Aachen Summer Simulation Seminar 2014

Practice 02
Java Basics + First Model

Peer-Olaf Siebers

pos@cs.nott.ac.uk
Seminar Organisation
Seminar Organisation

• Day 1: Introduction to Modelling and Simulation
 1. Lec01: Introduction to Modelling and Simulation
 2. Lec02: Foundations of Simulation Modelling
 3. Lec03: Conceptual Modelling
 4. Practice01: AnyLogic Introduction (in pairs)

• Day 2: Application of Modelling and Simulation Methods
 5. Practice02: Java Basics + First Model (in pairs)
 6. Lec04: SDS Modelling
 7. GroupActivity01: Conceptual Modelling (in small groups)
 8. Lec05: DES Modelling
 9. Practice03: SDS or DES Tutorials (in pairs)
Seminar Organisation

• Day 3: Application of Modelling and Simulation Methods
 10. GroupActivity02: Focus Group (in small groups)
 11. Lec06: ABS Modelling + Hybrids
 13. Practice05: Exploring the AnyLogic Model Library (optional)

• Day 4: Knowledge Gathering
 15. Lec07: Input Modelling / Experimentation / Output Analysis
 16. GroupActivity03: Discussion of your own project ideas (whole group)
 17. Lec08: Model Verification and Validation
 Feedback
Java Basics + First Model
Motivation

- Provide the minimum Java knowledge required for AnyLogic
- Design and implement a first model in AnyLogic
Java Basics for AnyLogic

- AnyLogic Help
Java Basics for AnyLogic

• Book Chapter: [url]
Java Basics for AnyLogic

• General remarks
 – You do not have to learn full OO programming
 • You need to understand Java data types, expression, and statement syntax

 – Please note:
 • Java is case-sensitive: MyVar is different to myVar!
 • Spaces are not allowed in names: "My Var" is an illegal name!
 • Each statement has to be finished with ";": MyVar=150;
 • Each function has to have parenthesis: time(), add(a)
 • Mind integer division: 3/2=1, not 1.5
 • Boolean values are only true and false, you cannot use 1 and 0
 • Dot "." brings you "inside" the object: agent.event.restart()
 • Array elements have indexes from 0 to n-1
Java Basics for AnyLogic

• **Primitive Types**
 – double: Represents real numbers: 1.43, 3.6E18, -14.0
 – int: Represents integer numbers: 12, 16384, -5000
 – boolean: Represents Boolean (true/false) values

• **Compound Types – Classes**
 – String: Represents textual strings, e.g. "MSFT", "Hi there!", etc.
 – ArrayList; LinkedList: Represents collections of objects
 – HyperArray: Represents multi-dimensional array
 – ...many others. See AnyLogic and Java Class References
Java Basics for AnyLogic

• Arithmetic operations
 – Notation: +; −; *; /; % (remainder)
 – In integer divisions, the fraction part is lost, e.g. 3/2=1, and 2/3=0
 – Multiplication operators have priority over addition operators
 – The "+" operator allows operands of type String

• Comparison operations
 – Notation: >; >=; <; <=; ==; !=

• Boolean operations
 – Notation: && (AND); || (OR); ! (NOT)
Java Basics for AnyLogic

• Conditional operator
 – Notation: condition ? value-if-true : value-if-false

• Assignments and shortcuts
 – Notation: =; +=; -=; *=; /=; %=; ++; -- (a+=b is the same as a=a+b)

• Please note:
 – Within most of operators, left-to-right precedence holds
 – Parentheses may be used to alter the precedence of operations
Java Basics for AnyLogic

• Method call
 – To call a method, type its name followed by parenthesis; if necessary, put parameters separated by commas within the parenthesis
 • Examples:
 – x=time(); moveTo(getX(),getY()+100); traceln("Population is increasing");

• Accessing object fields and methods
 – To access a field or method of a model element (statechart, timer, animation), use the model element name followed by dot "." followed by the field/method name
 • Examples:
 – statechart.fireEvent("go"); sum=sum+agents.get(i).x;
Java Basics for AnyLogic

• Replicated objects are stored in a collection
 – Items are indexed from 0 to n-1
 – Getting the current size of the collection:
 • people.size()
 – Obtaining i-th item of the collection:
 • people.get(i)
 – Adding a new object to the collection:
 • add_people();
 – Removing an object from the collection:
 • remove_people(person);
Java Basics for AnyLogic

• Built-in Functions
 – System functions
 • time(); getOwner(); pause(); isStateActive(...); etc.
 – Mathematical functions
 • Basic: sqrt; sin; cos; tan; exp; log; round; zidz; xidz; etc.
 • Array: add; sub; mul; sum; avg; min; max; get; etc.
 – Special functions
 • Random numbers: uniform; exponential; bernoulli; beta; etc.
 • Time related: delay; etc.
 – And more...
 • See AnyLogic Class Reference
Java Basics for AnyLogic

• Probability Distributions
 – **Uniform**: Used to represent a random variable with constant likelihood of being in any small interval between min and max. Its density does not depend on the value of x.
 – **Exponential**: Used to represent the time between random occurrences. The unique property is history independence, i.e. it has the same set of probabilities when shifted in time.
 – **Triangular**: Used when no or little data is available to represent e.g. a process duration.
Simulation Modelling Paradigms

Process oriented
- SD (OR/MS + Business)
 - Theory driven

Object oriented
- DES (OR/MS)
 - Data driven

- ABM/S (Business + Social Science + Economics)
 - Theory driven

- ABM/S (Social Science)
 - Data driven

Data driven: Data for model formulation (in Social Sciences can be quantitative and qualitative); data for model validation
Theory driven: Theories for model formulation; data for model validation
Object Oriented DES

• Laptop model: Considering different power states
Object Oriented DES

• Required modelling elements for the laptop example
Object Oriented DES

• Modelling task
 – When the laptop is on and the user is working on it then the laptop stays in "On" mode. After 5 minutes of user inactivity the laptop switches to "Screen Off" mode to save energy. If the user remains inactive for another 10 minutes the laptop switches to "Hibernate" mode to further minimise the battery usage. To wake up the laptop from "Hibernate" mode you need to press the "Power" button.
 – In any of the three states "On", "Screen Off" and "Hibernate" the laptop consumes battery power. When the battery level falls down to 10% the laptop is forced to shut down regardless of the state.

Do not look at the next slide!
Object Oriented DES

- Design a conceptual model
Object Oriented DES

• Work in pairs:
 – Follow the tutorial provided
Questions