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Abstract. We introduce a logical language with nullary opera-
torsmin(n), for each non-negative integern, which mean ‘the rea-
soner has at leastn different beliefs’. The resulting language allows
us to express interesting properties of non-monotonic and resource-
bounded reasoners. Other operators, such as ‘the reasoner has at most
n different beliefs’ and the operator introduced in [1, 4]: ‘the rea-
soner knows at most the formulaeφ1, . . . , φn’, are definable us-
ing min(n). We introduce several syntactic epistemic logics with
min(n) operators, and prove completeness and decidability results
for those logics.

1 Introduction

In this paper we propose a logical language which allows us to say
that a reasoner has at leastn different beliefs (or knows at leastn
different formulae). We take a syntactic approach to epistemic and
doxastic logics, which allows an agent’s beliefs to be, e.g., not closed
under logical consequence, finite, and/or inconsistent. We extend the
traditional language of belief logics, propostional logic with an ad-
ditional unary operatorB whereBφ stands for ‘the agent believes
φ’, with nullary operatorsmin(n), for every non-negative integern.
Such operators allow us to formulate interesting properties of rea-
soners, and the resulting logics have nice formal properties. We in-
troduce several doxastic logics withmin(n) operators, and show that
they have (weakly) complete axiomatisations, and are decidable.

In the language withmin(n), we can express dual operators
max(n) (meaning: the reasoner has at mostn different beliefs), and
those operators, in turn, enable us to completely axiomatically de-
scribe reasoners with a boundn on the maximal size of their belief
set. The bound on the number of distinct beliefs an agent can have,
naturally corresponds to a bound on the size of the agent’s mem-
ory (assuming that each formula is a word of fixed size). Logics for
agents with bounded memory were studied, for example, in [9], and
more recently in [5]. However, in the language of standard epistemic
logic it is impossible to express properties such as ‘the agent can ap-
ply the rule of modus ponens to its beliefs unless its memory is full’.
We show later in the paper some examples of properties of bounded
memory reasoners which become expressible in the language with
min(n) operators.

Somewhat surprisingly, we can also define the� operator intro-
duced in [1, 4], where�{φ1, . . . , φn} stands for ‘the agent believes
at most the formulaeφ1, . . . , φn’. The latter operator makes other
useful properties easy to express. For example, formalising non-
monotonic arguments becomes easier, because we can say in the lan-
guage ‘the agent knows a set of formulaeX and nothing else’.

The rest of the paper is organised as follows. In section 2, we in-
troduce the language and models of syntactic epistemic logics with
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only theB operator, based on syntactic structures introduced in [12].
We show that formulae in this language are preserved underΣ-
isomorphism (truth assignments agreeing on atomic and epistemic
formulae in the setΣ) for certain setsΣ. In section 3 we introduce
the language and interpretation of the logic with operatorsmin(n)
and show thatmin(n) is not definable in the basic language, since
min(n) formulae are not preserved underΣ-isomorphism. We also
show how to definemax(n), � and other operators in the extended
language. In section 4, we give a sound and (weakly) complete ax-
iomatisation of the logic withmin(n), and prove that its satisfiabil-
ity problem is NP-complete. We also show that addingmax(n) as
an axiom captures exactly the set of models where the agent’s belief
set has cardinality of at mostn. In section 5 we define a modal logic
with min(n) and ‘next state’ modality�, in which we can express
properties relating to dynamics of agent’s beliefs, such as bounded
monotonicity: until the agent’s state is ‘full’, it carries all its current
beliefs to the next state. We prove soundness and weak completeness
for this logic and show that its satisfiability problem is in PSPACE.

2 Syntactic Structures

In this section we introduce the language and models of basic syn-
tactic epistemic logic. Syntactic epistemic logic considers beliefs as
syntactic objects rather than propositions (sets of possible worlds).
This is done to, e.g., avoid closure under logical consequence and
identifying logically equivalent beliefs. We base our account of the
interpretations of the language of epistemic logic onsyntactic struc-
tures introduced in [12].

The languageL of basic syntactic epistemic logic is parameterised
by a setP of primitive propositions.L is defined as follows.

φ ::= p ∈ P | ¬φ | φ1 ∧ φ2 | Bφ

We use the usual derived propositional connectives. The intended
meaning ofBφ is thatφ is believed by the agent. We denote the
set ofepistemic atoms {Bφ : φ ∈ L} by B. The elements of the
setP ∪ B of primitive propositions and epistemic atoms, are called
atoms.

A syntactic structure [12], henceforth sometimes called just “a
model”, is a pairM = (S, σ), whereS is a set ofstates and

σ : S → 2P∪B

Thus a syntactic structure identifies a set of formulae believed by the
agent in a states ∈ S. We call this set the agent’sepistemic state
in s, and denote itσ(s): σ(s) = {φ : Bφ ∈ σ(s)}. A pair M, s,
wheres is a state ofM , is called apointed model. The definition of
satisfaction of a formulaφ in a pointed modelM, s, writtenM, s |=



φ, is straightforward:

M, s |= p ⇔ p ∈ σ(s)
M, s |= Bφ ⇔ φ ∈ σ(s)
M, s |= ¬φ ⇔ M, s �|= φ
M, s |= φ1 ∧ φ2 ⇔ M, s |= φ1 andM, s |= φ2

We remark that in this definition of syntactic knowledge by [12]
in a possible worlds framework, the states themselves do not play
any important part: the interpretation of a formula in a states does
not depend on any state different froms. Thus, the interpretation in
s of any formula can be defined solely in terms of the setσ(s). We
will, however, make use of the full set of statesS when we introduce
syntacticrelational structures in Section 5.

We useM to denote the class of all syntactic structures.M can
be seen as models of agents with unbounded memory. In the follow-
ing, we will also be interested in other classes of syntactic structures.
For a given natural numbern, Mn is the class of syntactic structures
where at mostn formulae are believed at the same time, i.e., where
|σ(s)| ≤ n for everys ∈ S. Mn can be seen as models of agents
with a fixed memory size.Mfin denotes the class of syntactic struc-
tures withfinite epistemic states, i.e.,Mfin =

⋃
n∈N

Mn. Mfin can
be seen as models of agents with finite memory.

2.1 Preservation

As we will soon extend the logical language, we need to be able
to compare the expressiveness of different languages. To do that
precisely, we introduce the notion ofΣ-isomorphism between two
pointed models, whereΣ is a set of atoms. Two pointed models are
Σ-isomorphic, if they agree on all formulae inΣ. Formally:

Definition 1 Let M = (S, σ) and M = (S′, σ′) be models, s ∈ S
and s′ ∈ S′, and Σ ⊆ P ∪ B. (M, s) ∼Σ (M ′, s′), (M, s) and
(M ′, s′) areΣ-isomorphic, is defined as follows:

(M, s) ∼Σ (M ′, s′) ⇐⇒ σ(s) ∩ Σ = σ′(s′) ∩ Σ

Given aφ ∈ L, the setSubf (φ) is the set of all subformulae of
φ (with subformulae of the formBψ treated as atomic formulae),
andAt(φ) is the set of atomic subformulae ofφ, including epistemic
atoms:At(φ) = Subf (φ) ∩ (P ∪ B).

The following lemma states that the truth value of a formula
depends only on the truth value of its atomic subformulae, or, in
other words, satisfaction ofL formulaeφ is invariant underAt(φ)-
isomorphism.

Lemma 1 For any two pointed modelsM, s and M ′, s′, Σ ⊆ P∪B
and φ ∈ L such that At(φ) ⊆ Σ:

(M, s) ∼Σ (M ′, s′) ⇒ (M, s |= φ⇔M ′, s′ |= φ)

The proof is straightforward.

3 Upper/Lower Bounds on Belief Sets

We now extend the languageL with operators for expressing proper-
ties of syntactic structures such as “at mostn different formulae are
believed”. Furthermore, we show that an extension of the language
indeed was necessary to express such properties.

The languageLmin is defined by adding a nullary operator
min(n), for each natural numbern, to the languageL. Formally
Lmin is defined as follows:

φ ::= p ∈ P | ¬φ | φ1 ∧ φ2 | Bα : α ∈ L | min(n) : n ∈ N

Let M = (S, σ) be a model, ands ∈ S. The satisfaction of a
Lmin formulaφ in (M, s) is defined by adding the following clause
to the definition of satisfaction ofL formulae:

M, s |= min(n) ⇔ |σ(s)| ≥ n

A formula min(n) captures the notion thatat least n formulae
are believed. As mentioned above, we are also interested in a dual
expressing thatat most n formulae are believed. The reason that a
dual operator tomin(n) is not included inLmin , is that it is in fact
derivable. We define it as the following derived operator:

max(n) ≡ ¬min(n+ 1)

It is easy to see that

M, s |= max(n) ⇔ |σ(s)| ≤ n

3.1 Expressive Power

We compare the expressive power of the languagesL andLmin : are,
for example,min(n) and/ormax(n) expressible inL?

It was shown in the previous section thatL formulae are invariant
underΣ-isomorphism. On the other hand, as the following lemma
shows, in the case ofLmin formulae, satisfaction isnot invariant un-
derΣ-isomorphism3.

Lemma 2 There are pointed models M, s, M ′, s′ and Σ ⊆ P ∪ B
such that (M, s) ∼Σ (M ′, s′), but for some φ ∈ Lmin with At(φ) ⊆
Σ

M, s |= φ and M ′, s′ �|= φ

Proof. Takeφ = min(1),M = (S, σ),M ′ = (S′, σ′), σ(s) = {α}
for someα ∈ L, σ(s′) = ∅ andΣ = ∅. Trivially, At(φ) ⊆ Σ.
|σ(s)| ≥ 1, soM, s |= φ. |σ′(s′)| �≥ 1, soM ′, s′ �|= φ. �

The following theorem follows immediately from the fact that
Lmin can discern betweenΣ-isomorphic models, whileL cannot
(Lemmata 1 and 2).

Theorem 1 Lmin is strictly more expressive than L.

3.1.1 Knowing At Least and At Most

In [1, 4] two dual operators were introduced to express properties of
syntactic knowledge. Both operators are unary, and take afinite set
of object formulae as argument (it is thus assumed that the language
has symbols for finite sets of formulae). LetX ⊆ L be finite. First,
�X is intended to mean that the agent knowsat least the formulae
in the setX: the agent knows every formula inX, but might in addi-
tion also know other formulae not inX. Second,�X is intended to
mean that the agent knowsat most the formulae in the setX: every
formula the agent knows is inX, but it might not know every formula
inX. The� operator can thus be seen as a syntactic version, without
the assumption that belief is closed under logical consequence, of an
“only knowing” operator [15].�X is not definable byB [2]. The

3 Most logics satisfy the principle of locality: the truth value of a formula
does not depend on the assignment to variables other than the formula’s free
variables. This is such an obvious property that it usually goes unremarked;
however some logics do violate it. This phenomenon was investigated for
predicate logics in e.g. [16]; for propositional logics, the only example we
know of in addition to the logics of� andmin(n) is the logic ofonly
knowing [15].



conjunction of knowing at leastX and knowing at mostX, know-
ing exactly X, is written�X. The� and� operators can be used
to express compactly that the agent knows the given formulasand
nothing else. For example, from the fact that�{Bird(Tweety)} we
can derive¬B¬Flies(Tweety).

Formally, satisfaction is defined as follows:

M, s |= �X ⇔ X ⊆ σ(s)
M, s |= �X ⇔ σ(s) ⊆ X
M, s |= �X ⇔ σ(s) = X

It turns out that both notions of knowing at most and knowing at
least a finite set of formulae are definable inLmin . We leave it to the
reader to check that

�X ≡ ∧
α∈X Bα

�X ≡ �X ∧ max (|X|)
�X ≡ ∨

Y ⊆X �Y

4 Completeness and Complexity

In this section, we give a complete and sound axiomatisation of the
logic of min(n). LetS be the logic defined by the following axiom
schemata and rules over the languageLmin :

Prop
all substitution instances of
propositional logic

MIN0 min(0)
MIN1 min(n) → min(m) m < n
MIN2 (Bφ1 ∧ · · · ∧ Bφn) → min(n) ∀i�=j∈[1,n]φi �= φj

MP If φ, φ→ ψ thenψ

It is easy to see that all axioms are valid on all syntactic structures,
and that the following holds.

Lemma 3 S is sound with respect to M.

Observe that the logic ofM (or ofMfin ) is not compact. For exam-
ple, consider a set of formulae which says that the agent has at least
one belief, but it does not believe any formula:{min(1)} ∪ {¬Bφ :
φ ∈ L}. Every finite subset of this set is satisfiable, but the set itself
is not. This means that we can at most prove weak completeness.

The remainder of this section consists of constructions and inter-
mediate results leading up to the main completeness results in Theo-
rems 2, 3 and 4. First, some definitions. Given sets of formulae∆,Ξ,
we say thatΞ is ∆-maximal if eitherφ ∈ Ξ or ¬φ ∈ Ξ for each
φ ∈ ∆. LetCl(φ) be the closure ofSubf (φ) with respect to single
negations andmin(..), namely:

• if ψ ∈ Subf (φ), thenψ ∈ Cl(φ)
• min(0) ∈ Cl(φ)
• min(|{Bα : Bα ∈ Subf (φ)}|) ∈ Cl(φ)
• if min(n) ∈ Cl(φ), thenmin(m) ∈ Cl(φ), for all m with 0 <
m < n

• if ψ ∈ Cl(φ), then¬ψ ∈ Cl(φ) unlessψ = ¬χ for someχ

Clearly,Cl(φ) is finite.
To prove completeness, given anS-consistent formulaφ we now

construct a finite modelMφ and show that it satisfiesφ. Whenφ is an
S-consistent formula, letΓφ be someCl(φ)-maximalS-consistent
subset ofCl(φ) which containsφ (it is easy to prove that such a set
exists ifφ is S-consistent, just pick one of them). LetBel(Γφ) =
{ψ : Bψ ∈ Γφ}. Letmφ = max(m : min(m) ∈ Γφ). SinceΓφ

is finite and containsmin(0) (by MIN0 and the fact thatmin(0) ∈

Cl(φ)), such anmφ exists. ByMIN2 and the fact thatmin(|{Bα :
Bα ∈ Subf (φ)}|) ∈ Cl(φ), the cardinality ofBel(Γφ) is less or
equal tomφ.

To build the modelMφ, in the case that|Bel(Γφ)| = mφ

we can just let the epistemic state be identical toBel(Γφ); as we
show below, it is easy to prove a truth lemma in that case. How-
ever, when|Bel(Γφ)| < mφ (for example, ifφ = min(10), then
|Bel(Γφ)| = 0 andmφ = 10), we must pad the epistemic state with
mφ − |Bel(Γφ)| extra formulae. These formulae should not come
from {ψ : Bψ ∈ Subf (φ)}, but we have an infinite supply of for-
mulae inL. So letkφ = mφ−|Bel(Γφ)| and for alli ∈ {1, . . . , kφ},
choose some (unique)Bαi

φ �∈ Subf (φ). We are now ready to define
Mφ. LetMφ = ({sφ}, σφ) whereσφ is such that

p ∈ σφ(sφ) ⇔ p ∈ Γφ whenp ∈ P
σφ(sφ) =

{
Bel(Γφ) |Bel(Γφ)| = mφ (A)

Bel(Γφ) ∪ {α1
φ, . . . , α

kφ

φ } otherwise (B)

Note that in both case (A) and (B), the size of the epistemic state is
exactlymφ: |σφ(sφ)| = mφ.

Lemma 4 (Truth Lemma) For each ψ ∈ Subf (φ),

Mφ, sφ |= ψ ⇔ ψ ∈ Γφ

Proof. The proof is by induction over the structure ofψ. The case
whenp is a propositional variable is immediate. Whenψ = Bα,
α �= αi

φ for all i ∈ [1, kφ] sinceBα ∈ Subf (φ), so that case is also
immediate. Letψ = min(n). Mφ, sφ |= ψ iff mφ ≥ n. For the
direction to the right,min(mφ) ∈ Γφ, somin(n) ∈ Γφ for anyn
such thatmφ ≥ n by MIN1 (and the fact thatmin(n) ∈ Cl(φ)).
For the direction to the left, ifmin(n) ∈ Γφ, then n ≤ mφ

immediately by definition ofmφ. The inductive step (negation and
conjunction) is straightforward. �

Definemaxφ as the maximum of|{Bα : Bα ∈ Subf (φ)}| and
max(m : min(m) ∈ Subf (φ)). The following Lemma, showing
that every satisfiableφ is satisfied in a model of bounded size – par-
ticularly in one where the size of the epistemic state is no greater than
maxφ, follows immediately (it is easy to see thatmφ ≤ maxφ):

Lemma 5 Any S-consistent formula φ is satisfied in a state in a
model M = ({s}, σ) where |σ(s)| ≤ maxφ and |σ(s) ∩ P| ≤
|At(φ) ∩ P|.
The following theorem follows immediately from Lemmata 3 and 5.

Theorem 2 S is sound and weakly complete with respect to M.

Furthermore, since Lemma 5 shows satisfiability in a model with
a finite epistemic state, the following also holds.

Theorem 3 S is sound and weakly complete with respect to Mfin .

We now discuss axiomatisation of the classMn. Let n ∈ N be
fixed. DefineSn to beS extended with the axiommax(n).

Theorem 4 Sn is sound and weakly complete with respect to Mn.

Proof. Soundness follows immediately from Lemma 3 and the
definition of Sn. For completeness, letφ be a Sn-consistent
formula, and letφ′ = φ ∧ max(n). Sinceφ is Sn-consistent,φ′ is
S-consistent, so it is satisfied in a state with epistemic state of size
no greater thanmaxφ′ . It must be the case that¬min(n+ 1) ∈ Γφ′



(otherwisemin(n+1) ∈ Γφ′ , sincemin(n+1) ∈ Cl(φ′), and thus
Γφ′ would be inconsistent). Ifmaxφ′ ≥ n+ 1, min(n+ 1) ∈ Γφ′

by MIN1 and the fact thatmin(maxφ′) ∈ Γφ′ which is a contradic-
tion, somaxφ′ < n+ 1. Thus,φ′, and therefore alsoφ, are satisfied
in a state where the epistemic state is no greater thann. �

4.1 Complexity

Thesatisfiability problem for S is the problem of determining, given
a formulaφ, whether there exists a structureM with a states such
thatM, s |= φ (we here abuse the terminology somewhat and useS
to denote not only the the axiomatic system but also the logic ofM).

To determine the complexity of the satisfiability problem pre-
cisely, we need to decide on the encoding of formulas and mod-
els. Consider some standard encoding of propositional formulas as
strings, for example where propositional variables are encoded by
a single symbolp followed by an index of the variable in binary
(see, e.g., [7]). We can encodemin(n) in a similar way, as a sin-
gle symbolm followed by the representation ofn in binary. Pointed
models, which are essentially just assignments to atoms, can be en-
coded either as a concatenation of encodings of the atoms which are
true under the assignment, or, if it is an assignment to a finite or-
dered set ofm atoms, as a binary string of lengthm. Note that in
either case the length of the encoding of a satisfying model for a
formulaφ guaranteed by Lemma 5 may be exponential in|φ|. For
example, ifφ = min(n), then|φ| = 1 + log2(n) and the length of
the encoding of the satisfying assignment isn (under the bit string
approach) ornlog(n) (under the list of atoms approach). This is bad
news, because from the existence of an exponential satisfying model
we can only infer a NEXPTIME upper bound for the complexity of
satisfiability. However, we can encode the satisfying model more ef-
ficiently, so that the encoding is not exponential in size, but still can
be recognised as a model and used to evaluate a formula. Namely,
when we are guessing a modelMφ for φ, with a single statesφ, we
will only explicitly represent the assignment toAt(φ) in sφ, which is
polynomial in|φ|. Instead of explicitly representing the assignment
to ‘padding formulae’, we will guess the total number of epistemic
atoms inσ(s) and write it down in binary. So the representation ofsφ

will look as follows:(α1, . . . , αm, n), whereα1, . . . , αm ⊆ At(φ)
are the atoms true insφ, andn ≥ m is a binary representation of the
size ofσ(s). Clearly, this is polynomial in|φ|, and this information
is sufficient to evaluateφ, which can be done in polynomial time.

Theorem 5 The satisfaction problem for S is NP-complete.

Proof. We know thatφ is satisfiable iff it is satisfiable in a model
of size at mostmaxφ, by Lemma 5. We guess this modelMφ,
and represent it as a string linear in the size of|φ|, by explicitly
representing truth values for atoms inAt(φ), and guessing the total
number of true epistemic atoms, written in binary. We can check
whetherφ is satisfied by the model in polynomial time. NP-hardness
follows from the fact that the logic extends propositional logic. �

5 Adding State Transitions

In this section we consider the dynamics of the agent’s beliefs. We
extend syntactic structures to include state transitions, and the lan-
guagesL andLmin to include a ‘next state’ modality�, to obtain
the languagesL� andL�

min , respectively; a formal definition is given

below. Extending the logic this way allows us to describe how the
agent’s beliefs change. For example, if the agent knows an inference
rule, then it can apply it to beliefs in its current state to derive new be-
liefs which are added to the next epistemic state. To use an example
from [12], suppose the agent knowsa = b andb = c, and is capable
of reasoning about equality. Unlike in [12], we do not assume that
in this case the agent can derivea = c instantaneously. Rather, we
interpret ‘being able to reason about equality’ as being able to derive
new statements about equality which follow from the current beliefs,
in some future state. In particular, the agent should be able to reach a
state where it believesa = c. This property is expressible by the fol-
lowing L� formula, in which� stands for ‘there exists a successor
state where. . . ’:

B(a = b) ∧B(b = c) → �B(a = c)

We may also want to express that the agent’s knowledge grows
monotonically, which can be done by adding an axiom schema

Bφ→ �Bφ

(where� is the dual of�, meaning ‘in every successor state. . . ’).
The expressive power we get inL� is similar to, for example,

step logics [10]: we can describe how the beliefs of an agent capa-
ble of applying certain inference rules increase over time. Imposing
some simple conditions would guarantee that the set of beliefs re-
mains finite. One of such possible conditions is requiring that each
state transition corresponds to deriving exactly one new formula; this
is expressible by a schema:

�(Bφ ∧Bψ) → (Bφ ∨Bψ)

(if in the next state the agent believes two formulae, then at least one
of those formulae is already believed in the current state). Note that
the condition that each successor state has at most one extra formula
can be more elegantly expressed inL�

min :

max (n) → �max (n+ 1)

Another useful property, namely that each state transition adds some
new belief, is not expressible inL� at all, unless we introduce exis-
tential quantification over formulae or infinite disjunctions; however
in L�

min we can say

min(n) → �min(n+ 1)

If we do take the size bound on the agent’s epistemic state seriously,
however, the combination of monotonicity and ability to derive new
formulae becomes problematic. A natural restriction on monotonic-
ity in this case would be to say: if the set of beliefs is less than the
maximal size, then monotonicity holds; otherwise, the agent can still
derive a new formula, but at the expense of ‘overwriting’ one of the
old beliefs. This assumption is made, e.g., in [5], which studies log-
ics for bounded memory reasoners. The property of bounded mono-
tonicity (if the cardinality of the set of beliefs is less thann, then all
beliefs persist into the next state) can be expressed inL�

min as

max (n− 1) ∧Bφ→ �Bφ

Hopefully, the examples above have given the reader a flavour of
the kind of properties we would like to express inL�

min . Now we
proceed to give formal definitions ofthe language and the structures.

Let the languageL�
min is defined by the following grammar:

φ ::= p ∈ P | ¬φ | φ1 ∧ φ2 | Bφ : φ ∈ L | min(n) : n ∈ N | �φ



Define�φ as¬�¬φ. A syntactic relational structure is a tripleM =
(S, σ,R) where(S, σ) is a syntactic structure andR ⊆ S × S a
relation over the states. The class of all syntactic relational structures
is denotedM�. The satisfaction relationM, s |= φ is defined as
before; the extra clause for�φ is standard in modal logic:

M, s |= �φ ⇔ ∃s′(R(s, s′) andM, s′ |= φ)

LetKmin be the logical system obtained by adding toS the axiom
schemaK: �(φ→ ψ) → (�φ→ �ψ) and the necessitation ruleN:
� φ ⇒� �φ.

Theorem 6 Kmin is sound and weakly complete wrt. M�.

Proof. The proof consists of minor modifications of the constructions
and proof in Section 4. The construction of a satisfying modelM ∈
M� for aKmin -consistent formulaφ uses a method described in [7].

DefineCl(φ) as in Section 4. ConstructM = (S, σ, R) as fol-
lows. Let S be the set of (Cl(φ)-) maximal consistent subsets of
Cl(φ). In Section 4 it was enough to define a satisfying assignment
in a single statesφ corresponding to the maximal consistent setΓφ

containingφ; here we must repeat that exercise forany such set. For
eachs ∈ S, the assignmentσ(s) is defined froms in exactly the
same way asσφ(sφ) was defined fromΓφ in Section 4. Note that we
do not include the ‘padding’ formulaeBα1, . . . , Bαk in the state
s; they are just a technical device we use to define the assignment.
In particular, the statement of the Truth Lemma is restricted to the
subformulas ofφ.

Finally, let R(s, t) hold if, and only if, φs ∧ �φt is Kmin -
consistent, whereφs (φt) is the conjunction of formulae inσ(s)
(σ(t)). The proof of the Truth lemma is standard, see e.g. [7].�

Since the model we have constructed is exponential in length of
the encoding of a formulaφ, the theorem above implies thatKmin

is decidable in NEXPTIME. However, it is possible to give a tighter
upper bound, namely PSPACE:

Theorem 7 The problem of whether a formula φ ∈ L�
min is satisfied

in a model in M� is PSPACE complete.

Proof. It is easy to show that every satisfiable formulaφ has a
tree model of polynomial depth (the proof is the same as for basic
modal logic K, see for example [7]). Each state in the model has
polynomial size, as we have shown in Lemma 5. Hence, each branch
of the satisfying model can be encoded as a string whose length is
polynomial in the length of the encoding ofφ. TheWitness algorithm
given in [7] which essentially builds a tableaux forφ one branch at
a time, can be easily adapted to check for satisfiability inM�. For
PSPACE-hardness, observe that the satisfiability problem for modal
logic K can be reduced to the satisfiability problem forKmin , and
the former is PSPACE-complete [7]. �

6 Conclusions

We have modeled the beliefs of an agent with the help of syntactic
assignments, an approach also used by several others [14, 11, 6, 4]
in order to model properties of reasoners which are difficult or im-
possible to model with traditional modal epistemic logics. The same
model of belief we have used in this paper, was recently used [3]
to give a semantics to Ho Ngoc Duc’s [8] logic of rational, but not
logically omniscient, agents. While many approaches have been sug-
gested to alleviate the logical omniscience problem [13] the syntac-
tic approach can be seen as the most general one. The results in this

paper should be readily applicable to other logics with a syntactic
component. Of particular interest for future work would be to apply
them tothe logic of general awareness [11].

In the language of syntactic epistemic logic withmin(n) opera-
tors, we can express many interesting properties of agents, such as
bounded memory, and knowing exactly or at most the given set of
formulae and nothing else. We introduce several natural logics in this
language, and show that they have sound and complete axiomatisa-
tions, and that their decidability problem is in the same class as their
non-epistemic counterparts.
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