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Abstract. We introduce a logical language with nullary opera- only the B operator, based on syntactic structures introduced in [12].
tors min(n), for each non-negative integer which mean ‘the rea- We show that formulae in this language are preserved ubHer
soner has at least different beliefs’. The resulting language allows isomorphism (truth assignments agreeing on atomic and epistemic
us to express interesting properties of non-monotonic and resourcéermulae in the sek) for certain setst. In section 3 we introduce
bounded reasoners. Other operators, such as ‘the reasoner has at nthstlanguage and interpretation of the logic with operatois(n)

n different beliefs’ and the operator introduced in [1, 4]: ‘the rea- and show thatnin(n) is not definable in the basic language, since
soner knows at most the formulag, . .., ¢,’, are definable us- min(n) formulae are not preserved undesisomorphism. We also

ing min(n). We introduce several syntactic epistemic logics with show how to definenaz(n), 7 and other operators in the extended
min(n) operators, and prove completeness and decidability resultinguage. In section 4, we give a sound and (weakly) complete ax-
for those logics. iomatisation of the logic withmin(n), and prove that its satisfiabil-

ity problem is NP-complete. We also show that addingz(n) as

an axiom captures exactly the set of models where the agent’s belief
set has cardinality of at most In section 5 we define a modal logic

In this paper we propose a logical language which allows us to sayith min(n) and ‘next state’ modality>, in which we can express
that a reasoner has at leastifferent beliefs (or knows at least properties relating to dynamics of agent’s beliefs, such as bounded
different formulae). We take aystactic approach to epistemic and monotonicity: until the agent’s state is ‘full’, it carries all its current
doxastic logics, which allows an agent’s beliefs to be, e.g., not closetieliefs to the next state. We prove soundness and weak completeness
under logical consequence, finite, and/or inconsistent. We extend tHer this logic and show that its satisfiability problem is in PSPACE.
traditional language of belief logics, propostional logic with an ad-

ditional unary operatoB where B¢ stands for ‘the agent believes

¢', with nullary operatorsnin(n), for every non-negative integer 2 Syntactic Structures

Such operators allow us to formulate interesting properties of rea-

soners, and the resulting logics have nice formal properties. We iny this section we introduce the language and models of basic syn-
troduce several doxastic logics within (n) operators, and show that - tactic epistemic logic. Syntactic epistemic logic considers beliefs as
they have (weakly) complete axiomatisations, and are decidable. gyntactic objects rathehan propositions (setsf possible worlds).

In the language withmin(n), we can express dual operators Thjs is done to, e.g., avoid closure under logical consequence and
maz(n) (meaning: the reasoner has at mestifferent beliefs), and  jgentifying logically equivalent beliefs. We base our account of the
those operators, in turn, enable us to completely axiomatically demterpretations of the language of epistemic logicspntactic struc-
scribe reasoners with a boundon the maximal size of their belief  {resintroduced in [12].
set. The bound on the number of distinct beliefs an agent can have, The janguaget of basic syntactic epistemic logic is parameterised

naturally corresponds to a bound on the size of the agent's menyy g setp of primitive propositions . is defined as follows.
ory (assuming that each formula is a word of fixed size). Logics for

agents with bounded memory were studied, for example, in [9], and pu=pEP|-¢|d1Ada|Bo
more recently in [5]. However, in the language of standard epistemic

logic it is impossible to express properties such as ‘the agent can aRye se the usual derived proposital connectives. The intended
ply the rule of modus ponens to its beliefs unless its memory is f“""meaning of B¢ is that ¢ is believed by the agent. We denote the
We show later in the paper some examples of properties of boundeg.; ofepistemic atoms {B¢ : ¢ € L} by B. The elements of the
memory reasoners which become expressible in the language WiglatP U B of primitive propositions and egiemic atoms, are called
min(n) operators. atoms.

Somewhat surprisingly, we can also define thepperator intro- A syntactic structure [12], henceforth sometimes called just “a
duced in [1, 4], whereyz{¢1, ..., ¢» } stands for ‘the agent believes model’, is a pait\l = (S, o), whereS is a set ofstates and
at most the formulaen, . .., ¢,’. The latter operator makes other
useful properties easy to express. For example, formalising non-
monotonic arguments becomes easier, because we can say in the lan-
guage ‘the agent knows a set of _formu[ﬁeand nothing elsg. . Thus a syntactic structure identifies a set of formulae believed by the
The rest of the paper is organised as follows. In section 2, we in-

troduce the language and models of syntactic epistemic logics witﬁlgent In a state € 5. We call this set the agentepistemic state
guag Y P 9 in s, and denote i&(s): 5(s) = {¢ : Bo € o(s)}. A pair M, s,

1 University of Bergen, Norway, agotnes@ii.uib.no wheres is a state of\/, is called gpointed model. The definition of
2 University of Nottingham, UK, nza@cs.nott.ac.uk satisfaction of a formula in a pointed modelM, s, written M, s =
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¢, Is straightforward: Let M = (S,0) be a model, and € S. The satisfaction of a
Lnin formulag in (M, s) is defined by adding the following clause

%:z E%¢ Z Zi (;((Z)) to the definition of satisfaction of formulae:
M,s -9 & MshEo M, s £ min(n) < [5(s)| > n

M,sEd1Ad2 < M,sk=¢1andM,s = ¢o
We remark that in this definition of syntactic knowledge by [12] A for_mula min(n) cgptures the notion that 'e"’?ﬂ " formu_lae
are believed. As mentioned above, we are also interested in a dual

in a possible worlds framework, the states themselves do not pla ; .
. : . . . xpressing thaat most n formulae are believed. The reason that a
any important part: the interpretation of a formula in a staties . . . . . L
dual operator tanin(n) is not included inC ., is that it is in fact

not depend on any state different framThus, the interpretation in . N ) ! )
s of any formula can be defined solely in terms of thecss). We derivable. We define it as the following derived operator:

will, however, make use of the full set of stat&svhen we introduce
syntacticrelational structures in Section 5.

We useM to denote the class of all syntactic structuréd.can |t is easy to see that
be seen as models of agents with unbounded memory. In the follow-
ing, we will also be interested in other classes of syntactic structures. M, s |= maz(n) & |o(s)| <n
For a given natural number, M™ is the class of syntactic structures
where at most formulae are believed at the same time, i.e., where
[7(s)] < nfor everys € S. M™ can be seen as models of agents
with a fixed memory sizeM z,, denotes the class of syntactic struc- We compare the expressive power of the languayesdL....: are,
tures withfinite epistemic states, i.eMg, = J,,cy M™. M can  for examplemin(n) and/ormaz(n) expressible inC?

maz(n) = —-min(n + 1)

3.1 Expressive Power

be seen as models of agents with finite memory. It was shown in the previous section thaformulae are invariant
under X-isomorphism. On the other hand, as the following lemma
21 Preservation shows, in the case d,,;, formulae, satisfaction isot invariant un-

der Z-isomorphismi.
As we will soon extend the logical language, we need to be able

to compare the expressiveness of different languages. To do thatemma 2 There are pointed models M,s, M’',s’and X C P U B
precisely, we introduce the notion &f-isomorphism between two  suchthat (M, s) ~s (M, s'), but for some ¢ € L With At(¢) C
pointed models, wherE is a set of atoms. Two pointed models are ¥

3-isomorphic, if they agree on all formulae 3 Formally: M,s=¢and M’ s' [~ ¢

Definition 1 Let M = (S,0) and M = (S’,0’) be models, s € S
ands’ € S',and X C PUB. (M,s) ~x (M',s"), (M,s) and
(M’ s") areX-isomorphig is defined as follows:

Proof. Take¢ = min(1), M = (S,0), M’ = (S',0"),5(s) = {a}
for somea € £, 5(s") = 0 andX = 0. Trivially, At(¢) C X.
|[o(s)| > 1,s0M,s | . |['(s")| 2 1, s0M’, 5" [~ ¢. ]
(M,s) ~s (M',s") <= oa(s)NT=0'(s)NZ

The following theorem follows immediately from the fact that

Given a¢ € L, the setSubf(¢) is the set of all subformulae of £ . can discern betweeR-isomorphic models, whileC cannot
¢ (with subformulae of the formBy treated as atomic formulae), (| emmata 1 and 2).

and At(9¢) is the set of atomic subformulae ¢f including epistemic
atoms:At(¢) = Subf(¢) N (P U B). Theorem 1 L, is strictly more expressive than £.
The following lemma states that the truth value of a formula
depends only on the truth value of its atomic subformulae, or, in .
other words, satisfaction af formulaes is invariant underd¢(¢)- ~ >-1-1 Knowing At Least and At Most
isomorphism. In [1, 4] two dual operators were introduced to express properties of
syntactic knowledge. Both operators are unary, and tdikdita set
of object formulae as argument (it is thus assumed that the language
has symbols for finite sets of formulae). L&t C £ be finite. First,

Lemma 1 For any two pointed models M, sand M’,s’, ¥ C PUB
and ¢ € £ suchthat At(¢) C X:

(M, s) ~x (M',s") = (M,s Eo¢ o M, s = ¢) AX isintended to mean that the agent kna$east the formulae

in the setX': the agent knows every formula i, but might in addi-

The proof is straightforward. tion also know other formulae not . Secondsy X is intended to

mean that the agent knovas most the formulae in the seX: every
3 Upper/Lower Boundson Belief Sets formula the agent knows is i, but it might not know every formula

) . in X. Thesy operator can thus be seen as a syntactic version, without
We now extend the languagewith operators for expressing proper- s assumption that belief is closed under logical consequence, of an

ties of syntactic structures such as “at mogtifferent formulae are “only knowing” operator [15].7 X is not definable byi [2]. The
believed”. Furthermore, we show that an extension of the language

indeed was necessary to express such properties. 3 Most logics satisfy the principle of locality: the truth value of a formula

o i i does not depend on the assignment to éemother than the formula’s free
The languageL ., is defined by adding a nullary operator variables. This is such an obvious property that it usually goes unremarked;

min(n), for each natural numbet, to the languageC. Formally however some logics do violate it. This phenomenon was investigated for
Lmin is defined as follows: predicate logics in e.g. [16]; for propositional logics, the only example we
know of in addition to the logics of7 and min(n) is the logic ofonly
du=pEP|—d|p1 N2 | Ba:a€ L] min(n) :neN knowing [15].




conjunction of knowing at leask’ and knowing at mosX, know-  Cl(¢)), such anm, exists. ByMIN2 and the fact thatnin(|{ Ba :
ing exactly X, is writtenX.X. The<; andX operators can be used Ba € Subf(4)}|) € Cl(¢), the cardinality ofBel(T';) is less or
to express compactly that the agent knows the given formards  equal tom,.

nothing else. For example, from the fact th&t{Bird(Tweety)} we To build the modelM,, in the case thatBel(T'y)| = my
can derive-B—Flies(Tweety). we can just let the epistemic state be identicaBe/(I'); as we
Formally, satisfaction is defined as follows: show below, it is easy to prove a truth lemma in that case. How-

ever, whenBel(T'y)| < my (for example, if¢ = min(10), then
|Bel(T'y)| = 0 andm, = 10), we must pad the epistemic state with
mg — |Bel(T'y)| extra formulae. These formulae should not come
from {¢ : By € Subf(¢)}, but we have an infinite supply of for-
mulae inL. Soletky = my—|Bel(I'y)| andforalli € {1,...,kqs},
choose some (uniqué}afb & Subf (¢). We are now ready to define
My. Let My = ({ss}, 04) Whereo, is such that

M,sEAX & X Co(s)
M,sEvX < o(s)CX
M,sERX & F(s)=X

It turns out that both notions of knowing at most and knowing at
least a finite set of formulae are definabledn.,. We leave it to the
reader to check that

AX = p€U¢(S¢)<:>p€F¢Whenp€P

/\an
KX = AX A max(|X|) Fo(5s) = Bel(I'y) 1 o Bell)l=ms (W)
VX =Vycx WY Bel(Ty) U {ag,...,a,”}  otherwise (B)

. Note that in both case (A) and (B), the size of the epistemic state is
4 Completeness and Complexity exactlyme: [74(s6)| = ms.

In this section, we give a complete and sound axiomatisation of th
logic of min(n). LetS be the logic defined by the following axiom

schemata and rules over the langu#ge,, : My, sp =1p & €Ty

all substitution instances of

% emma4 (Truth Lemma) For each ¢ € Subf (o),

Prop ropositional lodic Proof. The proof is by induction over the structure ©f The case
MINO Eni,?(o) g whenp is a propositional vartale is immediate. When) = Ba,
MIN1  min(n) — min(m) m<n a # agforalli € [1, k] sinceBa € Subf(¢), so that case is also
MIN2 (Béy A--- A Bén) — min(n) Viggepmos £ ¢, mmediate. Let = min(n). M, sy = ¢ iff my 2 n. For the
MP If ¢, 6 — 1 thensp = direction to the rightynin(mg) € T'y, somin(n) € T'y for anyn

such thatm, > n by MIN1 (and the fact thatnin(n) € Cl(¢)).
Itis easy to see that all axioms are valid on all syntactic structured;or the direction to the left, ifimin(n) € Iy, thenn < mg
and that the following holds. immediately by definition ofn,. The inductive step (negation and
conjunction) is straightforward. a
Lemma3 S issound with respect to M.
Definema% as the maximum of{ Ba. : Ba € Subf(¢)}| and
(m : min(m) € Subf(¢)). The following Lemma, showing
at?1at every satisfiablé is satisfied in a model of bounded size — par-
ftl(:ularly in one where the size of the epistemic state is no greater than
max 4, follows immediately (it is easy to see that, < max,):

Observe that the logic o# (or of Mg,,) is not compact. For exam-

ple, consider a set of formulae which says that the agent has at le

one belief, but it does not believe any formu{anin(1)} U {—B¢ :

¢ € L}. Every finite subset of this set is satisfiable, but the set itsel

is not. This means that we can at most prove weak completeness.
The remainder of this section consists of constructions and inter: emma 5 Any S-consistent formula ¢ is satisfied in a state in a

mediate results leading up to the main completeness results in Thegyge 17 = ({s}, o) where [5(s)| < max, and |o(s) N P| <

rems 2, 3 and 4. First, some definitions. Given sets of formilge, |At() N P|.

we say thaE is A-maximal if eitherp € = or ¢ € = for each

¢ € A. LetCl(¢) be the closure ofubf (¢) with respect to single  The following theorem follows immediately from Lemmata 3 and 5.

negations andnin(..), namely:
9 ) Y Theorem 2 S is sound and weakly complete with respect to M.

o if i € Subf(¢), theny € Cl(¢) : PR ,
o min(0) € Cl(¢) Furthermore, since Lemma 5 shows satisfiability in a model with
e min(|{Ba : Ba € Subf(¢)}|) € Cl(¢) afinite epistemic state, the following also holds.

¢ '7;"57;(”) € Cl(9), thenmin(m) € CI(¢), for all m with 0 < Theorem 3 S issound and weakly complete with respect to Mg, .

e if 1 € Cl(¢), then—y) € Cl(¢) unlessy = —x for somey We now discuss axiomatisation of the clas$™. Letn € N be

Clearly,Cl(¢) is finite. fixed. DefineS™ to beS extended with the axiommaz(n).

To prove completeness, given arconsistent formula> we now  Theorem 4 S™ is sound and weakly complete with respect to M™.
construct a finite model/, and show that it satisfies Wheng is an
S-consistent formula, lef, be someCi(¢)-maximal S-consistent ~ Proof. Soundness follows immediately from Lemma 3 and the
subset ofC(¢) which containsy (it is easy to prove that such a set definition of S™. For completeness, lep be a S™-consistent
exists if ¢ is S-consistent, just pick one of them). L&el(T'y) = formula, and ley’ = ¢ A maz(n). Since¢ is S™-consistenty’ is
{ : By € Ty}. Letmg = max(m : min(m) € T'y). Sincel'y S-consistent, so it is satisfied in a state with epistemic state of size
is finite and containsnin(0) (by MINO and the fact thatnin(0) € no greater thamaz . It must be the case thatmin(n + 1) € I'y/



(otherwisemin(n+1) € Ty, sincemin(n+1) € Cl(¢'), and thus  below. Extending the logic this way allows us to describe how the
I',» would be inconsistent). lfwaz s, > n + 1, min(n + 1) € Ty agent’s beliefs change. For example, if the agent knows an inference
by MIN1 and the fact thatnin(maz /) € I'yr Which is a contradic- rule, then it can apply it to beliefs in its current state to derive new be-
tion, somaz, < n+ 1. Thus,¢’, and therefore alsg, are satisfied liefs which are added to the next epistemic state. To use an example
in a state where the epistemic state is no greaterithan m] from [12], suppose the agent knows= b andb = ¢, and is capable

of reasoning about equality. Unékin [12], we do not assume that

in this case the agent can derive= c instantaneously. Rather, we

. interpret ‘being able to reasoibaut equality’ as being able to derive
4.1 Complexity new statements about equality whim?’lld)w %/rom the C?Jrrent beliefs,

The satisfiability problemfor S is the problem of determining, given N some future state. In particular, the agent should be able to reach a
a formulag, whether there exists a structubé with a states such  State where it believes = c. This property is expressible by the fol-
that M, s = ¢ (we here abuse the terminology somewhat andsuse owing £ formula, in which< stands for ‘there exists a successor

to denote not only the the axiomatic system but also the logietpf ~ State where...”:

csel, we noad 10 ceade on the encoang of forulas and mod- Bla=) A B =)~ OB(a=0)

els. Consider some standard eding of propositional formulas as We may also want to express that the agent’s knowledge grows

strings, for example here propositional variables are encoded by monotonically, which can be done by adding an axiom schema
a single symbol followed by an index of the variable in binary

(see, e.g., [7]). We can encodein(n) in a similar way, as a sin- B¢ — OB¢

gle symbolm followed by the representation efin binary. Pointed . _ ,
models, which are essentially just assignments to atoms, can be ep(yherelj is the _dual 0f%, meaning .|r<1>e_ver)_/ successor state. .. ).
coded either as a concatenation of encodings of the atoms which are | "€ €XPressive power we get i is similar to, for example,

true under the assignment, or, if it is an assignment to a finite orStep logics [10]: we can describe how the beliefs of an agent capa-

dered set ofn atoms, as a binary string of length. Note that in ble of applying certain inference rules increase over time. Imposing

either case the length of the encoding of a satisfying model for gome s_imple conditions would_guarante_g that_ the se_t.of beliefs re-
formula ¢ guaranteed by Lemma 5 may be exponentialdih For mains fmm_a_. One of such p055|t_)le_ conditions is requiring that Qach
example, if = min(n), then|é| = 1 + logz(n) and the length of state transition corresponds to démg exactly one new formula,; this

the encoding of the satisfying assignmentigunder the bit string 'S €XPressible by a schema:

approach) onlog(n) (under_the list of atoms appro_ach). Thi§ is bad (B A BY) — (BoV By)

news, because from the existence of an exponential satisfying model

we can only infer a NEXPTIME upper bound for the complexity of (if in the next state the agent believes two formulae, then at least one
satisfiability. However, we can encode the satisfying model more efef those formulae is already believed in the current state). Note that
ficiently, so that the encoding is not exponential in size, but still canthe condition that each successor state has at most one extra formula
be recognised as a model and used to evaluate a formula. Nameban be more elegantly expressedify;,.:

when we are guessing a mod#l, for ¢, with a single state,, we

will only explicitly represent the assignment 4 (¢) in s,, which is maz(n) — Omaz(n + 1)

polynomial in|¢|. Instead of explicitly representing the assignment
to ‘padding formulae’, we will guess the total number of epistemic
atoms irg(s) and write it down in binary. So the representation of
will look as follows: (a1, . . ., am,n), Whereas, . .., am C At(d)

are the atoms true ify,, andn > m is a binary representation of the
size of(s). Clearly, this is polynomial in¢|, and this information min(n) — Omin(n + 1)
is sufficient to evaluate, which can be done in polynomial time.

Another useful property, namely that each state transition adds some
new belief, is not expressible ii® at all, unless we introduce exis-
tential quantification over formulae or infinite disjunctions; however
in £, we can say

If we do take the size bound on the agent’s epistemic state seriously,
Theorem 5 The satisfaction problem for S is NP-complete. however, the combination of morsticity and ability to derive new

formulae becomes problematic. A natural restriction on monotonic-
Proof. We know that¢ is satisfiable iff it is satisfiable in a model ity in this case would be to say: if the set of beliefs is less than the
of size at mostnaz,, by Lemma 5. We guess this modaf, maximal size, then monotonicity tds; otherwise, the agent can still
and represent it as a string linear in the sizel#&jf by explicitly derive a new formula, but at the expense of ‘overwriting’ one of the
representing truth values for atoms4ri(¢), and guessing the total old beliefs. This assumption is made, e.g., in [5], which studies log-
number of true epistemic atoms, written in binary. We can checkics for bounded memory reasoners. The property of bounded mono-
whether¢ is satisfied by the model in polynomial time. NP-hardnesstonicity (if the cardinality of the set of beliefs is less thanthen all
follows from the fact that theolgic extends prpositional logic. O beliefs persist into the next state) can be expressédin as

maz(n —1) A B¢ — OB¢

5 Adding State Transitions Hopefully, the examples above have given the reader a flavour of
the kind of properties we would like to expressAt,,,. Now we

In this section we consider the dynamics of the agent's beliefs. Weyroceed to give formal definitions tife language and the structures.
extend syntactic structures to include state transitions, and the lan- | gt the language?,,,, is defined by the following grammar:

guagesC and L,;, to include a ‘next state’ modality>, to obtain i
the language£® and£S,,, respectively; a formal definitionisgiven ¢ :=p € P | ¢ | d1 Ad2 | Bop: ¢ € L ]| min(n):n € N| O¢



Defined¢ as—<C—¢. A syntactic relational structureis a tripleM = paper should be readily applicable to other logics with a syntactic
(S,0, R) where (S, o) is a syntactic structure and C S x Sa  component. Of particular interest for future work would be to apply
relation over the states. The class of all syntactic relational structurethem tothe logic of general awareness [11].

is denotedM . The satisfaction relatiod!, s |= ¢ is defined as In the language of syntactic epistemic logic within(n) opera-
before; the extra clause fer¢ is standard in modal logic: tors, we can express many interesting properties of agents, such as
bounded memory, and knowing exactly or at most the given set of
formulae and nothing else. We introduce several natural logics in this
language, and show that they have sound and complete axiomatisa-
tions, and that their decidability problem is in the same class as their
non-epistemic counterparts.
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M,sE<C¢ & 3Is'(R(s,s')andM, s’ & ¢)

Let KC.nin. be the logical system obtained by addingStthe axiom
schem&: O(¢ — 1) — (O¢ — Ov) and the necessitation ruk
¢ =t O¢.

Theorem 6 KC,ni is sound and weakly complete wrt. AM°.

Proof. The proof consists of minor modifications of the constructions
and proof in Section 4. The construction of a satisfying mddek
M for aK,nim-consistent formula uses a method described in [7].
Define Cl(¢) as in Section 4. Construét! = (S, o, R) as fol-
lows. Let S be the set of 'l(¢)-) maximal consistent subsets o

Cl(¢). In Section 4 it was enough to define a satisfying assignmenfrokhin for discussing complexity.

in a single state, corresponding to the maximal consistent Bgt
containinge; here we must repeat that exercisedoy such set. For
eachs € S, the assignment (s) is defined froms in exactly the (1]
same way as4(s¢) was defined fronl',, in Section 4. Note that we
do not include the ‘padding’ formulaBay, ..., Bay in the state [
s; they are just a technical device we use to define the assignment.
In particular, the statement of the Truth Lemma is restricted to the
subformulas ofp. Bl
Finally, let R(s,t) hold if, and only if, ¢ps A Oy is Koin-
consistent, where, (¢:) is the conjunction of formulae iw (s)
(o(t)). The proof of the Truth lemma is standard, see e.g. [7].0 [4]
Since the model we have constructed is exponential in length of
the encoding of a formula, the theorem above implies thit,»
is decidable in NEXPTIME. However, it is possible to give a tighter
upper bound, namely PSPACE: (5]

Theorem 7 The problem of whether aformula ¢ € £S5, issatisfied

inamodel in M is PSPACE complete. 6]

Proof. It is easy to show that every satisfiable formulahas a

tree model of polynomial depth (the proof is the same as for basic
modal logic K, see for example [7]). Each state in the model has[7]
polynomial size, as we have shown in Lemma 5. Hence, each branch
of the satisfying model can be encoded as a string whose length is
polynomial in the length of the encoding ¢f TheWtness algorithm

given in [7] which essentially builds a tableaux forone branch at 9]
a time, can be easily adapted to check for satisfiabilitp Y. For
PSPACE-hardness, observe that the satisfiability problem for modal

logic K can be reduced to the satisfiability problem 6y,..,,, and  [10]
the former is PSPACE-complete [7]. ad
[11]
[12]

6 Conclusions

We have modeled the beliefs of an agent with the help of syntacti@3]
assignments, an approach also used by several others [14, 11, 6,[flj]
in order to model properties of reasoners which are difficult or im-
possible to model with traditional modal epistemic logics. The samél5]
model of belief we have used in this paper, was recently used [3[]1 6l
to give a semantics to Ho Ngoc Duc's [8] logic of rational, but not
logically omniscient, agents. While many approaches have been sug-
gested to alleviate the logical omniscience problem [13] the syntac-
tic approach can be seen as the most general one. The results in this
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