
Semantics for Dynamic Syntactic Epistemic Logics

Thomas Ågotnes
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Abstract

Traditional epistemic logic assumes that agents’ knowledge
is closed under logical consequence. Many attempts to solve
this logical omniscience problem weaken the closure con-
dition by assuming that agents are ignorant of certain logi-
cal rules. Duc (1997) avoids the apparent paradox of non-
omniscience and non-ignorance by introducing propositions
on the form “φ is true after some train of thought of agent i”
explicitly into the language. A logic DES4n for this language
is presented as a dynamic version of S4n. DES4n describes
agents who do not necessarily know any (S4n) consequence
of their knowledge now, but can get to know any such conse-
quence in the future. Duc does not, however give a semantics
for DES4n. In this paper we provide a semantics, for DES4n

and some weaker systems, and prove soundness and com-
pleteness. A key assumption is that an agent can only know
a finite number of formulae at each time. The semantics is
based on Kripke models, where each world syntactically as-
signs a finite number of formulae to each agent and the tran-
sitions model steps of reasoning.

Introduction
Traditional epistemic logic, defining knowledge as truth
in all indiscernible worlds in a Kripke structure, assumes
that agents’ knowledge is closed under logical consequence.
For example, if an agent knows both the formula φ and
the formula ψ, it is assumed that he also knows the for-
mula φ ∧ ψ. Or, if he knows the rules of chess he knows
whether white has a winning strategy. The fact that this
is not a description of real agents has been called the log-
ical omniscience problem (Hintikka 1975). Many attempts
to solve this logical omniscience problem weaken the clo-
sure condition by assuming that agents are ignorant of
certain logical rules (see e.g. (Moreno 1998; Sim 1997;
Fagin et al. 1995) for surveys). Duc (1997) avoids the appar-
ent paradox of non-omniscience and non-ignorance by intro-
ducing propositions on the form “φ is true after some train
of thought of agent i” explicitly into the language. Rather
than modeling such “trains of thought” explicitly, he adds
a generic operator 〈Fi〉, for each agent i, to the language.
The intended meaning of a formula such as 〈Fi〉Ki(φ ∧ ψ)
is that agent i can get to know the formula φ ∧ ψ some time
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in the future. Duc presents a formal logical system DES4n
for this language, intended to be a “dynamic” version of S4n.
DES4n does not have the usual closure properties for knowl-
edge, such as the K axiom; it describes agents who do not
necessarily know any consequence of their knowledge now
but can get to know any such consequence in the future.

Duc does not, however, present a semantics for DES4n.
In (Duc 1995), he describes semantics and proves complete-
ness for a simpler system, however according to that seman-
tics an agent may know infinitely many formulae at a single
point in time. While it is not mentioned explicitly in (Duc
1997) that the agents described by DES4n are assumed to
know only finitely many formulae at each point in time, it is
an implicit consequence of the assumption that an agent does
not know anything automatically and that getting to know
any formula requires a (finite) “train of thought”.

In this paper we interpret the language of DES4n in Kripke
structures. Rather than using the transitions to model indis-
cernibility, we use them to model steps of reasoning. Knowl-
edge is modeled by syntactic assignments (see e.g. (Fagin
et al. 1995; Ågotnes & Walicki 2005b)), describing for each
agent i a set of formulae Xi known by i in a given state (under
certain restrictions prescribed by DES4n). A crucial point
is that we require the set Xi for each agent i in each state
to be finite. Thus we provide a natural semantics, both for
DES4n and for some weaker systems, and prove soundness
and completeness.

In the next section, we formally introduce the logic
DES4n. Then we present our semantics for dynamic epis-
temic logics. In the sections that follow, we show soundness
and completeness of both DES4n and some related systems.
The latter include both weaker systems, and general systems
containing axioms expressing that an agent knows an infer-
ence rule. Finally, we discuss related work and conclude.

System DES4n

The logic DES4n (Duc 1997) is a formal system in the lan-
guage LDE , which is a propositional language with epis-
temic operators for expressing that something is known now
and temporal operators for expressing what will be the case
in the future. LDE is parameterised by a set of primi-
tive propositions Θ and a number of agents n. We write
Agt = {1, . . . , n} for the set of agents.



Language

First, the traditional language of epistemic logic is the lan-
guage of propositional logic extended with a operator Ki for
each agent i. Ln(Θ), or just L, is defined as follows.

Θ ⊂ L
If i ∈ Agt and φ ∈ L then Kiφ ∈ L
If φ ∈ L then ¬φ ∈ L
If φ, ψ ∈ L then (φ→ ψ) ∈ L

An operator Ki is called an epistemic operator. A formula
φ ∈ L is an objective formula if it has no occurrence of an
epistemic operator.

The language LDE adds an operator 〈Fi〉 for each agent
i. The use of the operator is restricted, however: it is not al-
lowed within the scope of an epistemic operator. LDEn(Θ),
or just LDE , is defined as follows.

L ⊆ LDE
If φ ∈ LDE then ¬φ ∈ LDE
If φ, ψ ∈ LDE then (φ→ ψ) ∈ LDE
If i ∈ Agt and φ ∈ LDE then 〈Fi〉φ ∈ LDE

The usual derived propositional connectives are used. The
operator [Fi] is defined as a dual to 〈Fi〉 in the usual way:
[Fi]φ ≡ ¬〈Fi〉¬φ. A maximal set of LDE formulae is a set
containing either φ or ¬φ, for any φ ∈ LDE .

The intended meaning of 〈Fi〉φ and [Fi]φ are that φ is
true after some train of thought of i, and after every train of
thought of i, respectively. Thus, the “F” in the operator can
be read as standing for “Future”.

A formula starting with an epistemic operator is an epis-
temic atom. We will sometimes use At(φ) to denote the set
of primitive propositions and epistemic atoms which occur
outside the scope of any epistemic operators in a formula φ.
For example, At((〈Fi〉KiKi(p∧q))→ p) = {KiKi(p∧q), p}
– this set does not contain Ki(p ∧ q) nor q since both the
epistemic atom Ki(p ∧ q) and the primitive proposition q
only occur within the scope of an epistemic operator.

Axiomatic system

In the definition of the system DES4n for the language LDE ,
a sublanguage L+

E ⊆ L of persistent formulae is used. L+
E

is the least set satisfying the following conditions:

If φ is an objective formula then φ ∈ L+
E

If φ, ψ ∈ L+
E then (φ ∧ ψ) ∈ L+

E

If φ, ψ ∈ L+
E then (φ ∨ ψ) ∈ L+

E

If i ∈ Agt and φ ∈ L+
E then Kiφ ∈ L+

E

DES4n has the following axiom schemata:

PC1. φ→ (ψ → φ)
PC2. (φ→ (ψ → γ))→ ((φ→ ψ)→ (φ→ γ))
PC3. (¬ψ → ¬φ)→ (φ→ ψ)
TL1. [Fi](φ→ ψ)→ ([Fi]φ→ [Fi]ψ)
TL2. [Fi]φ→ [Fi][Fi]φ
DE1. Kiφ ∧ Ki(φ→ ψ)→ 〈Fi〉Kiψ

DE2. Kiφ→ φ

DE3. Kiφ→ [Fi]Kiφ, if φ ∈ L+
E

DE4. 〈Fi〉Ki(φ→ (ψ → φ))
DE5. 〈Fi〉Ki((φ→ (ψ → γ))→ ((φ→ ψ)→ (φ→ γ)))
DE6. 〈Fi〉Ki((¬ψ → ¬φ)→ (φ→ ψ))
DE7. 〈Fi〉Ki(Kiφ→ φ)
DE8. Kiφ→ 〈Fi〉KiKiφ, if φ ∈ L+

E

and the following inference rules:

R1. From φ, φ→ ψ, prove ψ
R2. From φ, prove [Fi]φ

where i ∈ agt. We use `DES4n to denote derivability in
DES4n.

PC1–PC3 and R1 axiomatise the underlying propositional
logic. TL1–TL2 and R2 axiomatise the 〈Fi〉 operators, es-
sentially as a temporal “future” operator satisfying axioms
of the modal system K4. DE1 and DE4–DE6 say that an
agent can reason perfectly in propositional logic. DE2 say
that an agent can never get to know anything false or in-
consistent, and DE7 that he can get to know this after some
reasoning. DE3 says that an agent always reasons monoton-
ically. Only persistent formulae are included in this defini-
tion of monotone reasoning, however. In particular, negative
epistemicals (e.g. ¬Kiφ) are not persistent. Finally, DE8
says that an agent can do positive introspection. In the next
section we make these semantic conditions implicit in the
logic DES4n explicit.

Examples of DES4n theorems illustrating that the logic
describes agents who are non-omniscient but nevertheless
are rational and non-ignorant are:

Ki(φ ∧ ψ)→ 〈Fi〉Kiφ
Ki¬¬φ→ 〈Fi〉Kiφ
(Kiφ ∧ Kiψ)→ 〈Fi〉Ki(φ ∧ ψ)

Note that there are no axioms in DES4n connecting the
knowledge of different agents. From this point of view, the
system could have been presented for a single agent. We
continue to study the multi-agent case, both because the
system was originally introduced in this form, and because
there is an obvious option of extending such a system with
axioms saying, e.g., ‘agent i eventually communicates all his
knowledge to agent j’:

Kiφ→ 〈Fi〉Kjφ

Structures and Interpretation
By viewing the epistemic atoms as primitives and the 〈Fi〉
operators as diamonds, we can interpret the language LDE



as a modal language in Kripke structures. As discussed in
the introduction, we are mainly interested in structures in
which only a finite number of epistemic atoms are true in
each state. Let

ATOMS = Θ ∪ {Kiφ : Kiφ ∈ LDE}

We will henceforth refer to members of ATOMS as atoms.

Definition 1 A model is a tuple M = (W,R1, . . . ,Rn,V),
where W is a non-empty set of states, Ri a binary relation
over W for each i ∈ Agt, and V a function V : W →
℘(ATOMS) such that {φ : Kiφ ∈ V(w)} is finite for ev-
ery w and i. The set {φ : Kiφ ∈ V(w)} of formulae known
by agent i in state w is called agent i’s epistemic state in w.
The class of all models is denotedM(Θ, n) (or justM).

A general model is a model without the requirement that
epistemic states are finite:

Definition 2 A general model is a tuple M =
(W,R1, . . . ,Rn,V) where W is a non-empty set of states,
R a binary relation over W for each i, and V a function
V : W → ℘(ATOMS). The class of all general models is
denotedMgen(Θ, n) (or justMgen).

When Ri is a binary relation over W and w, v ∈ W, we will
freely use different notations Riwv, wRiv, Ri(w, v), (w, v) ∈
Ri, to denote the fact that Ri relates w to v.

The interpretation of LDE in (general) models is defined
as usual in modal logic (see, e.g., (Blackburn, de Rijke, &
Venema 2001)). When M = (W,R1, . . . ,Rn,V) and w ∈ W:

M,w |= p ⇔ p ∈ V(w), when p ∈ Θ
M,w |= Kiα ⇔ Kiα ∈ V(w)
M,w |= ¬φ ⇔ M,w 6|= φ
M,w |= φ→ ψ ⇔ M,w |= φ implies that M,w |= ψ
M,w |= 〈Fi〉φ ⇔ ∃(w,w′)∈Ri M,w

′ |= φ

Clearly, under this interpretation, restrictions must be im-
posed on the class of models in order to get completeness
of DES4n. In the next sections we show completeness of
DES4n and of weaker logics with respect to the proper model
classes. First, we present some tools that will be useful

Canonical Models
Observe that by viewing the 〈Fi〉 operators as modal di-
amonds, and epistemic atoms Kiφ as atomic propositions,
DES4n is “almost” a normal modal logic: it contains propo-
sitional logic, and has the TL1 axiom for each [Fi]; however,
it does not fully obey the rule of uniform substitution. In
the following section, we will also discuss some other sys-
tems over the language LDE , some of which are normal.
We will make use of the fact all of these systems have a
canonical model, in which every consistent formula is satis-
fiable in some state. This can be proved for all the systems
considered in this paper, in exactly the same way as for nor-
mal modal logics. For reference, we briefly review the main
definitions and results (we refer to (Blackburn, de Rijke, &
Venema 2001) for further details).

A formula φ ∈ LDE is consistent in a logical system L iff
not φ→ ⊥ is derivable in L, where ⊥ is some propositional
contradiction. Given one of our logics L over the language

LDE (such as, e.g., L = DES4n), the canonical model for L
is the general model

Mc = (Wc,Rc
1, . . . ,R

c
n,V

c)

where
• Wc is the set of all maximal L-consistent sets of formulae
• For each i ∈ {1, . . . , n}, Rc

i (w, v) iff for every formula φ,
if φ ∈ v then 〈Fi〉φ ∈ w
• For every atom φ ∈ ATOMS, φ ∈ Vc(w) iff φ ∈ w
The truth lemma holds for all the systems L considered in
this paper: for all w ∈ Wc and φ ∈ LDE

Mc,w |= φ⇔ φ ∈ w

It is important to keep in mind that a canonical model of
a logic L is a general model, and not necessarily a proper
model, since the epistemic states can possibly be infinite.

Preservation
In completeness proofs we will often need to transform one
general model into another while preserving satisfaction of
certain formulae. We here describe two such transforma-
tions. First, we review the well known concept of bisim-
ulation, and, second, we describe a more general type of
transformation which we call Σ-bisimulation.

Bisimulation A brief review if the concept of a bisimula-
tion (see, e.g., (Blackburn, de Rijke, & Venema 2001) for
further details):
Definition 3 Let M = (W,R1, . . . ,Rn,V) and M′ =
(W ′,R′1, . . . ,R

′
n,V

′) be two general models. A relation
Z ⊆ W × W ′ is a bisimulation between M and M′ iff the
following three conditions hold:

1. For all w ∈ W, w′ ∈ W ′: if wZw′ then V(w) = V ′(w′) (w
and w′ satisfy the same atoms)

2. For all w ∈ W, w′ ∈ W ′, i ∈ Agt: if wZw′ and wRiv then
there is a v′ ∈ W ′ such that vZv′ and R′iw

′v′

3. For all w ∈ W, w′ ∈ W ′, i ∈ Agt: if wZw′ and w′R′iv
′ then

there is a v ∈ W such that vZv′ and Riwv
It is well known that bisimulation preserves satisfiability:
if Z is a bisimulation between M and M′ and wZw′, then
M,w |= φ iff M′,w′ |= φ for any formula φ ∈ LDE .

Σ-bisimulation We define Σ-simulation and show a cor-
responding preservation result.
Definition 4 Let Σ ⊆ ATOMS, and let M =
(W,R1, . . . ,Rn,V) and M′ = (W ′,R′1, . . . ,R

′
n,V

′) be two
general models. A relation Z ⊆ W ×W ′ is a Σ-bisimulation
between M and M′ iff the following condition holds, in ad-
dition to conditions 2 and 3 for standard bisimulation:

1. For all w ∈ W, w′ ∈ W ′: if wZw′ then V(w) ∩ Σ =
V ′(w′) ∩ Σ (w and w′ satisfy the same atoms from Σ)

We write M Σ←→ M′ to denote the fact that there is a Σ-
bisimulation between M and M′; we write w Σ←→ w′ to de-
note the fact that there is a Σ-bisimulation Z between M and
M′ such that wZw′.



It is easy to see that when Σ = ATOMS, Σ-bisimulation and
bisimulation coincides.

The following theorem shows that Σ-bisimulation pre-
serves satisfaction of formulae not containing atoms not in
Σ.

When Σ ⊆ ATOMS, let LDE(Σ) denote the subset of
LDE not containing formulae with atoms in ATOMS \ Σ,
i.e., φ ∈ LDE(Σ) iff φ ∈ LDE and At(φ) ⊆ Σ.

Theorem 1 Let w be a state in a general model M, and w′
a state in a general model M′.

w Σ←→ w′ ⇒ ∀φ∈LDE(Σ)(M,w |= φ⇔ M′,w′ |= φ)

Proof. Let M = (W,R1, . . . ,Rn,V) and M′ =
(W ′,R′1, . . . ,R

′
n,V

′). If we assume that w Σ←→ w′, we can
prove that the equivalence holds for any φ ∈ LDE(Σ) by
structural induction. For the base case, φ ∈ ATOMS and
φ ∈ Σ. M,w |= φ iff φ ∈ V(w) iff φ ∈ V(w) ∩ Σ iff, by
(1) in Definition 4, φ ∈ V ′(w′) ∩ Σ iff M′,w′ |= φ. The
inductive step can be shown in exactly the same way as for
standard bisumulation. 2

Theorem 1 formally shows the intuitive property that sat-
isfaction of a formula does not depend on the valuation of
atoms not mentioned in the formula.

Weaker and Related Systems
Before we look at the model class for DES4n, we discuss
some other systems which are interesting for the dynam-
ics of syntactic knowledge including some systems strictly
weaker than DES4n. In these other systems, the operator
〈Fi〉 will no longer necessarily mean “some time in the fu-
ture” as in DES4n. For example, the models for a system
might not necessarily be transitive. A general informal in-
terpretation of 〈Fi〉φ is that φ is true after some epistemic
action performed by i. Furthermore, the Ki operator will not
necessarily mean “knowledge” as in DES4n. In particular,
the knowledge axiom DE2 might not hold. A general inter-
pretation of Kiφ is that φ is believed by i.

The minimal logic forM
First of all, let us consider the minimal logic ofM, that is,
the set of formulae valid in all models of M, without any
conditions on the accessibility relation. Although M is a
proper subset of all Kripke structures over the given atomic
propositions, it turns out to be just the basic multi-modal
logic Kn.

The logical system Kn consists of the axiom schemata
(Prop) φ, when φ is a substitution instance of a proposi-

tional tautology
(K) [Fi](φ→ ψ)→ ([Fi]φ→ [Fi]ψ)
and the rules
(Modus Ponens) From φ, φ→ ψ, prove ψ
(Gen) From φ, prove [Fi]φ

By weak completeness, we mean the property that every
valid formula is a theorem, i.e., |= φ⇒` φ for any formula
φ.

Theorem 2 Kn is sound and weakly complete with respect
toM.

Proof. It suffices to show that any Kn consistent formula
φ is satisfied in M. Let Mc = (Wc,Rc

1, . . . ,R
c
n,V

c) be
the canonical model for Kn. φ is true in at least one of
the states in Mc. Let Mf = (W f ,Rf

1, . . . ,R
f
n,V

f ) be as
follows: W f = Wc, Rf

i = Rc
i and for every w ∈ W f ,

V f (w) = Vc(w) ∩ At(φ), where At(φ) is the set of atoms
occurring outside the scope of an epistemic operator in φ.
Since Mc and Mf are At(φ)-bisimilar, for every world w,
Mc,w |= φ iff Mf ,w |= φ. V f (w) is finite for each w, since
there are only finitely many atoms in φ. Thus, Mf ∈M and
φ is satisfied in Mf . 2

Note that strong completeness, i.e., that Γ |= φ implies
that Γ ` φ for any set of formulae Γ and any formula
φ, is impossible since the logic is not compact, due to the
requirement that only finitely many atoms are true in any
given state. This holds already for the epistemic fragment
(Ågotnes & Walicki 2005a): a counter example to compact-
ness is the theory Γ = {Kiφ : φ ∈ LDE}. Γ is not satisfiable
inM, but each of its finite subsets is.

Some standard conditions on Ri

In the next two sections, we consider imposing additional
conditions on the accessibility relation Ri. First, in this sec-
tion, we look at the standard conditions, where the corre-
spondence between a condition and a modal axiom is well
known from modal logic. However, the conditions have a
distinct meaning in the context of the dynamics of syntactic
knowledge. In the following section, we will look at con-
ditions on Ri which are specific to our logic, and reflect the
knowledge of inference rules.

Unbounded Reasoning Many syntactic approaches to
epistemic logic (Elgot-Drapkin et al. 1999; Alechina, Lo-
gan, & Whitsey 2004; Ågotnes & Walicki 2004) are based
on the view that reasoning does not have an end point, but
goes on indefinitely. This explains logical non-omniscience
without sacrificing rationality: an agent can eventually get to
know any particular fact it is able to compute, but can never
get to know all of them at the same time. In the modelsM,
the assumption that an agent should be able to do any rea-
soning at all in a given state of the system is not made. Here,
we restrict the logic by adding this assumption.

Semantically, it corresponds to requiring that the acces-
sibility relations are serial. A serial model is a model
(W,R1, . . . ,Rn,V) where the accessibility relations are se-
rial, i.e. where for each world w ∈ W there exists a u ∈ W
such that Riwu. The class of all serial models is denotedMs.

Proof-theoretically, the assumption of unbounded reason-
ing corresponds to adding the axiom schema

(D) [Fi]φ→ 〈Fi〉φ

The modal system KDn is Kn extended with the D axiom.
Soundness and (weak) completeness of KDn with respect to
Ms follow from Theorem 3 below.



Deterministic Reasoning The models M are models of
nondeterministic reasoning, in the sense that an agent may
have several possible transitions from one state. Here, we
look at the special case when reasoning is deterministic, i.e.
when there is at most (or exactly, in the case of unbounded
reasoning) one possible next state for each state. Formally,
a deterministic model is one in which the accessibility rela-
tions are partial functions. The set of all deterministic mod-
els is

Md = {(W,R1, . . . ,Rn,V) ∈M :
∀i∀w, v ∈ W((Riwu & Riwv)⇒ u = v)}

and the class of all deterministic serial models is Mds =
Md ∩Ms.

Proof-theoretically, we add the axiom schema
(F) 〈Fi〉φ→ [Fi]φ

The modal systems KFn and KDFn are Kn and KDn ex-
tended with the F axiom, respectively. Soundness and
(weak) completeness of KFn and KDFn with respect toMs

andMds, respectively, follows from Theorem 3 below.

Transitivity As mentioned, an informal interpretation of
〈Fi〉φ in a model inM is that φ will be true after i has per-
formed some action. If we want “action” to mean an arbi-
trary finite number of actions, and thus 〈Fi〉φ to mean that i
can make φ be true at some point in the future, such as in the
logic DES4n, we can require that the accessibility relations
are transitive. LetMt be the class of all transitive models.

Syntactically, this corresponds to the axiom schema
(4) 〈Fi〉〈Fi〉φ→ 〈Fi〉φ

The modal system K4n is Kn extended with the 4 axiom.
Soundness and (weak) completeness of K4n with respect to
Mt follows from Theorem 3 below.

Let P be a property of the accessibility relation (e.g. tran-
sitivity), and φP a modal formula. If the canonical model
for any normal modal logic L containing φP has property P,
and φP is valid on any class of models with property P, then
φP is canonical for P (cf. (Blackburn, de Rijke, & Venema
2001), p.206). For example, the 4 axiom is canonical for
transitivity.
Theorem 3 Let φP be canonical for P. Then a logic of syn-
tactic knowledge Kn +φP is sound and weakly complete with
respect to the subclass ofM satisfying the condition P.
Proof. By the assumption of the theorem, the canonical
model for Kn + φP satisfies P. However, as in the proof
of Theorem 2, we need to show that this model can be
transformed into a model from M, where each state vali-
dates only a finite number of epistemic atoms. It is easy to
check that the method described in the proof of Theorem 2
does not change the properties of the accessibility rela-
tions, so the resulting model is inM and it still satisfies P. 2

Knowing inference rules
In this section, we introduce a new kind of condition on the
accessibility relations, which connects the presence of epis-
temic atoms in a state with the availability of transitions, and
corresponds to knowing an inference rule. We show how

such conditions correspond to certain axioms. An example
of such an axiom is DE1 in DES4n.

Consider the following natural class of conditions on the
accessibility relations, which we will call addition condi-
tions. These conditions have the following form: if agent i
believes formulae φ1, . . . , φm, then agent i can reach a state
where it believes formulae ψ1, . . . , ψk:

Kiφ1, . . . ,Kiφm ∈ V(w)⇒

∃w′(Ri(w,w′) ∧ Kiψ1, . . . ,Kiψk ∈ V(w′))
An example of such a condition is

KiMP Kiφ,Ki(φ→ ψ) ∈ V(w)⇒

∃w′(Ri(w,w′) ∧ Kiψ ∈ V(w′))

Theorem 4 Any set of addition conditions of the form

Kiφ1, . . . ,Kiφm ∈ V(w)⇒

∃w′(Ri(w,w′) ∧ Kiψ1, . . . ,Kiψk ∈ V(w′))
is axiomatisable by adding to Kn axiom schemata of the form

Kiφ1 ∧ . . . ∧ Kiφm → 〈Fi〉(Kiψ1 ∧ . . . ∧ Kiψk)

Proof. Soundness is straightforward. For completeness,
consider a general canonical model where the axioms hold.
In the general canonical model, if Kiφ1, . . . ,Kiφm ∈ V(w),
there is an Ri-accessible state w′ with Kiψ1, . . . ,Kiψk ∈ w′,
and the addition condition holds. Now we need to produce
a model for a consistent formula φ with finite epistemic
states, where the semantic condition still holds. We modify
the proof of Theorem 2 as follows. Take a world w which
satisfies φ. Unravel the sub-model generated by w. Now
we have a tree model whose root w satisfies φ. Instead
of intersecting V(w) with At(φ) as before, we define a set
Atk(φ), which is a set of atoms with which we intersect
V(v) for the states v which are at the distance k from the
root of the tree. At0(φ) = At(φ), and Atk(φ) is Atk−1(φ)
closed under a single application of addition conditions.
For example, if the condition is KiMP, then At1(φ) will
contain, in addition to the formulae from At(φ), all formulae
Kiχ such that Kiψ, Ki(ψ → χ) are in At(φ). Note that
Atk(φ) is finite for every k, and the intersection of Atk(φ)
with V(v) is finite. However, Atk(φ) contains all formulae
which are required by the addition conditions to be true
in a given state. It is straightforward to show that the two
models are At(φ)-bisimilar, so φ is still satisfied at the root
of the model. 2

Semantics for DES4n

We define a class of models, and show that DES4n is sound
and complete with respect to this class. The completeness
proofs in the previous subsections illustrated techniques for
dealing with the requirement that an agent can only know
finitely many formulae in each state. Compared to these pre-
vious proofs, however, the proof for DES4n is in addition to
the finiteness requirement complicated by the facts that first,
for each agent in each state the union of the formulae the
agent knows in accessible states is infinite (DE4–DE7), and,



second, the knowledge of an agent in a state must include the
persistent knowledge of the agent in all predecessors of the
state (DE3). These requirements rule out image-finite mod-
els, and thus the finite model property, as well as models
with infinite preimages. In particular, it is not prima facie
clear that the axioms of DES4n are compatible with finite
epistemic states at all.

Let Axi be the set of formulae DE4–DE7 prescribe that
agent i must know in some accessible state:

Axi =


φ→ (ψ → φ),
(φ→ (ψ → γ))→ ((φ→ ψ)→ (φ→ γ)),
(¬ψ → ¬φ)→ (φ→ ψ),
Kiα→ α
: φ, ψ, γ ∈ LDE , α ∈ L


Let MDEL ⊂ M (respectively, Mgen,DEL ⊂ Mgen) be the
class of models M = (W,R1, . . . ,Rn,V) satisfying the fol-
lowing conditions for each agent i and each state w ∈ W:
D1 Ri is transitive
D2 If Ri(w, v), Kiφ ∈ V(w) and φ ∈ L+

E , then Kiφ ∈ V(v)
(Monotonicity)

D3 For every φ, if Kiφ ∈ V(w), then M,w |= φ (Knowl-
edge)

D4 If Kiφ, Ki(φ→ ψ) ∈ V(w), then ∃ v (Ri(w, v) & Kiψ ∈
V(v))

D5 For every τ ∈ Axi, ∃ v (Ri(w, v) & Kiτ ∈ V(v))
D6 If Kiφ ∈ V(w) and φ ∈ L+

E , then
∃ v (Ri(w, v) & KiKiφ ∈ V(v)).
As an intermediate result, we first prove soundness and

completeness of DES4n with respect to the class of general
models satisfying conditions D1-D6, Mgen,DEL. A similar
result was proved in (Duc 1995), as we discuss in the follow-
ing section on “Related Work”. We then prove the main, and
more difficult, result: completeness with respect toMDEL.

Theorem 5 DES4n is sound and strongly complete with re-
spect toMgen,DEL.

Proof. First, let us consider soundness. We want to prove
that for every set of formulae Γ and formula φ0, if Γ `DES4n

φ0, then Γ |=gen,DES4n φ0. The proof is by induction on the
length of the derivation of φ0 from Γ. Clearly, the inference
rules preserve validity. We need to show that every instance
of an axiom schema of DES4n is valid on the classMgen,DEL.
The axiom schemata PC1–PC3 are valid classical tautolo-
gies. It is well known that TL1 is valid in all Kripke models
and that TL2 is valid in all models with a transitive acces-
sibility relation. DE1 is valid because of condition D4: if
some state w satisfies Kiφ and Ki(φ → ψ), then by D4, w
has a successor which satisfies Kiψ, so w satisfies 〈Fi〉Kiψ.
DE2 is valid because of the condition D3: if Kiφ is true in
w, then φ has to be true in w. DE3 is valid due to the Mono-
tonicity condition D2. DE4–DE7 are valid because of D5.
Finally, DE8 is valid because of D6.

The proof of completeness proceeds in a standard way.
Suppose Γ0 6`DES4n φ0; we show that then there exists
a model and a state where Γ0 is satisfied and φ0 is not,
so Γ0 6|=gen,DES4n φ0. In other words, we show how to
construct a satisfying model for Γ0 ∪ {¬φ0} provided

this set is DES4n-consistent. For convenience, we will
refer to this set as Γ. Any DES4n-consistent set can be
extended to a maximal consistent set in a standard way.
Let Mc = (Wc,Rc

1, . . . ,R
c
n,V

c) be the canonical model
for DES4n, as defined earlier. Recall that Mc is a general
model; we must show that Mc ∈ Mgen,DEL. It is straight-
forward to show that each Ri is transitive, because each
state in the model contains TL2. Now we have to show
that conditions D2-D6 hold. Suppose for some w, Kiφ and
Ki(φ → ψ) ∈ Vc(w). This means, by the definition of
Vc, that Kiφ,Ki(φ → ψ) ∈ w. Since w is maximal, it also
contains Kiφ∧Ki(φ→ ψ) and Kiφ∧Ki(φ→ ψ)→ 〈Fi〉Kiψ
(DE1). Since it is closed under inference, it also contains
〈Fi〉Kiψ. By the truth lemma, 〈Fi〉Kiψ is true in w. Hence
w has a successor v where Kiψ is true, which by the
truth lemma implies Kiψ ∈ Vc(v). Analogously, we can
show that D3-D6 hold. This completes the argument that
Mc ∈ Mgen,DEL; since Γ is consistent, it is contained in
one of the states in Mc, and by the truth lemma, is satisfied
there. 2

Theorem 6 DES4n is sound and weakly complete with re-
spect toMDEL.

Proof. The proof of soundness is identical to the proof in
Theorem 5.

For completeness, assume that φ0 is a DES4n-consistent
formula. We will construct a model satisfying φ0, in several
stages. First we will construct a general model Mc satisfying
φ0. Then we will transform this model into a proper model
with finite epistemic states.

Let Mc = (Wc,Rc
1, . . . ,R

c
n,V

c) be as in the proof of The-
orem 5 (the canonical model for DES4n). We showed that
Mc satisfies D1-D6, but it may have infinite epistemic states
and thus not be in the classMDEL. At least one of the states
in Mc satisfies φ0; let us call that state w0. We will now
unravel Mc around w0, and then take the transitive closure;
and we will end up with a transitive tree (general) model
Mt. The details are as follows, cf. (Blackburn, de Rijke,
& Venema 2001), pp. 220–221 for further discussion. Let
Mg = (Wg,Rg

1, . . . ,R
g
n,V

g) be the (general) submodel of Mc

generated by w0: it is the smallest submodel of Mc such that
w0 ∈ Wg and u ∈ Wg whenever w ∈ Wg and Rc

i wu for some
i ∈ Agt. The unraveling of the general model Mg around
w0 ∈ Wg is the general model M′ = (W ′,R′1, . . . ,R

′
n,V

′)
such that:

• W ′ is the set of all finite sequences (w0,w1, . . . ,wm),
m ≥ 0, such that w1, . . . ,wm ∈ Wg and
Rg

i1(w0,w1),R
g
i2(w1,w2), . . . ,R

g
in(wm−1,wm) for some

i1, . . . , in ∈ Agt

• R′i(w1, . . . ,wk)(v1, . . . , vl) iff (w1, . . . ,wk) =
(w1, . . . , vl−1) and Rg

i vl−1vl

• V ′((w0,w1, . . . ,wm)) = Vg(wm)

The result of unraveling around w0 is an intransitive tree
where w0 is the root. The transitive unraveling Mt =
(W t,Rt

1, . . . ,R
t
n,V

t) is obtained by taking the transitive clo-
sure of each of the relations in the unraveling M′. Note the



following properties of the transitive unraveling:

Rt
i(w0, . . . ,wk)(v0, . . . , vl)⇒ Rc

i wkvl (1)
Rt

ir1r2 ⇒ r1 is a (proper) prefix of r2 (2)

We argue that (1) and (2) hold. Let r1 = (w0, . . . ,wk)
and r2 = (v0, . . . , vl). If Rt

ir1r2, then there exist a path
s0, . . . , sj ∈ W ′, j ≥ 0, of R′i steps between the two se-
quences; i.e., such that R′ir1s0, . . ., R′isjr2. In turn, this means
that there exist u0, . . . , uj ∈ Wg such that

s0 = (w0, . . . ,wk, u0) Rg
i wku0

...
sj = (w0, . . . ,wk, u0, . . . , uj) Rg

i uj−1uj
(v0, . . . , vl) = (w0, . . . ,wk, u0, . . . , uj, vl) Rg

i ujvl

The previous equation shows that (2) holds (r1 is a proper
prefix of r2 since R′i , and thus Rt

i, is irreflexive). Since Rc
i

is transitive and includes Rg
i , it also follows that Rc

i wkvl and
thus (1) holds.

We now show that Mt and Mc are bisimilar. Let Z ⊆
W t ×Wc be defined as follows:

(w0, . . . ,wm)Zwm

We show that Z is a bisimulation between Mt and Mc, by the
three required conditions:

1. V t((w0, . . . ,wk)) = V ′((w0, . . . ,wk)) = Vg(wk) =
Vc(wk)

2. Immediate by (1).
3. We must show that if (w0, . . . ,wk) ∈ W t and Rc

i wkv for
some v ∈ Wc, then there exists a sequence (v0, . . . , vl) ∈
W t with vl = v such that Rt

i(w0, . . . ,wk)(v0, . . . , vl).
This holds immediately by taking (v0, . . . , vl) =
(w0, . . . ,wk, v): wk ∈ Wg and thus v ∈ Wg and thus
Rg

i wkv, and Rt
i(w0, . . . ,wk)(w0, . . . ,wk, v).

Since Mc and Mt are bisimilar, for every state w reach-
able from w0, Mc,w |= φ iff Mt, (s,w) |= φ, for every for-
mula φ and sequence s ∈ W t (we abuse the notation here,
and use (s,w) to denote the sequence resulting from con-
catenating the element w to the sequence s). This includes
the special case when s is empty, w = w0, and φ = φ0.
Since for every state (s,w) in Mt there is a bisimilar state w
in Mc, we can also show that all of the conditions D1 - D6
are satisfied in Mt. D1 (transitivity) holds immediately for
Mt. D2 (monotonicity) holds because if Kiφ ∈ V t((s,w)),
and φ ∈ L+

E , and Rt
i((s,w), (s′, v)), then Kiφ ∈ Vc(w) (by

construction of V t), Rc
i (w, v) (by (1)), and Kiφ ∈ Vc(v)

(because Mc satisfies D2). By the bisimulation between
(s′, v) and v, Kiφ ∈ V t((s′, v)). Similarly for D3: suppose
Kiφ ∈ V t((s,w)). Then Kiφ ∈ Vc(w). Then, since Mc sat-
isfies D3, Mc,w |= φ. By the bisimulation, Mt, (s,w) |= φ.
D4-D6 hold because for every (s,w) ∈ W t, if (s,w) satisfies
a certain formula, then it has a bisimilar state w in Wc, which
satisfies the same formula and has a successor v which sat-
isfies another required formula; by the bisimulation, (s,w)
then also has a successor (s,w, v) which satisfies the same
formula.

So, the root w0 of Mt satisfies φ0; conditions D1-D6 con-
tinue to hold. Now we are going to transform Mt into a

proper model, by intersecting the epistemic state in all states
in Mt with a finite set of formulae; we need to do this in such
a way that φ0 is still satisfied at the root and conditions D1-
D6 continue to hold. More precisely, the epistemic states at
level k in the tree model M′ (where w0 is at level 0, and its
one step successors at level 1, etc.) are going to be inter-
sected with a finite set of formulae Lk, defined inductively
as follows. Note that there are infinitely many levels in the
tree due to seriality imposed by DE4–DE7. In the following
definition, given a set of atoms X ⊆ ATOMS, Cl(X) denotes
the closure of X under nested epistemic atoms: Cl(X) is the
least set such that (i) X ⊆ Cl(X) and (ii) if Kiφ ∈ Cl(X) then
At(φ) ⊆ Cl(X) (where At(φ) as usual denotes the members
of ATOMS occurring outside the scope of an epistemic op-
erator in φ).
L0 = Cl(At(φ0))
Lk = Cl(Inf (Lk−1 ∪ {K1τ

1
k−1, . . . ,Knτ

n
k−1})) when k ≥ 1,

where, for each agent i ∈ Agt, τ i
1, τ

i
2, . . . is some enumer-

ation of the (countable) set Axi, and Inf (X), for some set
of atoms X, is the set containing X and formulae derived
from X by a single application of the following rules:

Kiφ,Ki(φ→ ψ)
Kiψ

Kiφ
KiKiφ

Note that if X is finite, so is Cl(Inf (X)), and thus that Lk
is finite for each k.

Consider the resulting model M = (W,R1, . . . ,Rn,V): W =
W t, Ri = Rt

i and

V(w0, . . . ,wk) = V t(w0, . . . ,wk) ∩ Lk

We need to prove the following statements about M:
Truth M,w0 |= φ0

Finiteness Epistemic states in M are finite.
D1 - D6 Conditions D1-D6 are satisfied.
Here is the proof for each of these statements.
Truth M and Mt are At(φ0)-bisimilar (Def. 4): take Z to be

the identity relation on W t. Theorem 1 says that formu-
lae only containing atoms from At(φ0) are preserved un-
der At(φ0)-bisimulation. Since φ0 ∈ LDE(At(φ0)) and
Mt,w0 |= φ0, it follows that M,w0 |= φ0.

Finiteness At(φ0) is finite, and each epistemic state is a
subset of a finite set Lk.

D1 the accessibility relations in M are transitive, because
they are transitive in Mt.

D2 Let Ri(w, v), φ ∈ L+
E , Kiφ ∈ V(w). We need to

show that Kiφ ∈ V(v). We have that Rt
iwv, so by (2)

the sequence w is a prefix of the sequence v; say w =
(v0, . . . , vk) and v = (v0, . . . , vl) with k < l. Kiφ ∈
V t(w), and since Monotonicity holds in Mt, Kiφ ∈ V t(v).
We also have that Kiφ ∈ Lk, and since Lk ⊆ Ll, Kiφ ∈ Ll.
Thus, Kiφ ∈ V(v) = V t(v) ∩ Ll.

D3 Let Kiφ ∈ V(w) = V t(w)∩Lk, where w = (w0, . . . ,wk).
We must show that M,w |= φ. First, we claim that

Cl({φ′}) ⊆ Lk ⇒ (M,w |= φ′ ⇔ Mt,w |= φ′)



for all φ′ ∈ L. The argument is an easy induction over
the structure of φ′. We have that Mt,w |= Kiφ and thus
Mt,w |= φ by Knowledge for Mt. We also have that
Kiφ ∈ Lk and thus that Cl({φ}) ⊆ Lk. It follows that
M,w |= φ.

D4 Let Kiφ,Ki(φ→ ψ) ∈ V(w) = V t(w) ∩ Lk, where w =
(w0, . . . ,wk). By D4 for Mt, there is a v = (v0, . . . , vl)
such that Rt

iwv and Kiψ ∈ V t(v). By (2) l > k, and since
Kiφ,Ki(φ → ψ) ∈ Lk it follows that Kiψ ∈ Ll by con-
struction of Lk+1. Thus, Kiψ ∈ V(v) = V t(v) ∩ Ll. Since
Rt

iwv, Riwv.

D5 Let τ ∈ Axi and w = (w0, . . . ,wk) ∈ W. We must show
that there is a v = (v0, . . . , vl) ∈ W such that Riwv and
Kiτ ∈ V(v) = V t(v) ∩ Ll. τ is one of the elements in the
enumeration of Axi in the definition of Lk, say τ = τ i

j . We
first show that for any u ∈ W:

u = (u0, . . . , um),m ≥ j⇒ ∃u′ ∈ W
{

Riuu′
Kiτ ∈ V(u′)

(3)
By D5 for Mc, there is a um+1 ∈ Wc such that Rc

i umum+1

and Kiτ ∈ Vc(um+1). Let u′ = (u0, . . . , um, um+1).
Rg

i umum+1 (um ∈ Wg), so R′iuu′ and thus Rt
iuu′ and

Riuu′. Kiτ ∈ Vg(um+1), so Kiτ ∈ V ′(u′) = V t(u′).
Kiτ = Kiτ

i
j ∈ Lj, and, since m ≥ j, Lj ⊆ Lm+1, and

we have that Kiτ
i
j ∈ V t(u′) ∩ Lm+1 = V(u′) and (3)

holds. Now in the case that k ≥ j, we are done by (3).
Let k < j. Rg

i is serial (D5 holds for Mg), so there exist
wk+1, . . . ,wj ∈ Wg such that Rg

i wkwk+1, . . . ,R
g
i wj−1wj.

Thus, R′iw(w0, . . . ,wk,wk+1), . . . , R′i(w0, . . . ,wj−1)
(w0, . . . ,wj−1wj). By transitivity, Rt

iw(w0, . . . ,wj) and
thus Riw(w0, . . . ,wj). By (3) there is a u′ such that
Ri(w0, . . . ,wj)u′ and Kiτ ∈ V(u′), and by transitivity
again we get that Riwu′ and we are done.

D6 Let w = (w0, . . . ,wk) ∈ W, φ ∈ L+
E and Kiφ ∈ V(w) =

V t(w)∩Lk. Kiφ ∈ V t(w) = V ′(w). Since M′ satisfies D6,
there is a v ∈ W ′ such that R′iwv and KiKiφ ∈ V ′(v). It
must be the case that v = (w0, . . . ,wk,wk+1) for some
wk+1 ∈ W ′. It follows that Rt

iwv and KiKiφ ∈ V t(v).
Again, it follows that Riwv. By construction of Lk+1,
since Kiφ ∈ Lk, we have that KiKiφ ∈ Lk+1. Thus,
KiKiφ ∈ V(v) = V t(v) ∩ Lk+1.

2

Related Work
In the paper (Duc 1995), which appeared earlier than (Duc
1997), Duc gives a semantics for and proves the soundness
and completeness of a logic similar to DES4n. We presently
give a brief review of these results, and compare them to the
ones we have presented in this paper. The logic presented in
(Duc 1995), called Basic Dynamic-Epistemic Logic (BDE),
is defined over the (least) language which contains Kp when
p is a formula of propositional logic, and is closed under
the usual propositional connectives and under the formation
rule: if φ is a formula then 〈F〉φ is a formula. BDE contains
the following axioms and rules:

A1 φ, when φ is a substitutional instance of a propositional
tautology

A2 [F](φ→ ψ)→ ([F]φ→ [F]ψ)

A3 [F]φ→ [F][F]φ

A4 Kp ∧ K(p→ q)→ 〈F〉Kq

A5 Kp→ [F]Kp

A6 〈F〉Kp when p is an propositional tautology

R1 From φ, φ→ ψ, prove ψ

R2 From φ, prove [F]φ

Thus, BDE differs from DES4n in the following aspects: (i)
the language does not contain atomic propositions as for-
mulae, (ii) it is a single agent, rather than a multi agent,
logic, (iii) knowledge can not be nested and (iv) knowledge
is not veridical (DES4n axioms DE2 and DE7 do not hold).
Note the following consequences of (iii): first, all formulae
φ occurring in an expression Kφ are persistent in the DES4n
sense, and, second, introspection is impossible (DES4n ax-
iom DE8 does not hold). Thus, BDE can be seen as the sin-
gle agent fragment of DES4n without DE2, DE7 and DE8.
The semantics given to BDE is in fact essentially our gen-
eral models with the conditions D1, D2, D4 and D5 (the
latter with a slightly different version of Axi), interpreting
the language of BDE in exactly the same way as we have
interpreted LDE . It is shown that BDE is sound and com-
plete with respect to this semantics. However, the semantics
of BDE does not require that the agent only knows finitely
many formulae in each state which, as we have argued, is
implicit in the motivation for DES4n (and for BDE as well).
Like our Theorem 5, the completeness result for BDE holds
directly by the standard modal logic argument by canonical
models. Our main result, Theorem 6, on the other hand, is
not trivial to prove – as a result of the finiteness assumption.

Another closely related approach is Descriptive Dynamic
Logic DDL introduced in (Sierra et al. 1996). It is in-
tended to model deductive capabilities of multiple knowl-
edge bases, where a different language Lk and a set of in-
ference rules is associated with each knowledge base unit
k (the unit can also be seen as a reasoning agent). Atomic
propositions of DDL are ‘quoted’ formulae of the object lan-
guage, k : [φ] (where φ is an object language formula and k
is the unit), very similar to the languages considered in this
paper. The only difference is that in (Sierra et al. 1996),
each language Lk is assumed to be finite. Program modali-
ties of DDL correspond to inference rule applications (they
are parameterised by a rule and the formulae involved in the
rule application).

A general model of syntactic knowledge is discussed in
(Fagin et al. 1995), but this model does not describe the
dynamics of syntactic knowledge, i.e., how knowledge can
evolve over time. Of approaches describing syntactic knowl-
edge, Konolige (1984) was as far as we know the first to
propose a model of a reasoner which is explicitly parame-
terised by some inference rules. The reasoner’s knowledge
is, however, assumed to be closed under these inference
rules. Similarly, logics of algorithmic knowledge (Pucella
2004) assume closure of the agent’s belief under the set of



agent’s reasoning rules. The logic of awareness (Fagin &
Halpern 1987) relaxes this assumption by requiring that the
agent only believes the formulae in the intersection of the
closure of its belief set with an arbitrary set of formulae - an
awareness filter. However, formulae in the awareness set are
believed instantly, and the dynamics of beliefs is not mod-
eled.

Another closely related area of work are active logics
(Elgot-Drapkin et al. 1999), which study development of
agent’s belief sets over discrete time. Unlike in DES4n, ac-
tive logics only consider linear time, however. These logics
use a first order meta language which is interpreted in mod-
els of predicate logic.

Recent work in dynamic and temporal epistemic logic
(van Ditmarsch, van der Hoek, & Kooi ) has a similar mo-
tivation to our work (modeling knowledge change) but as-
sumes that the agent’s knowledge is deductively closed be-
fore and after the update.

Finally, the present work is based on the authors’ respec-
tive work on logics for syntactic knowledge, (Ågotnes &
Walicki 2005a; Alechina, Logan, & Whitsey 2004).

Conclusions and Future Work
We have presented a general semantics for the dynamics of
finite syntactic knowledge, and shown that DES4n is sound
and complete with respect to a proper class of models. Fur-
thermore, we have shown soundness and completeness of
some intermediate systems by showing that standard results
from modal logic are transferable to the case when only a
finite number of atomic propositions (of a certain type) can
be true in the same state. Finally, we have completely ax-
iomatised a notion of knowing an inference rule in syntactic
epistemic logics.
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this collaboration. Thomas Ågotnes’ work was supported
by NFR grant 166525/V30. Natasha Alechina would like to
thank Royal Society for sponsoring related work on logics
for resource-bounded agents.

References
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