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Abstract

We prove a non-trivial property of relations in a way that emphasises the 
reative

pro
ess in its 
onstru
tion.

1 Introduction

In [BDGv22, theorem 139℄ it is proved that, for all relations R , the equivalen
e relation

R∗∩ (R
∪

)∗ 
an be reformulated using the identity

R∗

∩ (R
∪

)∗ = (R∩ (R
∪

)∗)∗ .

This identity plays a signi�
ant role in algorithms whi
h exploit the de
omposition of

a �nite graph into an a
y
li
 graph together with a 
olle
tion of strongly 
onne
ted


omponents. (The relation R 
orresponds to the edge relation on nodes de�ned by

the graph. Readers unfamiliar with the notation and/or property are referred to the

appendix for a brief summary.) However, as observed in [BDGv22℄, the proof left a lot

to be desired sin
e it used the de�nition of the star operator (re
exive-transitive 
losure)

as a sum of powers of R together with a quite 
ompli
ated indu
tion property. (Attempts

we had made to apply �xed-point fusion had failed.)

Re
ently Guttmann formulated a proof using the indu
tive de�nition of R∗
in point-

free relation algebra. Winter made some improvements to Guttmann's proof.

Originally, the Guttmann-Winter proof was presented in the traditional mathemat-

i
al style: a bottom-up proof that mira
ulously ends in the �nal step with the desired

property. In this note, the proof has been rewritten in a way that emphasises the heuris-

ti
s that were used to 
onstru
t the proof. Some 
omments on how to present diÆ
ult

proofs follow the 
al
ulations.
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2 The Proof

The proof is by anti-symmetry of the equality relation. The in
lusion

(R∩ (R
∪

)∗)∗ ⊆ R∗

∩ (R
∪

)∗

is straightforward: ea
h step uses well-known properties and is self-evident

1

. The 
al
u-

lation doesn't deserve mu
h attention. The opposite in
lusion is mu
h more diÆ
ult to

prove and that is what this note is about.

The goal is to prove that

R∗

∩ (R
∪

)∗ ⊆ (R∩ (R
∪

)∗)∗ .

We aim to exploit the indu
tive de�nition of R∗
. Be
ause the other subexpressions

are more 
ompli
ated, we repla
e them by \S " and \ T ". The goal be
omes to �nd


onditions on S and T su
h that

R∗

∩S ⊆ T .

The 
al
ulation is guided by the fa
t that the 
onditions must be satis�ed by (R
∪

)∗ and

(R∩ (R
∪

)∗)∗ but we may be lu
ky and �nd weaker 
onditions. (In fa
t, we don't.)

R∗∩S ⊆ T

= { Heyting Galois 
onne
tion }

R∗ ⊆ S→T

⇐ { �xed-point de�nition of R∗ }

I ∪ R◦(S→T) ⊆ S→T

= { Heyting Galois 
onne
tion }

(I ∪ R◦(S→T))∩S ⊆ T

= { distributivity }

(I∩S) ∪ (R◦(S→T) ∩ S) ⊆ T

= { Galois 
onne
tion de�ning \∪ " }

I∩S ⊆ T ∧ R◦(S→T) ∩ S ⊆ T

⇐ { introdu
e 
ondition on T in order to simplify \ I∩S " }

I⊆T ∧ R◦(S→T) ∩ S ⊆ T .

1

See the appendix for a short summary of the properties that are needed to 
omplete the proof.
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The introdu
ed 
ondition �ts with our goal so we pro
eed with the se
ond 
onjun
t. We

begin by seeking a 
ondition on S that enables the elimination of \S→ ". To this end,

we 
al
ulate:

R◦(S→T) ∩ S

⊆ { modularity rule }

R◦(S→T ∩ R
∪

◦S)

⊆ { introdu
e assumption as prelude to 
an
ellation:

• R
∪

◦S ⊆ S . }

R◦(S→T ∩ S)

⊆ { (Heyting GC) 
an
ellation }

R◦T .

In this way, we have derived the property that, for all R , S and T ,

R◦(S→T) ∩ S ⊆ R◦T ⇐ R
∪

◦S ⊆ S .(1)

We now 
ontinue the 
al
ulation.

R◦(S→T) ∩ S ⊆ T

= { the hardest step in the 
al
ulation: as a prelude to applying (1),

we exploit the idempoten
y of set-interse
tion }

R◦(S→T) ∩ S ∩ S ⊆ T

⇐ { (1) and monotoni
ity }

R
∪

◦S ⊆ S ∧ R◦T ∩ S ⊆ T

⇐ { aiming for �xed-point de�nition of T , use modularity rule }

R
∪

◦S ⊆ S ∧ (R ∩ S ◦T
∪

)◦T ⊆ T

⇐ { the left 
onjun
t is satis�ed by S = (R
∪

)∗ ;

we postpone introdu
ing this as a 
ondition

but note that, with this instantiation, S = S◦S }

R
∪

◦S ⊆ S ∧ S = S◦S ∧ T
∪

⊆S

∧ (R∩S)◦T ⊆ T

⇐ { �xed-point de�nition of star }

R
∪

◦S ⊆ S ∧ S = S◦S ∧ T
∪

⊆S
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∧ T = (R∩S)∗

⇐ { 1st 
onjun
t: �xed-point de�nition of star

2nd 
onjun
t: re
exivity and transitivity of (R
∪

)∗

3rd 
onjun
t: (R∩ (R
∪

)∗)∗⊆R∗
and (R∗)

∪

=(R
∪

)∗ }

S = (R
∪

)∗ ∧ T = (R∩ (R
∪

)∗)∗ .

In the �rst 
al
ulation, we have proved that

R∗

∩S ⊆ T ⇐ I⊆T ∧ R◦(S→T) ∩ S ⊆ T ,

and, in the �nal 
al
ulation, we have proved that

R◦(S→T) ∩ S ⊆ T ⇐ S = (R
∪

)∗ ∧ T = (R∩ (R
∪

)∗)∗ .

Noting that I ⊆ (R∩ (R
∪

)∗)∗ (the 
ondition on T determined by the �rst 
al
ulation),

the 
on
lusion of the 
ombined 
al
ulations is thus

R∗

∩S ⊆ T ⇐ S = (R
∪

)∗ ∧ T = (R∩ (R
∪

)∗)∗ ,

from whi
h the desired in
lusion immediately follows.

3 Specific Comments

Before making more general remarks, some 
omments on the 
al
ulation are in order.

The 
entral problem in both 
al
ulations is how to deal with the o

urren
e of the

interse
tion operator (\∩ ") on the lower side of an in
lusion (\⊆ ").

The �rst 
al
ulation is quite straightforward and relatively self-evident: R∗
is by

de�nition a least �xed point and it is very 
ommon to use �xed-point indu
tion to

establish less obvious properties. (Formally, �xed-point indu
tion is the rule that a least

�xed point is a least pre�x point. In this 
ase, the rule used is that, for all R and T ,

R∗

⊆T ⇐ I∪R◦T ⊆ T .

There is a 
hoi
e of whi
h �xed-point de�nition of R∗
to use should the 
al
ulation fail.)

The 
ombination of �xed-point indu
tion with the use of a Galois 
onne
tion is also very


ommon. In this 
ase, the Galois 
onne
tion is, for all R , S and T ,

R∩S ⊆ T ≡ R ⊆ S→T .

We have 
alled it the \Heyting Galois 
onne
tion" be
ause it is essentially the same as

the adjun
tion between ∧p and p⇒ (for all predi
ates p ) in intuitionisti
 logi
, the

formalisation of whi
h is generally attributed to Heyting. The problem of the interse
tion
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operator is resolved by simply \shunting" it out of the way and then \shunting" it ba
k.

The remaining steps are relatively self-evident. Sin
e the goal is to rewrite T as U∗
for

some U , the introdu
tion of the 
ondition I⊆ T on T is an obvious step to take.

The se
ond 
al
ulation is also relatively straightforward. The issue that must be

resolved is that the initial 
al
ulation has introdu
ed \ S→ " on the left side of an in
lu-

sion. It is vital that this is eliminated. The Heyting Galois 
onne
tion suggests a line of

atta
k: spe
i�
ally, we have the 
an
ellation rule: for all S and T ,

(S→T)∩S ⊆ T .

Aiming to apply 
an
ellation, the 
al
ulation begins by applying the modularity rule. In

this way, (1) is easily derived.

Undoubtedly, the hardest step of all is the �rst step of the third 
al
ulation: the

step in whi
h idempoten
y of set interse
tion is applied to repla
e \∩S " by \∩ S∩S ".

E�e
tively, instead of (1), the equivalent property

R◦(S→T) ∩ S ⊆ R◦T ∩S ⇐ R
∪

◦S ⊆ S(2)

has been applied. In fa
t, (2) 
an be further strengthened by repla
ing the in
lusion on

the 
onsequent by an equality sin
e

R◦T ∩ S ⊆ R◦(S→T) ∩ S

= { Galois 
onne
tion de�ning interse
tion }

R◦T ∩ S ⊆ R◦(S→T) ∧ R◦T ∩ S ⊆ S

= { X∩S ⊆ S with X :=R◦T }

R◦T ∩ S ⊆ R◦(S→T)

⇐ { R◦T ∩ S ⊆ R◦T }

R◦T ⊆ R◦(S→T)

⇐ { monotoni
ity of 
omposition }

T ⊆ S→T

= { Heyting Galois 
onne
tion }

T ∩S ⊆ T

= { property of interse
tion }

true .

Thus, by antisymmetry of the subset ordering together with (2),

R◦(S→T) ∩ S = R◦T ∩S ⇐ R
∪

◦S ⊆ S .(3)
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Although the stronger property (3) is not used dire
tly, its derivation provides a useful

safety 
he
k: be
ause we have derived an equality, we know that simplifying the expres-

sion \R◦(S→T) ∩ S " to \R◦T ∩ S " does not in
ur any loss of information (so long as the


ondition R
∪

◦S ⊆ S is satis�ed). This is the raison d'être for the use of the idempoten
e

of set interse
tion.

4 General Comments

So mu
h for the details of the 
al
ulation; now more general 
omments.

Sin
e the earliest days of the development of \
orre
t-by-
onstru
tion" program de-

sign te
hniques, goal-dire
ted reasoning has always been a 
entral theme of \program


al
ulation". For example, \programming as a goal-oriented a
tivity" was a spe
i�
 topi


in Gries's textbook \The S
ien
e of Programming" [Gri81, 
hapter 14℄, and broadening

the theme to the mathemati
s of program 
onstru
tion was the topi
 of Van Gasteren's

thesis [vG90℄. Goal-dire
ted reasoning is also evident in many of Dijkstra's \EWD"s

(available from the University of Texas) and many other publi
ations of the last �fty

years.

In 
ontrast, the standard mathemati
al style is \bottom-up". That is evident from the

fa
t that mathemati
ians almost always use only-if arguments (impli
ation) as opposed

to if arguments (follows-from). In our view, it is extremely important that the more


hallenging 
al
ulations are presented in a goal-dire
ted way, as we have tried to do above.

It is important be
ause it helps to tea
h the 
reative pro
ess underlying the mathemati
s

of program 
onstru
tion. Of 
ourse, when a new theory is being developed the work

pro
eeds in a bottom-up fashion: one identi�es the more straightforward properties

and builds up to properties that are not so obvious. But ea
h step in the pro
ess

is an exploration. One seeks properties of a 
ertain type (for example, distributivity

properties) but the exa
t form of the properties is not known at the outset. It is vital

that we develop a style of 
al
ulation that exposes the 
reative pro
ess and that we


ommuni
ate this pro
ess to our students.

Many 
al
ulations are, of 
ourse, straightforward and don't merit mu
h dis
ussion.

Less interesting 
al
ulations are ones where ea
h step simpli�es the expression under


onsideration (in some sense of the word \simplify"). In 
ontrast, the 
al
ulation above

involves several 
ompli�
ation steps. In parti
ular, the step we have singled out as the

hardest of all is a 
ompli�
ation step: idempoten
y is used in the derivation of (1) to

repla
e an expression of the form X∩S by X∩S∩S . Idempoten
y is normally presented

as a simpli�
ation rule whereby the number of o

urren
es of the operator in question

is redu
ed. In order to foster 
reative 
al
ulation, it is also vital to avoid an undue bias

in the presentation of equational properties; equality is after all a symmetri
 operator.
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In summary, what we have presented is, in our view, a very good example of a

non-trivial 
al
ulation that deserves 
areful study. We hope that, in future, more e�ort

is spent in resear
h publi
ations and textbooks on elu
idating the pro
ess of 
reative


al
ulation. Histori
ally one argument against 
al
ulations in the style above is the need

to save spa
e. But modern te
hnology |the mu
h redu
ed relian
e on \hard 
opy"|

makes this argument mu
h less relevant.
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Appendix

In the proof we use a number of properties without spe
i�
 mention. These properties

will be well-known to readers well-versed in relation algebra but for others may not be

so. For this reason, we give a very brief summary of the relevant properties.

Variables R , S and T in the proof all denote homogeneous binary relations. The

set notation we use (\⊆ ", \∩ " and \∪ ") has its standard meaning and we do assume

familiarity with the properties of the set operators. (Some readers may not be familiar

with the Heyting Galois 
onne
tion: the existen
e of an upper adjoint of ∩S (for all S )

is a 
onsequen
e of the universal distributivity of set-interse
tion over set-union.)

Relation 
omposition and 
onverse are denoted by \

◦
" and \

∪

", respe
tively, and the

identity relation is denoted by I . All of interse
tion, union, 
omposition and 
onverse

are monotoni
 with respe
t to the subset ordering. Also, the logi
al operator \∧ " is

monotoni
 with respe
t to the \⇐ " relation.

An example of a step that uses a number of the above properties without spe
i�


mention is the �nal step in the initial 
al
ulation. In full detail, we use the fa
t that

I∩S⊆ I , that the subset relation is transitive (so I∩S⊆ I ∧ I⊆ T ⇒ I∩S⊆T ) and that

\∧ " is monotoni
 with respe
t to the \⇐ " relation. Monotoni
ity of 
omposition is

used when the 
an
ellation rule for the Heyting Galois 
onne
tion is applied.
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Converse is de�ned by the Galois 
onne
tion, for all R and S ,

R
∪

⊆ S ≡ R ⊆ S
∪

together with the distributivity property, for all R and S ,

(R◦S)
∪

= S
∪

◦R
∪

and the property that

I
∪

= I .

The modularity rule (aka the Dedekind rule) is used in both its forms: for all R , S and

T ,

R◦S ∩ T ⊆ R◦(S ∩ R
∪

◦T)

and its symmetri
 
ounterpart

R ∩ S◦T ⊆ (R ◦T
∪

∩ S)◦T .

The rule is important be
ause 
omposition does not distribute over interse
tion: it gives

a handle on expressions involving both operators where the interse
tion is on the lower

side of a set in
lusion.

R∗
denotes the re
exive, transitive 
losure of R . The indu
tive de�nition of R∗

used

here

2

is the property that, for all T ,

R∗

⊆ T ⇐ I ∪ R◦T ⊆ T .

That is, R∗
is the least pre�x point of the fun
tion mapping T to I ∪ R◦T . We don't

dire
tly use the fa
t that R∗
is a �xed point of this fun
tion but we do use the (derived)

properties that, for all R ,

I ⊆ R∗ ∧ (R∗)∗ = R∗ ∧ R∗
◦R∗ = R∗ ∧ (R

∪

)∗ = (R∗)
∪

.

We also use the fa
t that the star operator is monotoni
 with respe
t to the subset

ordering. As an example of the expli
it use of these properties we present the proof of

the omitted in
lusion:

(R∩ (R
∪

)∗)∗ ⊆ R∗∩ (R
∪

)∗

= { Galois 
onne
tion de�ning interse
tion }

(R∩ (R
∪

)∗)∗ ⊆ R∗ ∧ (R∩ (R
∪

)∗)∗ ⊆ (R
∪

)∗

2

An alternative �xed-point de�nition |alluded to in the text| is the dire
t formalisation of the

property that R∗
is the least re
exive, transitive relation that 
ontains R .
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⇐ { 1st 
onjun
t: star is monotoni


2nd 
onjun
t: (R∗)∗ = R∗
(with R :=R

∪

) and star is monotoni
 }

R∩ (R
∪

)∗ ⊆ R ∧ R∩ (R
∪

)∗ ⊆ (R
∪

)∗

= { Galois 
onne
tion de�ning interse
tion }

R∩ (R
∪

)∗ ⊆ R∩ (R
∪

)∗

= { re
exivity of the subset relation }

true .

It is mentioned in the introdu
tion that the identity we have proved is 
entral to a

number of algorithms that exploit graph theory. In su
h algorithms, the relation R is

the edge relation on nodes of a �nite graph: spe
i�
ally, two nodes u and v are related

by R i� there is an edge in the 
orresponding graph from u to v . Conversely, two

nodes u and v are related by R
∪

i� there is an edge in the graph from v to u . The

graph 
orresponding to R
∪

is thus the graph obtained by reversing the edges of the

graph 
orresponding to R . Nodes u and v are related by R∗
i� there is a path from u

to v in the graph, and by (R
∪

)∗ i� there is a path from u to v in the graph formed of

reversed edges. (Equivalently, u and v are related by (R
∪

)∗ if there is a path from v to

u in the graph. Formally, the equivalen
e is expressed by the identity (R
∪

)∗ = (R∗)
∪

.)

The relation R∗∩ (R
∪

)∗ holds between nodes u and v if there is both a path from

u to v and a path from v to u in the 
orresponding graph. Thus R∗∩ (R
∪

)∗ is the

equivalen
e relation that holds between nodes u and v when both are in the same

strongly 
onne
ted 
omponent of the graph.

The relation R∩ (R
∪

)∗ holds between nodes u and v i� there is an edge from u

to v and a path from v to u . The proven identity thus states that nodes u and

v are strongly 
onne
ted i� there is a path from u to v in the graph 
orresponding

to this relation. This insight is fundamental to algorithms that determine the strongly


onne
ted 
omponents of a graph as well as the de
omposition of a graph into its strongly


onne
ted 
omponents together with an a
y
li
 graph 
onne
ting su
h 
omponents.
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