Aachen Summer Simulation Seminar 2014

Lecture 05 Simulation Methods: Discrete Event Simulation

Peer-Olaf Siebers

pos@cs.nott.ac.uk

Motivation

- Introduce Discrete Event Modelling (DEM)
- Introduce the Discrete Event Simulation (DES) execution cycle
- Show how DES can be applied in real world projects

Simulation Paradigms: Update

Data Driven: Data for model formulation (in Social Sciences can be quantitative and qualitative); data for model validation Theory Driven: Theories for model formulation; data for model validation

• Coffee Shop Discrete Event Simulation Demo (Witness)

- Terminology:
 - Objects of the system
 - Entities: Individual system elements whose behaviour is explicitly tracked; organised in classes and sets; distinguishable by attributes
 - **Classes:** Permanent groups of identical or similar entities (e.g. bus passengers)
 - Sets: Temporary groups of identical or similar entities (e.g. passengers on a particular bus, passengers waiting in a queue)
 - Attributes: Items of information to distinguish between members of a class (e.g. index) or to control the behaviour of an entity (e.g. entity type)
 - Resources: Individual system elements but not modelled individually; treated as countable items (e.g. number of passengers waiting at a bus stop)

- Terminology (cont.)
 - Operations of entities
 - Over time entities co-operate and hence change state
 - **Event:** Instance of time in which a significant state change occurs
 - Activity: Operations which are initiated at an event, transforming the state of the entities
 - Entity states:
 - Active state: Involves the co-operation of different classes of entities; duration can be determined in advance, usually by taking a sample from an appropriate probability distribution if the simulation is stochastic
 - Dead state: No co-operation, entity waits for something to happen; duration cannot be determined in advance

UNITED KINGDOM · CHINA · MALAYSIA

The University of Nottinaham

6

- Hands-On Example:
 - The plot (Pidd, 1998)
 - A theatre booking clerk is employed to sell tickets and answer enquiries. Enquiries can come from someone at the box office or someone phoning the theatre.
 - The clerk is instructed to give priority to the personal customers. Customer and phone calls queue on a FIFO basis. Phone callers never hang up!

- Classes:

- Personal customers
- Phone customers

- Hands-On Example:
 - Sets:
 - Personal customers queuing
 - Phone customers queuing
 - Attributes:
 - Type of customer
 - Resources:
 - Booking clerk

Discrete Event Simulation (DES)

- Three-Phase Approach
 - In this simulation approach events are classified into two types
 - B (bound or booked) Events: State changes that are scheduled to occur at a point in time. In general B events relate to arrivals or the completion of an activity.
 - C (conditional) Events: State changes that are dependent on the conditions in the model. In general C events relate to the start of some activity

- Three-Phase Approach
 - Booking Clerk Bs and Cs
 - B1: Arrive ... B2: EndOfService ... B3: Call ... B4: EndOfTalk
 - C1: BeginService ... C2: BeginTalk

- **a:** Find out when the next event is due, move simulation clock to that time, put all entities due to engage in a B at that time into the *DueNow* list
- β: Execute activities of entities in the *DueNow* list
- Y: Executive must attempt each C in turn by checking if the condition in the test heads are satisfied

- Required information about each entity
 - Time cell: Time when entity is next due to change state, if this is known; only meaningful if entity is committed to some B in the future
 - Availability: Boolean field showing whether the entity is committed to some B in the future; if TRUE entity is uncommitted and its time cell is meaningless; if FALSE time cell indicates when entity will next change state
 - Next activity: only meaningful if the availability is FALSE and it indicates the B in which the entity is due to engage at the time shown by the time cell
- Reminder
 - B1: Arrive ... B2: EndOfService ... B3: Call ... B4: EndOfTalk;
 - C1: BeginService ... C2: BeginTalk

- Three-Phase Approach
 - Initialisation: Clerk is idle; first personal enquirer due to arrive at time 4 and first phone call due to arrive at time 6; time is 0; all queues are empty; no personal enquirers or phone calls have arrived
 - **Random number stream:** 4,6,5,5,3,3,6,4,8

End of Init.: Clock=0; Queue=0; Wait=0; PersIn=0; PhoneIn=0; DueNow=/			
Entity	Time cell	Availability	Next Activity
(1) Personal enquirer arrival machine	4	FALSE	Personal Arrival
(2) Phone call arrival machine	6	FALSE	Phone Call
(3) Clerk	0	TRUE	

- Three-Phase Approach
 - First α-Phase: Find out when the next event is due, move simulation clock to that time, put all entities due to engage in a B at that time into the *DueNow* list (at t=4 entity 1 is due to arrive)
 - Random number stream: 4,6,5,5,3,3,6,4,8

End of α: Clock=4; Queue=0; Wait=0; PersIn=0; PhoneIn=0; DueNow=1			
Entity	Time cell	Availability	Next Activity
(1) Personal enquirer arrival machine	4	FALSE	Personal Arrival
(2) Phone call arrival machine	6	FALSE	Phone Call
(3) Clerk	0	TRUE	

- Three-Phase Approach
 - First β-Phase: Execute activities of entities in the *DueNow* list; remember that the service does not start in the β-Phase (brings first persEnq into the system and schedules next persEnq (to arrive 5 min later); entity is put in queue and counter for persEnq is increased)
 - **Random number stream:** 4,6,5,5,3,3,6,4,8

End of β: Clock=4; Queue=1; Wait=0; PersIn=1; PhoneIn=0; DueNow=/			
Entity	Time cell	Availability	Next Activity
(1) Personal enquirer arrival machine	9	FALSE	Personal Arrival
(2) Phone call arrival machine	6	FALSE	Phone Call
(3) Clerk	0	TRUE	

- Three-Phase Approach
 - First γ-Phase: Executive must attempt each C in turn by checking if the condition in the test heads are satisfied (beginServ requires persEnq in queue and clerk to be idle; fulfilled; service takes 5 min)
 - **Random number stream:** 4,6,5,5,3,3,6,4,8

End of γ: Clock=4; Queue=0; Wait=0; PersIn=1; PhoneIn=0; DueNow=/			
Entity	Time cell	Availability	Next Activity
(1) Personal enquirer arrival machine	9	FALSE	Personal Arrival
(2) Phone call arrival machine	6	FALSE	Phone Call
(3) Clerk	9	FALSE	EndService

- Three-Phase Approach
 - Second α-Phase: Find out when the next event is due, move simulation clock to that time, put all entities due to engage in a B at that time into the *DueNow* list
 - **Random number stream:** 4,6,5,5,3,3,6,4,8

End of α: Clock=6; Queue=0; Wait=0; PersIn=1; PhoneIn=0; DueNow=2			
Entity	Time cell	Availability	Next Activity
(1) Personal enquirer arrival machine	9	FALSE	Personal Arrival
(2) Phone call arrival machine	6	FALSE	Phone Call
(3) Clerk	9	FALSE	EndService

- Three-Phase Approach
 - Second β-Phase: Execute activities of entities in the *DueNow* list; remember that the service does not start in the β-Phase
 - Random number stream: 4,6,5,5,3,3,6,4,8

End of β: Clock=6; Queue=0; Wait=1; PersIn=1; PhoneIn=1; DueNow=/			
Entity	Time cell	Availability	Next Activity
(1) Personal enquirer arrival machine	9	FALSE	Personal Arrival
(2) Phone call arrival machine	9	FALSE	Phone Call
(3) Clerk	9	FALSE	EndService

- Three-Phase Approach
 - Second γ-Phase: Executive must attempt each C in turn by checking if the condition in the test heads are satisfied
 - **Random number stream:** 4,6,5,5,3,**3,6,4,8**

End of γ: Clock=6; Queue=0; Wait=1; PersIn=1; PhoneIn=1; DueNow=/			
Entity	Time cell	Availability	Next Activity
(1) Personal enquirer arrival machine	9	FALSE	Personal Arrival
(2) Phone call arrival machine	9	FALSE	Phone Call
(3) Clerk	9	FALSE	EndService

- Three-Phase Approach
 - Third Round?

• Three-Phase Approach

End of α3: Clock=9; Queue= ; Wait= ; PersIn= ; PhoneIn= ; DueNow=1,2,3			
Entity	Time cell	Availability	Next Activity
(1) Personal enquirer arrival machine			Personal Arrival
(2) Phone call arrival machine			Phone Call
(3) Clerk			EndService
End of β3: Clock= ; Queue=1; Waite	=2; PersIn=	2; Phoneln=2	; DueNow=/
Entity	Time cell	Availability	Next Activity
(1) Personal enquirer arrival machine	12		Personal Arrival
(2) Phone call arrival machine	15		Phone Call
(3) Clerk	9	TRUE	-
End of γ3: Clock= ; Queue=0; Wait=2; PersIn=2; PhoneIn=2; DueNow=/			
Entity	Time cell	Availability	Next Activity
(1) Personal enquirer arrival machine			Personal Arrival
(2) Phone call arrival machine			Phone Call
(3) Clerk	13	FALSE	EndService

• Simulation Output (single run)

Case Study (my PhD)

• The Impact of Human Performance Variation on the Accuracy of Manufacturing Systems Simulation Models (Siebers 2004)

• Manufacturing System Design Process

- Statement:
 - Discrete Event Simulation (DES) is now a standard tool used for the design of manufacturing systems within the automotive industry
- Common Observations:
 - A gap exists between the performance prediction of a system model and the performance of the real system
 - Magnitude of the gap is bigger when simulating non existing systems
 - Magnitude of the gap is bigger when simulating manual lines
 - A standard way of taking workers into account is to model them as deterministic resources

- Research Aim:
 - To demonstrate the importance of incorporating Human Performance
 Variation (HPV) models into manufacturing system simulation models

Research Method:

- Examine of the level of randomness inherent in HPV for different tasks
- Design of representative HPV models
- Sensitivity analysis to identify the impact that HPV has on the accuracy of manufacturing systems DES models
- Literature review for more advanced methods of representing the human element within simulation models

Step 1: Examining the level of randomness ullet

Step 2: Data analysis •

• Step 3: Designing HPV models

activity time [s]

• Step 4: Conducting sensitivity analysis

Nottingham

32

- Key Findings about HPV:
 - Differences in activity times when workers repeat a task, between different workers, and between different work crews
 - Form of activity time distributions depends on the nature of the task
 - Variation of break start and duration does not depend on the length
- Key Findings from Sensitivity Analysis:
 - Representation of HPV can have a significant effect on the behaviour of manufacturing system simulation models
 - The magnitude of impact depends on the type of variation to be represented as well as on the system to be modelled

- Main limitation of current HPV modelling approach:
 - Independent representation of sources of randomness
- Possible solution:
 - Using Computational Organisation Theory as a methodological approach and multi-agent based simulation as a technique
- Issues:
 - Complexity of the task
 - Concept of pro-activeness

Summary

• What did you learn?

Questions / Comments

References

- Pidd M (1998). Computer Simulation in Management Science.
- Robinson S (2004). Simulation: The Practice of Model Development and Use.
- Siebers PO (2004). The Impact of Human Performance Variation on the Accuracy of Manufacturing System Simulation Models. PhD Thesis. Cranfield University, Cranfield, UK.

