infinite tree after n levels.
• Each satisfiable formula has a finite tree model.
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Example: unravelling

p

p

¬p

w v

u
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Example: unravelling

• Original structure                        Unravelled structure

p

p

¬p

w v

u

p

w p

v

¬p

u

¬p

u

p

v
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Example: unravelling

• Each world is bisimilar to all copies of itself in the tree

p

p

¬p

w v

u

p

w p

v

¬p

u

¬p

u

p

v
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Bisimilarity checking algorithm

• Suppose we are given two rooted graphs (W’,R’,w’) and 
(W’’,R’’,w’’) (ignore V for the moment). We want to 
check if they are bisimilar with respect to back and forth 
conditions, that is if there is a bisimulation Z between them 
such that Z(w’,w’’).

• This is basically the same as saying: is there a 
bisimulation-induced equivalence relation on the set of 
vertices of the graph (W,R) = (W’∪ W’’,  R’ ∪ R’’) such 
that w’ and w’’ are in the same equivalence class?
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Relational coarsest partition

• Let V, V’ ⊆ W
• Define R-1(V) as {w in W: for some v in V, R(w,v)}

• V is stable with respect to V’ if either V ⊆ R-1(V’) or 
V∩R-1(V’) = ∅ .

• Intuitively, V’ is `a kind of vertices’ and to be an 
equivalence class, V should either only see vertices in V’
or not see any vertices in V’. Otherwise vertices in V are 
not equivalent with respect to seeing vertices in V’.

• If V is not stable with respect to V’, say V’ splits V.
• We need to find a coarsest stable partition of W, i.e. such 

that none of the equivalence classes splits another.
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Relational coarsest partition algorithm

• Start with any partition of Q of W (for example, 
Q={W,∅ }).

• Repeat until the resulting partition is stable:

– find a set S which is a union of some of the equivalence 
classes in Q, such that S splits some of the classes in Q 

– replace Q = {Q1,…,Qn} with 

{Q1 ∩R-1(S), Q1-R-1(S),…, Qn ∩R-1(S), Qn-R - 1(S)}
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Example

w

v u

x

y

Q = { W, ∅ } splitter: W;  R-1(W) ={w,x}

Q = {{w,x}, {v,u,y} }

now stable
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Exercise

• The algorithm above ignores propositional variables.

• Write a version which does not ignore variables (checks 
for bisimulation satisfying all three conditions).


