
Modal logics for communicating rule-based agents
Natasha Alechina and Mark Jago and Brian Logan1

Abstract. In this paper, we show how to establish correctness and
time bounds (e.g., quality of service guarantees) for multi-agent sys-
tems composed of communicating rule-based agents. The formal
models of multi-agent systems we study are transition systems where
each transition corresponds to either a rule firing or an act of com-
munication by an agent. We present a complete and sound modal
logic which formalises how the beliefs of communicating rule-based
agents change over time. Using a simple example, we show how this
logic can be used to specify temporal properties of belief change in
multi-agent systems in a precise and realistic way, and how existing
modal logic techniques such as model-checking can be used to state
and verify properties of agents.

1 INTRODUCTION

There has recently been considerable interest in rule-based ap-
proaches to various aspects of agent technology. For example, rules
and rule engines (rule interpreters) have been advocated as a means
of managing the business logic of applications in a wide range
of domains such as insurance, financial services, government, tele-
com customer care and billing, and ecommerce [19]. Another im-
portant application of rule-based approaches in agent-based sys-
tems is the semantic web, for example, ontological reasoning in
DAML/OWL and, more generally, in rule extensions to ontologies
such as OWL+Rules [17] and SWRL[18]), which significantly in-
crease the expressive power of ontology languages [17].

At the same time there has been a growing use of rule engines as
key components of agent based systems. Much of this work is based
on mature rule-based systems technology such as the Jess rule en-
gine [14], e.g., the FIPA-OS JessAgent, the use of Jess in reasoning
about ontologies (DAML JessKB) and in web service composition
(DAML-S Virtual Machine [20]) and supporting tools such as Jena
which convert XML/RDF to Jess facts, and, more generally, the Java
Rules API.2 However, while the adoption of rule-based approaches
brings great benefits in terms of flexibility and ease of development,
these approaches also raise new challenges for the agent developer,
namely how to ensure correctness of rule-based designs (will a rule-
based agent produce the correct output for all legal inputs), termina-
tion (will a rule-based agent produce an output at all) and response
time (how much computation will a rule-based agent have to do be-
fore it generates an output).

As a motivating example, consider an agent which acts as a
provider agent for a company which sells goods or services on the
web. Such an agent may require a combination of ontological rules
to match a potential customer’s request against the goods and ser-
vices it offers (e.g., to realise that dog food is a kind of pet food

1 School of Computer Science, University of Nottingham, Nottingham, NG8
1BB, UK, email: {nza,mtw,bsl}@cs.nott.ac.uk

2 Jess is the reference implementation for the Java Rules API.

[21]) and business rules to determine, e.g., the appropriate level of
discount to be offered. The designer or developer of such an agent
may wish to ensure that the agent’s behaviour is correct, e.g., that
the agent does not offer a customer an inappropriate discount, or ac-
cept an order from a customer with an unpaid bill, and/or may wish
to offer certain quality of service guarantees, e.g., to bound the time
a potential customer has to wait between the acknowledgement of a
request for a price and receiving a quote.

The upper limit on deliberation (or response) time in rule-based
systems is a well-established problem. However previous work has
studied expert and diagnostic systems as single isolated systems [15],
and has focused mainly on termination (or worst case response time),
rather than more general issues of correctness and quality of service.
In this paper, we show how to establish correctness and time bounds
for multi-agent systems composed of rule-based agents. The formal
models of multi-agent systems we study are transition systems where
each transition corresponds to a rule firing by an agent (or an act of
communication, which we also model as an effect of a rule firing).
To solve a particular problem or to achieve a particular state, agents
typically need to fire multiple rules; the number of transitions until
the goal state is reached gives an estimate of the time required for
deliberation. We present a modal epistemic logic where the agent’s
rules and its knowledge in each state determine conditions on the
accessibility relation in the model. The novelty of our work is in rep-
resenting a multi-agent system of communicating rule-based agents
as a transition system, and proposing a modal logic to describe these
systems. In addition to being able to state time-related properties of
the system, this also enables us to use existing modal logic techniques
such as model-checking to state and verify properties of agents.

The remainder of the paper is organised as follows: is section 2
we introduce our model of communicating rule-based agents. In sec-
tions 3, 4 and 5 we introduce the language and its semantics, present a
complete and sound axiomatisation of our logic, and state decidabil-
ity. In section 7 we briefly illustrate the logic by giving an example
and show how properties expressed in the logic can be verified using
an existing model checker, before discussing related work in section
8.

2 COMMUNICATING RULE-BASED AGENTS

We assume that each agent has a program, consisting of Horn clause
rules, and a working memory, which contains facts. The set of rules
comprising the agent’s program and the facts contained in the agent’s
working memory together constitute the agent’s beliefs.

To define the agent’s internal language more precisely, we fix
a set of predicate symbols P , a set of variables X and a set of
constants D. A literal λ is a predicate symbol of n arguments
followed by n variables or constants and possibly preceded by
a negation symbol ‘¬’. For example, LuxuryProduct(x) and

LuxuryProduct(Porsche) are both literals. When every argu-
ment of the predicate symbol in a literal is an element of D, e.g.,
LuxuryProduct(Porsche), that literal is called a ground liter a l.
Each rule-based agent has a finite set R of rules, which are of the
form

λ1, . . . , λn → λ

where λi, λ are literals. λ is called the consequent of the rule (de-
noted by cons(λ1, . . . , λn → λ)), and each λi is an antecedent of
the rule. An example of a rule is:3

PremiumCustomer(x),LuxuryProduct(y) →
Discount(x, y, 7.5%)

We assume that the rules do not contain functional symbols. Given
a rule λ1, . . . , λn → λ, we denote an instance of this rule as
δ(λ1, . . . , λn → λ), where δ is some substitution function from the
set of variables of the rule into D. For example, if δ assigns Miller
to x and Porsche to y, then

δ(PremiumCustomer(x),LuxuryProduct(y) →
Discount(x, y, 7.5%))

=
PremiumCustomer(Miller), LuxuryProduct(Porsche)→

Discount(Miller, Porsche, 7.5%)

A rule λ1, . . . , λn → λ matches if there is a substitution δ such
that the agent’s working memory contains δ(λ1), . . . , δ(λn). Firing
the matching rule instance δ(λ1, . . . , λn → λ) adds the ground lit-
eral δ(λ) to the agent’s working memory. In what follows, we assume
that the agents fire at most one rule per cycle (we discuss other rule
application strategies in section 6), and that rule matching is refrac-
tory, i.e., that each rule instance is fired at most once.

Consider a set A = {1, . . . , n} of n agents. To model communi-
cation between agents, we assume that agents have special communi-
cation constructs in their language: ‘tell(i, j)λ’, which we will refer
to as a tell and ‘ask(i, j)λ’, which we will refer to as an ask. In both
cases, i and j are agents and λ is a literal not containing an ask or a
tell. tell(i, j)λ stands for ‘i tells j that λ’ and ask(i, j)λ stands for
‘i asks j whether λ is the case’. The position in which these formu-
las may appear in a rule depends on which agent’s program the rule
belongs to. Agent i may have an ask or a tell with arguments (i, j),
in the consequent of a rule, e.g.:

λ1, . . . , λn → ask(i, j)λ

Whereas agent j may have the same expressions in the antecedent of
the rule. For example:

tell(i, j)λ → λ

is a well-formed rule for agent j which makes it trust i when i in-
forms it that λ is the case. No other occurrences of tell(i, j) and
ask(i, j) are allowed. In particular, i must be distinct from j in all
the cases just listed, for our agents neither ask nor tell themselves
anything.

When a rule has either an ask or a tell as its consequent, we call it a
communication rule, or c-rule for short. All other rules are known as
deduction rules, or d-rules. These include rules with asks and tells in
the antecedent (as well as rules containing neither an ask nor a tell).

3 The business rules in the running example are taken from the RuleML tuto-
rial [8].

Firing a c-rule instance with the consequent tell(i, j)λ adds the
literal δ(tell(i, j)λ) both to the working memory of i and of j. In-
tuitively, i has a record that it told j that δ(λ), and j has a record
of being told by i that δ(λ). Similarly, if the consequent of a c-rule
instance is of the form δ(ask(i, j)λ), then the corresponding ask is
added to the working memories of both i and j.

In this paper, for simplicity we do not consider the interaction be-
tween agents and their environment. However we could model the
environment as a distinguished agent, e.g., with a different rule appli-
cation strategy, and interpret tells from the agents to the environment
as actions, and tells from the environment to the agents as sensing.

3 LANGUAGE

First we define agent i’s internal language Li. For simplicity, we as-
sume that all agents have the same finite set of predicate symbols P
and a finite set of constants D (although this assumption is not essen-
tial). We denote the set of all possible substitutions δ : X −→ D by
Σ. Note that given finite sets X and D, the set of all possible substitu-
tions Σ and the set of all possible rule instances are finite as well. Lit-
erals are denoted by λ,λ1, λ2, . . . , tell(i, j)λ, ask(i, j)λ, . . . (i, j ∈
A), ground literals are denoted by δ(λ), δ(λ1), . . ., tell(i, j)δ(λ),
ask(i, j)δ(λ), . . ., where δ ∈ Σ, and rules of the form λ1, . . . λn →
λ are denoted by ρ, ρ1, ρ2, Note that only rules and ground lit-
erals are formulas of Li, and that rules are well-formed only if the
conditions on the occurrences of asks and tells are satisfied.

In the modal language ML over Li, we have a belief operator Bi

for each agent i ∈ A. The primitive wffs of ML(P ,D) are:

Bi δ(λ) | Bktell(i, j)δ(λ) | Bkask(i, j)δ(λ) | Biρ

where δ(λ) is a ground literal, i and j are two different agents (we
assume that |A| ≥ 2), k ∈ {i, j}, and ρ is a well-formed rule of
agent i. If φ1 and φ2 are both ML(P ,D) wffs, the complex wffs of
ML(P ,D) are then given by

¬φ1 | φ1 ∧ φ2 | �φ1

where � is the next state modality; ∨ and → are defined as usual,
and �φ =df ¬�¬φ.

4 SEMANTICS

In this section we define the transition systems we use to interpret
the language introduced above. The states of the transition system
are tuples of local states of the agents and are used to interpret the
basic belief formulas of the language; intuitively, Biα is true if the
formula α is either a rule of agent i’s program, or is contained in
the agent’s local state (working memory) in that state. Transitions
between states correspond to the agents firing a single rule instance
each, in parallel. In the case in which an agent fires an instance of
a d-rule, a single new formula is added to the agent’s state. In the
case in which an agent fires an instance of a c-rule involving another
agent j, the conclusion of the rule is added both to the agent’s state
and to the agent j’s state.

The formal definition of models is as follows.

Definition 1 (Models) Given a group of agents A = {1, . . . , n}, a
multi-agent model M is an n+ 3-tuple

〈S,A, T, V1, . . . , Vn〉

where S is a set of states, T is the transition relation and each Vi :
S −→ ℘(Li) is the labelling function for agent i ∈ A assigning a
set of L-formulas to each state.

We say that a rule λ1, . . . , λn → λ is s-δ-i-applicable if s is a
state, δ a substitution, i an agent, δ(λ1), . . . , δ(λn) ∈ Vi(s) and
δ(λ) �∈ Vi(s).

The following conditions on the assignments Vi (for all i ∈ A)
and the accessibility relation T hold in all models:

1. for every i ∈ A, any two states s, s′ ∈ S, and every rule formula
ρ, ρ ∈ Vi(s) if, and only if, ρ ∈ Vi(s

′)
2. For any two states s and s′, T (s, s′) holds if, and only if, for

every agent i, Vi(s
′) = Vi(s) ∪ {δi(cons(ρi)} ∪ Ci, where

ρi is some s-δi-i-applicable rule if such a rule exists (otherwise
{δi(cons(ρi)} = ∅), and Ci = {δj cons(ρj) : δj cons(ρj) is of
the form tell(j, i)α or ask(j, i)α}).

Condition 1 says that the agent’s program does not change, and con-
dition 2 says that each agent fires a single applicable rule instance if
it has one, otherwise its state does not change apart from possibly as
a result of communication from other agents.

A state transition system can be visualised as follows. Each state
contains n finite sets of formulas, corresponding to the beliefs of each
of the n agents. Each applicable rule instance of agent i corresponds
to a possible ‘action’ by i, namely the addition of the consequent of
the rule to the next state. A transition by the system is an n-tuple
of such actions (if agent j has no applicable rule instance, the jth
component of the tuple is a null action). If in a state s, each agent i
has ki different applicable rule instances, then there are k1×· · ·×kn

different transitions from s, one for every possible combination of
agent ‘actions’. This also means that on different execution paths
originating in s, applicable rule instances of agent i may be fired in a
different order. Suppose there are two such rule instances in s, δ1(ρ1)
and δ2(ρ2). Then there is a path to some state s′ reached by agent i
firing δ1(ρ1) (and other agents firing their rule instances) and from
s′ to s′′ where i gets to fire δ2(ρ2). There is also a path where the
order in which δ1(ρ1) and δ2(ρ2) are fired is reversed, and it is also
possible that in the next state agent i will acquire other applicable
rule instances which on some execution paths will be fired earlier
than the one instance remaining from s. If none of the agents has an
applicable rule instance, then only one transition is possible (a null
action by all agents), to the same state.

The relation of a formula φ being satisfied in a modelM (M � φ)
is defined as follows:

M, s � Biα iff α ∈ Vi(s), for i ∈ A, α ∈ L(P ,D)
M, s � ¬φ iff M, s �� φ
M, s � φ ∧ ψ iff M, s � φ and M, s � ψ
M, s � �φ iff there is a u ∈ S such that T (s, u) andM,u � φ

Although our agents share a common language, each has its own
program. Given a program (set of rules) Ri for each agent i ∈ A,
we define the program set R = {R1, . . . ,Rn}. We want to pick out
those models in which agents believe all the rules in their program
and no other rules. Such models comprise the class MR.

Definition 2 (The class MR) A model M ∈ MR, where R =
{R1, . . . ,Rn}, iff for every state s in M , M, s � Biρ iff ρ ∈ Ri.
Given a set of ML-formulas Γ and an ML-sentence φ, we write
Γ �R φ iff every model of Γ which is in the class MR is also a model
of φ.

We now ask, given a set of programs R = {R1, . . . Rn} for n
agents in the language L(P ,D), what logic corresponds to the class
MR?

5 AXIOMATISATION

The logic ΛR over ML is defined as follows. First, fix a set of agents
A = {1, . . . , n}, then fix a program set R = {R1, . . . ,Rn}. Then
we define

δ app i(λ1, . . . , λn → λ)
df
= Biδ(λ1) ∧ . . . ∧ Biδ(λn) ∧ ¬Biδ(λ)

and app (ρ)
df
=

∨
δ∈Σ δ app i(ρ), where ρ ∈ Ri. The logic ΛR has

the following axiom schemata and rules:

Cl all classical propositional tautologies
K �(φ → ψ) → (�φ→ �ψ)
A1 Biρ, where ρ ∈ Ri (agent i believes its rules)
A2 ¬Biρ, where ρ �∈ Ri (agent i only believes its rules)
A3 Biα→ �Biα (agents are monotonic reasoners)
A4 Bi(λ1, . . . , λn → λ) ∧ Biδ(λ1) ∧ . . . ∧ Biδ(λn) → �Biδ(λ)

for each δ ∈ Σ (if a rule matches, its consequent belongs to some
successor state)

A5 �(Biα ∧ Biβ) → (Biα ∨ Biβ)

where α and β are not of the form tell(j, i)λ or ask(j, i)λ (at most
one new belief of agent i is added in each transition as a result of
agent i firing a rule)

A6 �Biα→ (
Biα ∨∨

λ1,...,λn→λ∈Ri,δ(λ)=α Biδ(λ1) ∧ . . . ∧ Biδ(λn)
)

where α is not of the form tell(j, i)β or ask(j, i)β (new beliefs
of agent i only arise as a result of firing a rule of i, unless it is a
communication from another agent j)

A7 δ11 app 1(ρ
1
1) ∧ . . . ∧ δ1k1 app 1(ρ

1
k1)∧∧

(δ,ρ) �∈{(δ1
1 ,ρ1

1),...,(δ1
k1,ρ1

k1)} ¬δ app 1(ρ) ∧ . . .
δn
1 app n(ρn

1) ∧ . . . ∧ δn
kn app n(ρn

kn)∧∧
(δ,ρ) �∈{(δn

1 ,ρn
1)...(δn

kn
,ρn

kn
)} ¬δ app n(ρ) → � ∨

f(i)∈{1...ki}
(B1δf(1)(cons(ρf(1))) ∧ . . . ∧ Bnδf(n)(cons(ρf(n)))))
for each possible set of applicable rule instances
{δi

1(ρ
i
1), . . . , δ

i
ki(ρ

i
ki)} for each agent i, provided this set is

non-empty for at least one of the agents. This axiom constrains
all possible successors of each state to states resulting from firing
applicable rule instances in parallel by all agents.

A8
∧

ρ∈R ¬ app ρ → � ∧
ρ∈R

¬ app ρ (the terminating state has a
transition to itself)

A9 Bitell(i, j)λ ↔ Bjtell(i, j)λ (communication involving tells is
perfect)

A10 Biask(i, j)λ ↔ Bjask(i, j)λ (communication involving asks
is perfect)

MP From φ and φ→ ψ derive ψ
N From φ derive �φ
The notion of derivation is standard.

Theorem 1 ΛR is sound and complete for MR : Γ �R φ iff Γ �R φ.

Due to the lack of space, we can only sketch a proof here. Soundness
is proved as usual by induction of the length of a derivation. For
completeness, we build a canonical model for a ΛR-consistent set of
formulas and prove that this model is in MR.

Theorem 2 The satisfiability problem for MR is decidable.

The proof is omitted due to lack of space; it uses filtration to prove
that every satisfiable formula has a model of size bounded by the size
of the formula and the size of R.

6 ADDITIONAL AXIOMS

In this section, we discuss additional axiom schemata which we can
use to express interesting properties of agents.

First, we consider properties relating to agent communication. The
property of agent 1 trusting agent 2 with respect to some literal λ can
be expressed as a c-rule belonging to agent 1. This is reflected in the
following axiom:

Trust(1,2,λ) B1(tell(2, 1)λ→ λ)

The following axiom says that agent 1 is cooperative in that it be-
lieves that it should answer agent 2’s queries concerning λ, if it al-
ready believes that λ:

Answer(1,2,λ) B1(ask(2, 1)λ, λ→ tell(1, 2)λ)

We can state more general properties of trust and cooperativeness by
replacing the axioms above by axiom schemas: e.g., trust any agent i
rather than a particular agent, and do so with respect to all formulas,
rather than a particular predicate.

Another kind of property we can express relates to the rule ap-
plication strategy of the agents. The logic described above is based
on the assumption that agents may fire matching rule instances in
any order. This is not a very realistic assumption (although it still
allows us to establish an upper bound on when a certain belief will
be derived, because all possible rule orderings will include the actual
one). For example, an agent’s rules (and rule instances) may be or-
dered, or more recent information may be acted upon first, or queries
answered in preference to applying internal deduction rules. Logics
corresponding to an ordered rule application strategy were studied in
detail in [5]; unfortunately, rule ordering in general cannot be cap-
tured by a single, simple axiom schema.

However, there are some rule application strategies which are rela-
tively simple to capture in modal logic. For example, the ‘all rules at
each cycle’ strategy can be easily modelled.4 This strategy requires
the agent to apply all of its rules to all of its ground beliefs in order to
transit to the next state. Note that rules are not applied immediately
to the consequences of matching rule instances; the rules are applied
only once in each transition. To model the ‘all rules at each cycle’
strategy, we remove axiom A5 (which says that at most one new for-
mula is derived) and add the axiom schema which says that there is
at most one successor to each state: �φ → �φ. Note that A7 then
becomes redundant.

7 EXAMPLE

In this section we show how the logic defined above can be used to
specify temporal properties of belief change in multi-agent systems
in a precise and realistic way. We then go on to show how these
properties can be verified using an existing model checker.

Consider a simple multi-agent system which implements the busi-
ness rules example introduced in section 2. Suppose there are two
agents involved in giving a quote. Agent 1 is in charge of quoting
for products, and has data relating to current prices and the following
discount rules:

4 This is also the strategy that is used in step logic [13].

R0 Quote(x, y) → ask(1, 2)PremiumCustomer(x)
R1 tell(2, 1)PremiumCustomer(x) →
PremiumCustomer(x)

R2 Quote(x, y), P remiumCustomer(x),
LuxuryProduct(y) → Discount(x, y, 7.5%)

Rule R0 states that if a quote is required for customer x, ask agent
2 whether x is a premium customer. R1 states that agent 1 should
believe agent 2 if agent 2 tells agent 1 that x is a premium customer,
and R2 states that premium customers get at 7.5% discount. Agent 2
is in charge of customer data, and has rules to determine who counts
as a premium customer:

R3 Spending(x,min5000, 2005) → PremiumCustomer(x)
R4 ask(1, 2)PremiumCustomer(x), P remiumCustomer(x) →

tell(2, 1)PremiumCustomer(x)

Suppose we are interested in quality of service guarantees of
the form: every request for a quote is answered within at most 4
timesteps. To simplify, we have reformulated this as a question of
whether agent 1 believes that a particular customer qualifies for a
discount in at most 4 steps, provided that the information on cus-
tomer spending and luxury products is immediately available. This
can be re-expressed as a problem of verifying the formula

Q �4B1Discount(Miller, Porsche, 7.5%)

(where �n stands for n nestings of �) in a state where agent 1 be-
lieves Quote(Miller, Porsche) and LuxuryProduct(Porsche),
and agent 2 believes Spending(Miller,min5000, 2005). This re-
formulation presupposes that no other queries are being processed by
agents 1 and 2.

It is straightforward to verify this property using existing model
checking techniques. As proof of concept, we converted the example
multi-agent system above into a system specification for the Mocha
model checker [6] and verified that the formula Q is true. The transla-
tion into reactive modules, the description language used by Mocha,
is straightforward: ground literals in the agent’s working memory
are represented as boolean state variables, rules are represented by
atoms (which describe the initial condition and transition relation for
a group of related variables), and agents by modules (collections of
atoms specifying which state variables are visible from outside the
module). The multi-agent system is then simply a parallel composi-
tion of agent modules (this translation assumes an ‘all rules at each
cycle’ rule application strategy, but ‘one instance at a time’ is also
possible). The translation of ML formula Q expressing the property
to be verified into the ATL specification language used by Mocha is
similarly straightforward.

This example is extremely simplified, and gives the response time
guarantee in terms of ‘inference steps’ rather than of units of time.
However, if we know the number of beliefs an agent has and the rule-
matching strategy it uses, we can produce a mapping from ‘steps’
to time durations, and verify quality of service guarantees such as
‘every request for a quote will be answered within n milliseconds’.

8 RELATED WORK

Our work relates both to the field of epistemic logics (and their use
in verifying properties of agents) and to work on verifying properties
of rule-based programs, such as bounded response time.

A considerable amount of work has been done in the area of
model-checking multi-agent systems (see, e.g., [9, 7]). However, the

emphasis of this work is on correctness rather than the timing prop-
erties of agents, which is our primary interest. An exception is our
recent joint work on automatic verification of space and time require-
ments for resource-bounded agents [3, 2]. However this work focuses
on verifying properties of a single agent and does not consider the
multi-agent case.

Another strand of related work is verifying temporal properties of
agent systems, in particular real-time properties, where actions are
assumed to take non-trivial time. In [22], Singh proposed a frame-
work for modelling agent systems where actions have duration and
can be executed in parallel. As far as we know, it was not applied to
actions as inferences. Recent work in dynamic and temporal epis-
temic logic [23] has a similar motivation to our work (modelling
knowledge change) but assumes that the agent’s knowledge is de-
ductively closed before and after the update. There are, however, ap-
proaches in epistemic logic which explicitly reflect time required for
a certain inference. For example, step logics [13] study development
of agents’ belief sets over discrete linear time. In [16] Grant, Kraus
and Perlis present a semi-decidable formalism for expressing agent
knowledge and inference steps with explicit time increments, which
is implemented in Prolog. Other related work [12, 1, 4] also describes
epistemic logics where each inference step takes the agent into the
next (or some future) moment in time.

There has also been considerable work on the execution properties
of rule based systems, both in AI and in the active database commu-
nity. Perhaps the most relevant is that of Chen and Cheng on predict-
ing the response time of OPS5-style production systems. In [10], they
show how to compute the response time of a rule based program in
terms of the maximum number of rule firings and the maximum num-
ber of basic comparisons made by the Rete network. In [11], Cheng
and Tsai describe a tool for detecting the worst-case response time
of an OPS5 program by generating inputs which are guaranteed to
force the system into worst-case behaviour, and timing the program
with those inputs.

9 CONCLUSION

We have presented a sound, complete and decidable logic which de-
scribes how the beliefs of communicating agents which reason using
rules evolve over time. This logic can be used to express and verify
temporal properties of multi-agent systems such as ‘if agent i asks
agent j λ, agent j is guaranteed to reply within n inference cycles’.
This is useful, for example, for verifying quality of service guaran-
tees, which may have the form of ‘each query is going to be answered
within n milliseconds’.

We are aware of a number of limitations of the work presented
here. We currently assume that the agent’s reasoning is monotonic
(they never discard beliefs, only acquire new ones). It is, however,
possible to expand our framework to incorporate rules which delete
information, either to restore consistency or due to memory limita-
tions and we plan to investigate this in future work. (An example of a
similar logic which models a reasoner who deletes formulas to save
memory can be found in [3].) Finally, the assumptions on commu-
nications are only made for the sake of simplicity; it is very easy to
modify the semantics to allow for communication delays and lossy
communication channels.

ACKNOWLEDGEMENTS

This work was partially supported by the Royal Society grant
‘Model-checking resource-bounded agents’.

REFERENCES
[1] T. Ågotnes and M. Walicki, ‘Strongly complete axiomatizations

of ”knowing at most” in standard syntactic assignments’, in Pre-
proceedings of the Sixth International Workshop on Computational
Logic in Multi-agent Systems (CLIMA VI), London, UK, (June 2005).

[2] A. Albore, N. Alechina, P. Bertoli, C. Ghidini, B. Logan, and L. Ser-
afini, ‘Model-checking memory requirements of resource-bounded rea-
soners’, in Proceedings of the Twenty-First National Conference on Ar-
tificial Intelligence (AAAI’06). AAAI Press, (2006). (to appear).

[3] N. Alechina, P. Bertoli, C. Ghidini, M. Jago, B. Logan, and L. Serafini,
‘Verifying space and time requirements for resource-bounded agents’,
Technical Report T05-10-03, ITC-irst, Trento, Italy, (2005).

[4] N. Alechina, B. Logan, and M. Whitsey, ‘A complete and decidable
logic for resource-bounded agents’, in Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS 2004), pp. 606–613, New York, (July 2004). ACM Press.

[5] N. Alechina, B. Logan, and M. Whitsey, ‘Modelling communicating
agents in timed reasoning logics’, in Proceedings of the Ninth European
Conference on Logics in Artificial Intelligence (JELIA 2004), LNAI
Vol. 3229, pp. 95–107, Lisbon, (September 2004). Springer.

[6] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani,
and S.Tasiran, ‘MOCHA: Modularity in model checking’, in Computer
Aided Verification, pp. 521–525, (1998).

[7] M. Benerecetti, F. Giunchiglia, and L. Serafini, ‘Model checking mul-
tiagent systems.’, J. Log. Comput., 8(3), 401–423, (1998).

[8] H. Boley, B. Grosof, and S. Tabet. RuleML tutorial, 2005.
http://www.ruleml.org/papers/tutorial-ruleml.html.

[9] R. Bordini, M. Fisher, W. Visser, and M. Wooldridge, ‘State-space re-
duction techniques in agent verification’, in Proceedings of the Third
International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-2004), pp. 896–903, New York, (2004). ACM Press.

[10] J.-R. Chen and A. M. K. Cheng, ‘Predicting the response time of OPS5-
style production systems’, in Proceedings of the 11th Conference on
Artificial Intelligence for Applications, p. 203. IEEE Computer Society,
(1995).

[11] A. M. K. Cheng and H. yen Tsai, ‘A graph-based approach for tim-
ing analysis and refinement of OPS5 knowledge-based systems’, IEEE
Transactions on Knowledge and Data Engineering, 16(2), 271–288,
(2004).

[12] H. N. Duc, ‘Reasoning about rational, but not logically omniscient,
agents’, Journal of Logic and Computation, 7(5), 633–648, (1997).

[13] J. Elgot-Drapkin, M. Miller, and D. Perlis, ‘Memory, reason and time:
the Step-Logic approach’, in Philosophy and AI: Essays at the Inter-
face, 79–103, MIT Press, Cambridge, Mass., (1991).

[14] E. Friedman-Hill, Jess in Action: Java Rule-Based Systems, Manning
Publications Co., 2003.

[15] M. P. Georgeff and A. L. Lansky, ‘Reactive reasoning and planning’, in
Proceedings of the Sixth National Conference on Artificial Intelligence,
AAAI-87, pp. 677–682, (1987).

[16] J. Grant, S. Kraus, and D. Perlis, ‘A logic for characterizing multiple
bounded agents’, Autonomous Agents and Multi-Agent Systems, 3(4),
351–387, (2000).

[17] I. Horrocks and P. F. Patel-Schneider, ‘A proposal for an OWL rules lan-
guage.’, in Proceedings of the 13th international conference on World
Wide Web, WWW 2004, pp. 723–731. ACM, (2004).

[18] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean. SWRL: A semantic web rule language, 2003.
http://www.daml.org/rules/proposal.

[19] Q. H. Mahmoud. Getting started with the Java rule engine API (JSP
94): Toward rule-based applications, 2005. http.

[20] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. P. Sycara, ‘The
DAML-S virtual machine.’, in International Semantic Web Conference,
LNCS Vol. 2870, pp. 290–305. Springer, (2003).

[21] M. Paolucci and K. Sycara, ‘Autonomous semantic web services’, IEEE
Internet Computing, 7(5), 34 – 41, (2003).

[22] M. P. Singh, ‘Toward a model theory of actions: How agents do it in
branching time’, Computational Intelligence, 14(3), 287–305, (1998).

[23] H.P. van Ditmarsch, W. van der Hoek, and B.P. Kooi, ‘Dynamic epis-
temic logic with assignment’, in Proceedings of the Fourth Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS 2005), pp. 141–148. ACM New York, (2005).

