
Modern 6= BetterRoland BakhouseNovember 28, 2003
1 Testing Programming TextsOver the last twenty years there has been a massive inrease in the number of so-alled\omputer siene" degrees, the number of aademi sta� in \Computer Siene" de-partments, and the number of \omputer siene" graduates. The result has not beenan improvement in standards. Quite the opposite; the sienti� priniples on whihomputing is based are being inreasingly ignored. Nowhere is this more evident thanin the teahing of elementary programming.There is a small number of basi programming priniples with whih all programmersshould be onversant. These are sequential deomposition, ase analysis, and the use ofinvariants and bound funtions in the design of loops.Binary searh is an elementary programming problem that illustrates all three prin-iples. A �rst test of any text on elementary programming is whether or not its authorsare able to implement binary searh orretly. Sadly, this is not always the ase. A or-ret implementation of binary searh involves the design of just �ve omponents, eaha simple assignment or test. Some authors sueed in getting the orret implementa-tion, either beause they have opied it from elsewhere, or by hane. A dereasinglysmall number demonstrate how to onstrut the omponents. And some authors atuallymanage to get suh an elementary program wrong!This note reords the errors made in two reent textbooks on programming. Themessage is lear. So-alled \modern" programming texts are not an improvement onolder texts.
2 Tymann and SchneiderThe following is taken from \Modern Software Development Using Java" by Paul T.Tymann and G. Mihael Shneider. The book is published by Thomson, with publiationdate 2004. (In fat, the date of publiation is 2003. Every e�ort has been made toreprodue the program exatly, inluding the English errors in the omments.)1

/**

* Search the given array for the given integer using a binary

* search. This method assumes that the elements in the array

* are in sorted order. If the element is found, the method

* returns the position of the element, otherwise it returns -1.

*

* @param array The array of integers to search

* @param target The integer to search for

*

* @return target’s position if found, -1 otherwise

*/

public static int search(int array[], int target) {

int start = 0; // The start of the search region

int end = array.length; // The end of the search region

int position = -1; // Position of the target

// While there is still something list left to search and the element

// has not been found

while (start <= end && position == -1) {

int middle = (start + end) / 2 ; // Location of the middle

// Determine whether the target is smaller than, greater than,

// or equal to the middle element

if (target < array[middle]) {

// Target is smaller; must be in left half

end = middle - 1;

} else if (target > array[middle]) {

// Target is larger; must be in right half

start = middle + 1;

} else {

// Found it!!

position = middle;

}

}

// Return location of target

return position;

} 2

This implementation fails with an array-bound error if the length of the array is 1,and the value of target is greater than the single array element (for example, if the arrayelement is 0 and the target is 1). We leave the reader to hek.
3 Winder and RobertsThe following is an implementation of binary searh taken from Winder and Roberts,\Developing Java Software", a seond edition of whih was published in 2002 by John-Wiley and Sons.
/**

* The statically accessible sort operation

*

* @param v the sorted array of <code>Object</code>s to be

* searched.

*

* @param o the object to be searched for.

*

* @param c the <code>Comparator</code> used to compare the

* <code>Object</code> during the search process. Must either be

* "less than" or "greater than" and the same comparator that

* defines the order on the array.

*

* @return index of the item or -1 if it is not there.

*/

public static int execute(final Object[] v,

final Object o,

final Comparator c)

{

int hi = v.length ;

int lo = 0 ;

while (true)

{

int centre = (hi + lo) / 2 ;

if (centre == lo)

{

//

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit3

// point of the infinite loop.

//

return (v[centre].equals(o)

? centre

: (v[centre+1].equals(o)

? centre+1

: -1)) ;

}

if (c.relation(v[centre], o))

{

lo = centre ;

}

else if (c.relation(o, v[centre]))

{

hi = centre ;

}

else

{

return centre ;

}

}

} The ode in this ase is muh more ompliated. The following is a simpli�ed im-plementation. No essential hanges have been made to the program. Changes made are:
(... ? ... : ...) onstrut replaed by an if statement, and the generi Comparatormethods instantiated to omparisons of integer values.

4

{

int hi = v.length ;

int lo = 0 ;

while (true)

{

int centre = (hi + lo) / 2 ;

if (centre == lo)

{

//

// Only two items left to test so it is either centre

// or centre+1 or it is not in. This is an exit

// point of the infinite loop.

//

if (v[centre] == o)

{ return centre; }

else if (v[centre+1] == o)

{ return centre+1; }

else

{ return -1; }

}

if (v[centre] < o)

{ lo = centre ; }

else if (o < v[centre])

{ hi = centre ; }

else

{ return centre ; }

}

} This implementation fails if the array v has length two, v[0] is 10, v[1] is 20. Valueof objet sought o is 30.
4 DiscussionThat authors of programming texts are unable to implement binary searh orretlyis truly lamentable. The danger signs stare you in the fae. Tymann and Shneiderinlude verbose omments whih add nothing to the program text, sine they simplystate in words what the program does (e.g. \While there is still something list left to5

searh" (si)). Winder and Roberts have a spurious ase analysis on whether there aretwo items left to searh (whih, as demonstrated by the example input, they get wronganyway). Most signi�antly, both texts use MVN's |whih means \misleading variablenames", although the authors would argue that they are using \meaningful" variablenames| . They do not make the funtion of their variables lear; as a result, they usethem inonsistently. Their errors are easily avoided by identifying, as a �rst step in thedesign, invariant properties of eah of the variables, as every true \omputer sientist"should know. Sadly, these texts are typial of \modern" texts on programming.

6

