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Plan of the lecture

• Based on Huth and Ryan book.

• the language of CTL

• models of CTL

• truth of CTL formulas

• expressing properties in CTL

• CTL and model checking

MGS Modal logic: lecture 4 2

CTL

• CTL is a subset of CTL*. In CTL*, path quantifiers and temporal
modalities can be combined in any order.

• In CTL,  combinations are restricted allowing for special purpose
model-checking algorithms.
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Syntax of CTL

CTL is a branching-time temporal logic

• a set of atomic propositions p, q, r, …

• standard logical connectives: ¬ , ∧ , ∨ , →

• temporal connectives: AX, EX, AF, EF, AG, EG, AU and EU.
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Temporal connectives

• AX φ : on All paths, φ is true in the neXt state

• EX φ : on somE path, φ is true in the neXt state

• AF φ : on All paths, in some Future state φ is true

• EF φ : on somE path, in some Future state φ is true

• AG φ : on All paths, in all future states (Globally) φ is true

• EG φ : on somE path, in all future states (Globally) φ is true

• AU(φ1, φ2) : on All paths, φ1 is true Until φ2 is true

• EU(φ1, φ2) : on somE path, φ1 is true Until φ2 is true
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Models of CTL

A model M = (S, →, L) for CTL is given by:

• a set of states S

• a transition relation →, on S, such that for every s ∈  S there exists an
s´ ∈  S such that s → s´

• a labelling function L(s) specifying the set of atomic propositions
which are true at s.
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Definition of truth for CTL formulas

Let M = (S, →, L) be a model of CTL.  For any state s ∈  S, a CTL
formula φ holds at s iff:

M, s |= φ

1. M, s |= T and M, s |≠ ⊥  for all s ∈  S

2. M, s |= p iff  p ∈  L(s)

3. M, s |= ¬φ iff M, s |≠ φ
4. M, s |= φ1 → φ2 iff M, s |≠ φ1 or M, s |= φ2
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Definition of truth for CTL formulas 2

5. M, s |= AX φ iff  for all s1 such that s → s1, we have M, s1 |= φ

6. M, s |= EX φ iff  for some s1 such that s → s1, we have M, s1 |= φ

7. M, s |= AF φ iff  for all paths s1 → s2 → s3 →... , where s1 equals s and
there is some si such that M, si |= φ

8. M, s |= EF φ iff  there exists a path s1 → s2 → s3 →... , where s1 equals s
and there is some si such that M, si |= φ

9. M, s |= AG φ iff  for all paths s1 → s2 → s3 →... , where s1 equals s and
all si along the path we have M, si |= φ

10. M, s |= EG φ iff  there exists a path s1 → s2 → s3 →... , where s1 equals
s and all si along the path we have M, si |= φ

MGS Modal logic: lecture 4 8

Definition of truth for CTL formulas 3

11. M, s |= A U(φ1 ,φ2) iff  for all paths s1 → s2 → s3 →... , where s1 equals
s and that path satisfies U(φ1 ,φ2), i.e., there is some si along the path such
that M, si |= φ2 and for each j < i, we have M, sj |= φ1

12. M, s |= EU(φ1 ,φ2) iff  there exists a path s1 → s2 → s3 →... , where s1

equals s and that path satisfies U(φ1 ,φ2), i.e., there is some si along the
path such that M, si |= φ2 and for each j < i, we have M, sj |= φ1
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Graphs as models

We can represent a model M as a directed graph whose nodes are states
containing all the atomic propositions which are true in that particular
state, e.g.:
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Semantics of CTL

CTL formulas can be evaluated relative to the computation tree which is
the unwinding of the labelled transition system describing the system to be
modelled, e.g.:
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Example:
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Example: unwinding the graph
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Question

• is the CTL formula AF r true at s0?
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Example: a system which satisfies EF φ

φ
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Example: a system which satisfies EG φ
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Example: a system which satisfies AG φ
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Example: a system which satisfies AF φ
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Example: mutual exclusion

Given the following model of a simple mutual exclusion protocol for two
processes

• a set of atomic propositions describing the system: ni (process i is not
in its critical section, i.e., it is initialising or in the remainder), ti

(process i is trying to enter its critical section), and ci (process i is in its
critical section)

• each process undergoes transitions in the cycle ni → ti → ci → ni …

• only one process can make a transition at time (e.g., a single processor
and the transitions are atomic)

• the two processes start off not in their critical sections, in the initial
state s0
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Example: mutual exclusion
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Example: mutual exclusion

• Mutual Exclusion: AG ¬ (c1 ∧  c2) (true in the example above)

• Absence of starvation  ( false in the example above):

AG(ti → ¬EG ¬ci) (if a process i is trying to get into a critical section, it
is impossible to follow a path from that state where globally ci is
false).
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Model checking

• Given a system to verify, generate the state space (transition system).

• This is done automatically provided the system is specified in suitable
format. The system is finite (not a tree unravelling!)

• Verify the formula on the resulting transition system.  This is also
done automatically.

• The simplest algorithm is as follows. Given a formula φ to check and a
system S

– generate the set of subformulas of φ; order them by complexity
(propositional variables first,…, φ last)

– Repeat: take a subformula from the list and annotate states of S
which satisfy it, with this subformula.

• When we reach the end of the list we see which states satisfy φ.
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Annotation

• Since states come with a labelling function, we know how to annotate
states with propositional variables.

• When the current subformula is ¬  ψ, we annotate with it the states
which are not annotated with ψ (note that ψ precedes ¬  ψ in the list of
subformulas, so we already annotated the states with ψ).

• How to do this for ψ1 → ψ2 and  ! ψ, is the subject of an exam
question.
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Annotation

• Here, I’ll give a naive algorithm for EX, EU and AF (these three
connectives are sufficient to express all CTL connectives.

– If φ  is  EX ψ, annotate  predecessors of any state labelled ψ by
EX ψ.

– If φ  is EU(ψ1,ψ2 ), first find all states annotated ψ2 . Then work
backwards from those states and so long as we encounter ψ1 states
we label them by EU(ψ1,ψ2 ).

– If φ  is AFψ, first annotate all states annotated with ψ with AFψ.
Then annotate a state with AFψ if all its successor states are
annotated with AFψ. Releat until there is no change.


