Plan of the lecture

+ Based on Huth and Ryan book.

« thelanguage of CTL

» modelsof CTL

« truth of CTL formulas

* expressing propertiesin CTL

« CTL and model checking
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CTL

« CTL isasubset of CTL*. In CTL*, path quantifiers and temporal
modalities can be combined in any order.

« InCTL, combinations are restricted allowing for special purpose
model-checking algorithms.
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Syntax of CTL

CTL isabranching-time temporal logic
* aset of atomic propositionsp, q, T, ...
« standard logical connectives: =, O, [J, —

« temporal connectives: AX, EX, AF, EF, AG, EG, AU and EU.
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Temporal connectives

* AX @: onAll paths, gistruein the neXt state
« EX ¢@: on somE path, @istruein the neXt state

« AF @: on All paths, in some Future state @istrue
* EF ¢: on somE path, in some Future state @istrue

* AG @: onAll paths, in all future states (Globally) @istrue
« EG ¢: on somE path, in al future states (Globally) @istrue

* AU(@,, @) : on All paths, @, istrue Until @, istrue
* EU(@,, ®,) : on somE path, @, istrue Until @, istrue
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Models of CTL

A model M = (S, -, L) for CTL isgiven by:
* aset of states S

« atransitionrelation -, on S, such that for every s Sthere existsan
s 0Ssuchthats - s

« alabelling function L(s) specifying the set of atomic propositions
which aretrueat s.
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Definition of truth for CTL formulas

LetM =(S, -, L) beamodel of CTL. For any states0 S, aCTL
formula@holds at siff:

M, s|=¢
1.M,s|=TandM, s# OforalsOS
2.M, s|=piff pOL(s)

3. M,s|=-@iff M, sz @
4.M,s|= @, -~ @iff M, sz g,0or M, s|= @,
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Definition of truth for CTL formulas 2

5.M, s|=AX @iff forall s, suchthats — s, wehaveM, s, |= @
6. M, s|=EX @iff forsomes, suchthats — s, wehaveM, s, |= @

7.M, s|= AF giff forall pathss, - s, - s; —..., where's, equals sand
thereissome s suchthat M, s |= @

8. M, s|=EF @iff thereexistsapaths, - s, » s; —..., where s, equals s
and thereissome s suchthat M, s |= @

9. M, s|=AG giff forall pathss, - s, » 5; —..., where's, equals sand
al 5 aongthepathwe have M, s |= @

10. M, s|= EG @iff thereexistsapaths, - s, — s; - ..., wheres, equals
sand al 5 along the path we have M, s |= @
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Definition of truth for CTL formulas 3

11. M, s|= A U(g, @, iff foradl pathss, - s, » s; -..., where s, equals
sand that path satisfies U(@;, ,¢,), i.e., there is some 5 aong the path such
that M, 5 |= @,and for each j <i, wehave M, § |= @,

12. M, s|= EU(g, @, iff thereexistsapaths, - s, - s; —..., wheres;

equals sand that path satisfies U(@, @), i.e., thereis some 5 along the
path such that M, s |= @,and for eachj <i, wehave M, § |= ¢,
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Graphs as models

We can represent amodel M as a directed graph whose nodes are states
containing all the atomic propositions which are true in that particular
state, e.g.:

S

N

Semantics of CTL

CTL formulas can be evaluated relative to the computation treewhich is
the unwinding of the labelled transition system describing the system to be
modelled, eg.:

S
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Example: Example: unwinding the graph
S
S
S
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Question

* isthe CTL formula AF r true at s,?
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Example: a system which satisfies EF @
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Example: a system which satisfies EG @
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Example: a system which satisfies AG @
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Example: a system which satisfies AF ¢
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Example: mutual exclusion

Given the following model of asimple mutual exclusion protocol for two
processes

« aset of atomic propositions describing the system: n (processi is not
initscritica section, i.e,, it isinitialising or in the remainder), t;
(processi istrying to enter its critical section), and ¢; (processi isin its
critical section)

« each process undergoes transitionsinthecyclen, - t - ¢ - n, ...

« only one process can make atransition at time (e.g., asingle processor
and the transitions are atomic)

« the two processes start off not in their critical sections, in the initial
sate’s,
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Example: mutual exclusion
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Example: mutual exclusion

« Mutual Exclusion: AG = (c, [Ic,) (true in the example above)

« Absence of starvation ( falsein the example above):

AG(t; -~ ~EG —c) (if aprocessi istrying to get into a critical section, it
isimpossible to follow a path from that state where globally ¢ is
false).
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Model checking

» Given asystem to verify, generate the state space (transition system).
* Thisis done automatically provided the system is specified in suitable
format. The system isfinite (not a tree unravelling!)

« Verify the formula on the resulting transition system. Thisisalso
done automatically.

» The simplest algorithm is as follows. Given aformula ¢ to check and a
system S

—generate the set of subformulas of ¢; order them by complexity
(propositional variablesfirst,..., @last)

— Repeat: take a subformula from the list and annotate states of S
which satisfy it, with this subformula.

» When we reach the end of the list we see which states satisfy @.
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Annotation

 Since states come with alabelling function, we know how to annotate
states with propositional variables.

« When the current subformulais = , we annotate with it the states
which are not annotated with Y (note that Y precedes - g in the list of
subformulas, so we aready annotated the states with ).

« How todothisfor ¢, — Y, and O Y, isthe subject of an exam
question.
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Annotation

* Here, I'll give anaive algorithm for EX, EU and AF (these three
connectives are sufficient to express all CTL connectives.

—If @ is EX y, annotate predecessors of any state labelled y by
EX @.

—If @ iISEU(,, Y, ), first find &l states annotated s, . Then work
backwards from those states and so long as we encounter (), states
we label them by EU(Y, Y, ).

—If @ isAFy, first annotate al| states annotated with  with AF.
Then annotate a state with AF if al its successor states are
annotated with AF. Releat until thereis no change.
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