Aachen Summer Simulation Seminar 2014

Lecture 03
Introduction to Conceptual Modelling

Peer-Olaf Siebers

pos@cs.nott.ac.uk
Motivation

• Define what a conceptual model is and how to communicate such a model
• Demonstrate how to develop a conceptual model
Introduction

- Importance of conceptual modelling (or model design)
 - The modeller along with the clients determines the appropriate scope and level of detail to model, a process known as conceptual modelling
 - Model design impacts all aspects of the study
 - A high proportion of the benefits of a simulation study is obtained just from the development of the conceptual model
 - For the development of the conceptual model we often seek answers to questions that have not previously been ask
 - Effective conceptual modelling may even lead to the identification of a suitable solution without the need for any further simulation work
Introduction

• What about the following argument:
 – The emergence of modern simulation software has reduced or even removed the need for conceptual modelling?
 • The modeller can move straight from developing an understanding of the real world problem to creating a computer model
 • The software allows rapid model development and prototyping but it does not reduce the level of decision making about the model design

• What about the following argument:
 – Power and memory of modern hardware and the potential of distributed software has increased the need for conceptual modelling?
 • Increase in complexity of simulation models; modellers build more complex models because software/hardware allows them to do so
 • Models are being developed that are far more complex than they need to be; careful model design is increasing in importance
What is a conceptual model?

• Definition (Robinson 2008a):
 – The conceptual model is a *non-software specific description* of the computer simulation model (that will be, is or has been developed), describing the objectives, inputs, outputs, content, assumptions and simplifications of the model.

• Conceptual modelling is more an art than a science; therefore it is difficult to define methods and procedures
What is a conceptual model?

• Key components of a conceptual model:
 – **Objectives:** The purpose of the model
 – **Inputs:** Elements of the model that can be altered
 – **Outputs:** Measures to report the results from the simulation runs
 – **Content:** Components represented in the model and their interconnections
 – **Assumptions:** Uncertainties and believes about the real world to be incorporated into the model
 – **Simplifications:** Reduction of the complexity of the model
What is a conceptual model?

• Basic conceptual model for booking clerk @ theatre:
 – **Objectives:** Serve 95% of customers in less than 10 minutes
 – **Inputs:** Arrival rates, service rates, number of clerks
 – **Outputs:** % of customers queuing for less than 10 minutes; histogram of waiting time for each customer in the queue; clerk utilisation
 – **Content:** Personal enquirers; phone callers; inter arrival time distribution; service time distribution; queuing priority
 – **Assumption:** Unlimited queues (we do not know space availability)
 – **Simplifications:** Queuing discipline (no jockeying, balking, leaving)

• Remember:
 – Assumptions are a facet of limited knowledge or presumptions
 – Simplifications are a facet of the desire to create simple models
What is a conceptual model?

Oval symbols: Phases
Dashed arrows: Processes
Solid arrows: Credibility assessment stages
What is a conceptual model?

• Requirements of a conceptual model:
 – Validity
 – Credibility
 – Utility
 – Feasibility

• What do these terms mean?
What is a conceptual model?

• Requirements of a conceptual model (Robinson 2004):
 – **Validity**: A perception, on behalf of the modeller, that the conceptual model will lead to a simulation model that is sufficiently accurate for the purpose at hand
 – **Credibility**: A perception, on behalf of the clients, that the conceptual model will lead to a simulation model that is sufficiently accurate for the purpose at hand
 – **Utility**: A perception, on behalf of modeller and clients, that the conceptual model will lead to a simulation model that is useful as an aid to decision making within the specified context
 – **Feasibility**: A perception, on behalf of modeller and clients, that the conceptual model will lead to a simulation model
Model complexity and accuracy

• Aim: Keep the model as simple as possible to meet the objectives of the simulation study

• Advantages of simpler models:
 – They can be developed faster
 – They are more flexible
 – They require less data
 – They run faster
 – Results are easier to be interpreted
Model complexity and accuracy

- 80/20 Rule
 - 80 percent of accuracy is gained from only 20% of complexity; beyond this there is diminishing returns from increasing levels of complexity
 - Increasing the complexity (scope and level of detail) too far might even lead to a less accurate model since the data and information are not available to support the detail being modelled
Model complexity and accuracy

• **80/20 Rule**
 – 80 percent of accuracy is gained from only 20% of complexity; beyond this there is diminishing returns from increasing levels of complexity
 – Increasing the complexity (scope and level of detail) too far might even lead to a less accurate model since the data and information are not available to support the detail being modelled

• **It is important to consider both, constructive simplicity and transparency.**
 – Constructive simplicity: Attribute of the model
 – Transparency: Attribute of the client
Methods of model simplification

• Simplification entails reducing the scope and the level of detail in a conceptual model
 – Scope reduction: Removing components and interconnections that have little effect on model accuracy
 – Detail reduction: Representing more simple components and interconnections while maintaining a satisfactory level of model accuracy

• Remember:
 – Most effective approach to simplification is to start with the simplest model possible and gradually add to its scope and level of detail; once a point is reached in which the study objectives can be addressed, then no further details should be added
Methods of model simplification

• Methods (*scope or level of detail reduction?*)
 – Aggregation of model components
 • Black box modelling
 • Grouping entities
 – Excluding components and details
 – Replacing components with random variables
 – Excluding infrequent events
 – Reducing the rule set
 – Splitting models

ASSS 2014
Methods of model simplification

• Methods
 – Aggregation of model components [detail reduction]
 • Black box modelling
 • Grouping entities
 – Excluding components and details [scope reduction]
 – Replacing components with random variables [detail reduction]
 – Excluding infrequent events [scope reduction]
 – Reducing the rule set [detail reduction]
 – Splitting models [advantage: individual models run faster]

• Remember: Over-simplification can make a model less transparent and thereby reducing its credibility
Communicating the conceptual model

• Representing the conceptual model (examples):
 – System Dynamics (SD)
 • Causal loop diagrams; stock and flow diagrams
 – Discrete Event Simulation (DES)
 • Component list; process flow diagram; logic flow diagram; activity cycle diagram; combining Petri net and UML static structure diagrams (Pels and Goossenaerts 2007); class diagram to support OO DES
 – Agent Based Simulation (ABS)
 • UML + AgentUML (class, component, sequence, deployment, state chart, use cases, and activity diagrams) (Bommel and Müller 2008); coloured Petri nets (Jensen et al 2007)
Communicating the conceptual model

• Representing the conceptual model (examples):
 – System Dynamics (SD)
 • Causal loop diagrams; *stock and flow diagrams*
 – Discrete Event Simulation (DES)
 • Component list; *process flow diagram*; logic flow diagram; activity cycle diagram; combining Petri net and UML static structure diagrams (Pels and Goossenaerts 2007); *class diagram* to support OO DES
 – Agent Based Simulation (ABS)
 • UML + AgentUML (*class*, component, sequence, deployment, *state chart*, use cases, and activity *diagrams*) (Bommel and Müller 2008); coloured Petri nets (Jensen et al 2007)
Communicating the conceptual model

• DES Example: M/M/1/n Queue
 – A single server system with ...
 • A queue capacity of n
 • An infinite calling population
 • Poisson (random) arrival process (inter-arrival times are exponentially distributed) and service times are also exponentially distributed
Communicating the conceptual model

• DES Example: M/M/1/n Queue
 – A single server system with ...
 • A queue capacity of n
 • An infinite calling population
 • Poisson (random) arrival process (inter-arrival times are exponentially distributed) and service times are also exponentially distributed

<table>
<thead>
<tr>
<th>Component</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Inter-arrival time (exponentially distributed)</td>
</tr>
<tr>
<td>Queue</td>
<td>Capacity</td>
</tr>
<tr>
<td>Service</td>
<td>Service time (exponentially distributed)</td>
</tr>
</tbody>
</table>
Communicating the conceptual model

• DES Example: M/M/1/n Queue

Process flow diagram

Activity cycle diagram

Logic flow diagram
How to develop a conceptual model

• Framework for conceptual modelling
 – Four key elements
 1. Develop an understanding of the problem situation
 2. Determine the modelling objectives
 3. Design the conceptual model: Inputs and outputs
 4. Design the conceptual model: The model content

• Remember that conceptual modelling is an iterative process!

• For more examples see Robinson (2004) Appendix 1+2
 – Online version available from the library catalogue
How to develop a conceptual model

1. Develop an understanding of the problem situation
 – Clients might not have a good understanding of the cause and effect relationships within the problem situation
 – Clients have different world view
 – While learning from clients the modeller needs to play an active role
 – Modeller needs to confirm his/her understanding by providing a description of the problem situation for the client

• Problem situation and understanding of it will both be changing during the simulation study
How to develop a conceptual model

• Case Study: Fast-Food Restaurant (Robinson, 2004):
 – A fast-food restaurant is experiencing problems with one of its branches in its network. Customers regularly complain about the length of time they have to queue at the service counters.
 – It is apparent that this is not the result of shortages in food, but a shortage of service personnel.
How to develop a conceptual model

2. Determining the modelling objectives
 – Modelling objectives determine the nature of the model
 – Modelling objectives determine level of abstraction and simplification
 – Modelling objectives are a reference point for model validation
 – Modelling objectives guide for experimentation

• The purpose of the modelling study is not the development of the model itself but to develop a tool to aid decision making

• Bad practice: Developing models that do not serve any useful purpose, e.g. models that are looking for a problem to solve
How to develop a conceptual model

2. Determining the modelling objectives (cont.)
 – Forming the objectives:
 • By the end of the study what do we hope to achieve?
 – What does the client want to achieve?
 – What level of performance is required?
 – What constraints must the client (modeller) work within?
 • Modeller should be willing to suggest additional objectives and to redefine or eliminate objectives suggested by the clients
 • It is important that the clients understands what a simulation model can and cannot do for them; managing the expectations of the client
How to develop a conceptual model

• Case Study: Fast-Food Restaurant
 – What does the client want to achieve?
 – What level of performance is required?
 – What constraints must the client (modeller) work within?

• Objective:
 – The number of service staff required during each period of the day to ensure that 95% of customers queue for less than 3 minutes for service.

• Constraint:
 – Due to space constraints, a maximum of six service staff can be employed at any one time.
How to develop a conceptual model

3. Design the conceptual model: Inputs and outputs
 – Experimental factors (inputs):
 • Often, they are the means by which it is proposed that the modelling objectives are to be achieved
 • They can be either qualitative or quantitative
 • They are often under control of the clients; however, also factors that are not under control of the client should be considered as this improves the understanding of the real system

 • Remember: If possible, the range over which experimental factors are to be varied as well as the method of data entry should be defined
How to develop a conceptual model

3. Design the conceptual model: Inputs and outputs (cont.)

 – Responses (outputs):

 • Measures used to identify whether the objectives have been achieved
 • Measures used to identify reasons for failure to meet objectives (e.g. bottlenecks)

 • During the course of the simulation study review the experimental factors and responses when objectives are changing!
How to develop a conceptual model

• Case Study: Fast-Food Restaurant
 – Objective:
 • The number of service staff required during each period of the day to ensure that 95% of customers queue for less than 3 minutes for service.
 – Constraint:
 • Due to space constraints, a maximum of six service staff can be employed at any one time.
 – Experimental factors?
 – Responses?
How to develop a conceptual model

• Case Study: Fast-Food Restaurant
 – Objective:
 • The number of service staff required during each period of the day to ensure that 95% of customers queue for less than 3 minutes for service.
 – Constraint:
 • Due to space constraints, a maximum of six service staff can be employed at any one time.
 – Experimental factors:
 • Staff roster
 – Responses:
 • % of customers queuing for less than 3 minutes
 • Histogram of waiting time for each customer in the queue
 • Time series of mean queue size by hour
 • Staff utilisation
How to develop a conceptual model

4. Design the conceptual model: The model content
 - Model must be able to accept the experimental factors and to provide the required responses
 - Scope of the model must be sufficient to provide link between the experimental factors and responses
 - Scope of the model must also include any other processes that have a significant impact on the response
 - Level of detail must be such that it represents the components defined within the scope and their interconnections with sufficient accuracy
How to develop a conceptual model

4. Design the conceptual model: The model content (cont.)
 – Use rapid prototyping throw away models to decide about scope and level of detail

• Keep a record of all assumptions that are made during the design of the model content!!!
Methods of model simplification

- Case Study: Fast-Food Restaurant

<table>
<thead>
<tr>
<th>Model Scope</th>
<th>Detail</th>
<th>Decision</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff</td>
<td>Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queue at service counter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitchen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Level of Detail</th>
<th>Detail</th>
<th>Decision</th>
<th>Comments (Details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Inter-arrival time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size of order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service staff</td>
<td>Service time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staff rosters</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absenteeism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queues</td>
<td>Queuing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Queue behaviour</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>- jockey, balk, leave</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- join shortest queue</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methods of model simplification

• Case Study: Fast-Food Restaurant

<table>
<thead>
<tr>
<th>Model Scope</th>
<th>Detail</th>
<th>Decision</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Include</td>
<td></td>
<td>Flow through service process</td>
</tr>
<tr>
<td>Staff</td>
<td>Service</td>
<td>Include</td>
<td>Required for response</td>
</tr>
<tr>
<td></td>
<td>Food preparation</td>
<td>Exclude</td>
<td>Material shortage not significant</td>
</tr>
<tr>
<td></td>
<td>Cleaning</td>
<td>Exclude</td>
<td>Not related to speed of service</td>
</tr>
<tr>
<td>Queue at service counter</td>
<td>Include</td>
<td></td>
<td>Required for response</td>
</tr>
<tr>
<td>Tables</td>
<td>Exclude</td>
<td></td>
<td>Not related to customers waiting</td>
</tr>
<tr>
<td>Kitchen</td>
<td>Exclude</td>
<td></td>
<td>Material shortage not significant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Level of Detail</th>
<th>Detail</th>
<th>Decision</th>
<th>Comments (Details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Inter-arrival time</td>
<td>Include</td>
<td>Distribution</td>
</tr>
<tr>
<td></td>
<td>Size of order</td>
<td>Exclude</td>
<td>Represented in service time</td>
</tr>
<tr>
<td>Service staff</td>
<td>Service time</td>
<td>Include</td>
<td>Distribution</td>
</tr>
<tr>
<td></td>
<td>Staff rosters</td>
<td>Include</td>
<td>Experimental factor</td>
</tr>
<tr>
<td></td>
<td>Absenteeism</td>
<td>Exclude</td>
<td>Could be represented in staff rosters</td>
</tr>
<tr>
<td>Queues</td>
<td>Queuing</td>
<td>Include</td>
<td>Required for responses</td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td>Exclude</td>
<td>Assumption: unlimited</td>
</tr>
<tr>
<td></td>
<td>Queue behaviour</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>- jockey, balk, leave</td>
<td>Exclude</td>
<td>Not well understood</td>
</tr>
<tr>
<td></td>
<td>- join shortest queue</td>
<td>Include</td>
<td>Well understood</td>
</tr>
</tbody>
</table>
Graphical Representation
The role of data in conceptual modelling

• Data for model realisation are not required for conceptual modelling, but are identified by the conceptual model

• Sometimes it is difficult or even impossible to obtain adequate data making the proposed conceptual model problematic!

• What can you do in these cases?
 – Redesign the conceptual model and leave out the troublesome data
 – Estimate the data
 – Treat data as an experimental factor rather than a fixed parameter
Summary

• What did you learn?
Further Reading

- Robinson (2008a; 2008b)
- Bommel and Müller (2008)
- Robinson et al. (2010)

Acknowledgement

- The content of this presentation is a summary of Robinson (2004) chapter 5 and 6
Questions / Comments
References

