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Abstract

We prove a non-trivial property of relations in a way that emphasises the reative

proess in its onstrution.

1 Introduction

In [BDGv22, theorem 139℄ it is proved that, for all relations R , the equivalene relation

R∗∩ (R
∪

)∗ an be reformulated using the identity

R∗

∩ (R
∪

)∗ = (R∩ (R
∪

)∗)∗ .

This identity plays a signi�ant role in algorithms whih exploit the deomposition of

a �nite graph into an ayli graph together with a olletion of strongly onneted

omponents. (The relation R orresponds to the edge relation on nodes de�ned by

the graph. Readers unfamiliar with the notation and/or property are referred to the

appendix for a brief summary.) However, as observed in [BDGv22℄, the proof left a lot

to be desired sine it used the de�nition of the star operator (reexive-transitive losure)

as a sum of powers of R together with a quite ompliated indution property. (Attempts

we had made to apply �xed-point fusion had failed.)

Reently Guttmann formulated a proof using the indutive de�nition of R∗
in point-

free relation algebra. Winter made some improvements to Guttmann's proof.

Originally, the Guttmann-Winter proof was presented in the traditional mathemat-

ial style: a bottom-up proof that miraulously ends in the �nal step with the desired

property. In this note, the proof has been rewritten in a way that emphasises the heuris-

tis that were used to onstrut the proof. Some omments on how to present diÆult

proofs follow the alulations.
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2 The Proof

The proof is by anti-symmetry of the equality relation. The inlusion

(R∩ (R
∪

)∗)∗ ⊆ R∗

∩ (R
∪

)∗

is straightforward: eah step uses well-known properties and is self-evident

1

. The alu-

lation doesn't deserve muh attention. The opposite inlusion is muh more diÆult to

prove and that is what this note is about.

The goal is to prove that

R∗

∩ (R
∪

)∗ ⊆ (R∩ (R
∪

)∗)∗ .

We aim to exploit the indutive de�nition of R∗
. Beause the other subexpressions

are more ompliated, we replae them by \S " and \ T ". The goal beomes to �nd

onditions on S and T suh that

R∗

∩S ⊆ T .

The alulation is guided by the fat that the onditions must be satis�ed by (R
∪

)∗ and

(R∩ (R
∪

)∗)∗ but we may be luky and �nd weaker onditions. (In fat, we don't.)

R∗∩S ⊆ T

= { Heyting Galois onnetion }

R∗ ⊆ S→T

⇐ { �xed-point de�nition of R∗ }

I ∪ R◦(S→T) ⊆ S→T

= { Heyting Galois onnetion }

(I ∪ R◦(S→T))∩S ⊆ T

= { distributivity }

(I∩S) ∪ (R◦(S→T) ∩ S) ⊆ T

= { Galois onnetion de�ning \∪ " }

I∩S ⊆ T ∧ R◦(S→T) ∩ S ⊆ T

⇐ { introdue ondition on T in order to simplify \ I∩S " }

I⊆T ∧ R◦(S→T) ∩ S ⊆ T .

1

See the appendix for a short summary of the properties that are needed to omplete the proof.
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The introdued ondition �ts with our goal so we proeed with the seond onjunt. We

begin by seeking a ondition on S that enables the elimination of \S→ ". To this end,

we alulate:

R◦(S→T) ∩ S

⊆ { modularity rule }

R◦(S→T ∩ R
∪

◦S)

⊆ { introdue assumption as prelude to anellation:

• R
∪

◦S ⊆ S . }

R◦(S→T ∩ S)

⊆ { (Heyting GC) anellation }

R◦T .

In this way, we have derived the property that, for all R , S and T ,

R◦(S→T) ∩ S ⊆ R◦T ⇐ R
∪

◦S ⊆ S .(1)

We now ontinue the alulation.

R◦(S→T) ∩ S ⊆ T

= { the hardest step in the alulation: as a prelude to applying (1),

we exploit the idempoteny of set-intersetion }

R◦(S→T) ∩ S ∩ S ⊆ T

⇐ { (1) and monotoniity }

R
∪

◦S ⊆ S ∧ R◦T ∩ S ⊆ T

⇐ { aiming for �xed-point de�nition of T , use modularity rule }

R
∪

◦S ⊆ S ∧ (R ∩ S ◦T
∪

)◦T ⊆ T

⇐ { the left onjunt is satis�ed by S = (R
∪

)∗ ;

we postpone introduing this as a ondition

but note that, with this instantiation, S = S◦S }

R
∪

◦S ⊆ S ∧ S = S◦S ∧ T
∪

⊆S

∧ (R∩S)◦T ⊆ T

⇐ { �xed-point de�nition of star }

R
∪

◦S ⊆ S ∧ S = S◦S ∧ T
∪

⊆S
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∧ T = (R∩S)∗

⇐ { 1st onjunt: �xed-point de�nition of star

2nd onjunt: reexivity and transitivity of (R
∪

)∗

3rd onjunt: (R∩ (R
∪

)∗)∗⊆R∗
and (R∗)

∪

=(R
∪

)∗ }

S = (R
∪

)∗ ∧ T = (R∩ (R
∪

)∗)∗ .

In the �rst alulation, we have proved that

R∗

∩S ⊆ T ⇐ I⊆T ∧ R◦(S→T) ∩ S ⊆ T ,

and, in the �nal alulation, we have proved that

R◦(S→T) ∩ S ⊆ T ⇐ S = (R
∪

)∗ ∧ T = (R∩ (R
∪

)∗)∗ .

Noting that I ⊆ (R∩ (R
∪

)∗)∗ (the ondition on T determined by the �rst alulation),

the onlusion of the ombined alulations is thus

R∗

∩S ⊆ T ⇐ S = (R
∪

)∗ ∧ T = (R∩ (R
∪

)∗)∗ ,

from whih the desired inlusion immediately follows.

3 Specific Comments

Before making more general remarks, some omments on the alulation are in order.

The entral problem in both alulations is how to deal with the ourrene of the

intersetion operator (\∩ ") on the lower side of an inlusion (\⊆ ").

The �rst alulation is quite straightforward and relatively self-evident: R∗
is by

de�nition a least �xed point and it is very ommon to use �xed-point indution to

establish less obvious properties. (Formally, �xed-point indution is the rule that a least

�xed point is a least pre�x point. In this ase, the rule used is that, for all R and T ,

R∗

⊆T ⇐ I∪R◦T ⊆ T .

There is a hoie of whih �xed-point de�nition of R∗
to use should the alulation fail.)

The ombination of �xed-point indution with the use of a Galois onnetion is also very

ommon. In this ase, the Galois onnetion is, for all R , S and T ,

R∩S ⊆ T ≡ R ⊆ S→T .

We have alled it the \Heyting Galois onnetion" beause it is essentially the same as

the adjuntion between ∧p and p⇒ (for all prediates p ) in intuitionisti logi, the

formalisation of whih is generally attributed to Heyting. The problem of the intersetion
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operator is resolved by simply \shunting" it out of the way and then \shunting" it bak.

The remaining steps are relatively self-evident. Sine the goal is to rewrite T as U∗
for

some U , the introdution of the ondition I⊆ T on T is an obvious step to take.

The seond alulation is also relatively straightforward. The issue that must be

resolved is that the initial alulation has introdued \ S→ " on the left side of an inlu-

sion. It is vital that this is eliminated. The Heyting Galois onnetion suggests a line of

attak: spei�ally, we have the anellation rule: for all S and T ,

(S→T)∩S ⊆ T .

Aiming to apply anellation, the alulation begins by applying the modularity rule. In

this way, (1) is easily derived.

Undoubtedly, the hardest step of all is the �rst step of the third alulation: the

step in whih idempoteny of set intersetion is applied to replae \∩S " by \∩ S∩S ".

E�etively, instead of (1), the equivalent property

R◦(S→T) ∩ S ⊆ R◦T ∩S ⇐ R
∪

◦S ⊆ S(2)

has been applied. In fat, (2) an be further strengthened by replaing the inlusion on

the onsequent by an equality sine

R◦T ∩ S ⊆ R◦(S→T) ∩ S

= { Galois onnetion de�ning intersetion }

R◦T ∩ S ⊆ R◦(S→T) ∧ R◦T ∩ S ⊆ S

= { X∩S ⊆ S with X :=R◦T }

R◦T ∩ S ⊆ R◦(S→T)

⇐ { R◦T ∩ S ⊆ R◦T }

R◦T ⊆ R◦(S→T)

⇐ { monotoniity of omposition }

T ⊆ S→T

= { Heyting Galois onnetion }

T ∩S ⊆ T

= { property of intersetion }

true .

Thus, by antisymmetry of the subset ordering together with (2),

R◦(S→T) ∩ S = R◦T ∩S ⇐ R
∪

◦S ⊆ S .(3)
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Although the stronger property (3) is not used diretly, its derivation provides a useful

safety hek: beause we have derived an equality, we know that simplifying the expres-

sion \R◦(S→T) ∩ S " to \R◦T ∩ S " does not inur any loss of information (so long as the

ondition R
∪

◦S ⊆ S is satis�ed). This is the raison d'être for the use of the idempotene

of set intersetion.

4 General Comments

So muh for the details of the alulation; now more general omments.

Sine the earliest days of the development of \orret-by-onstrution" program de-

sign tehniques, goal-direted reasoning has always been a entral theme of \program

alulation". For example, \programming as a goal-oriented ativity" was a spei� topi

in Gries's textbook \The Siene of Programming" [Gri81, hapter 14℄, and broadening

the theme to the mathematis of program onstrution was the topi of Van Gasteren's

thesis [vG90℄. Goal-direted reasoning is also evident in many of Dijkstra's \EWD"s

(available from the University of Texas) and many other publiations of the last �fty

years.

In ontrast, the standard mathematial style is \bottom-up". That is evident from the

fat that mathematiians almost always use only-if arguments (impliation) as opposed

to if arguments (follows-from). In our view, it is extremely important that the more

hallenging alulations are presented in a goal-direted way, as we have tried to do above.

It is important beause it helps to teah the reative proess underlying the mathematis

of program onstrution. Of ourse, when a new theory is being developed the work

proeeds in a bottom-up fashion: one identi�es the more straightforward properties

and builds up to properties that are not so obvious. But eah step in the proess

is an exploration. One seeks properties of a ertain type (for example, distributivity

properties) but the exat form of the properties is not known at the outset. It is vital

that we develop a style of alulation that exposes the reative proess and that we

ommuniate this proess to our students.

Many alulations are, of ourse, straightforward and don't merit muh disussion.

Less interesting alulations are ones where eah step simpli�es the expression under

onsideration (in some sense of the word \simplify"). In ontrast, the alulation above

involves several ompli�ation steps. In partiular, the step we have singled out as the

hardest of all is a ompli�ation step: idempoteny is used in the derivation of (1) to

replae an expression of the form X∩S by X∩S∩S . Idempoteny is normally presented

as a simpli�ation rule whereby the number of ourrenes of the operator in question

is redued. In order to foster reative alulation, it is also vital to avoid an undue bias

in the presentation of equational properties; equality is after all a symmetri operator.
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In summary, what we have presented is, in our view, a very good example of a

non-trivial alulation that deserves areful study. We hope that, in future, more e�ort

is spent in researh publiations and textbooks on eluidating the proess of reative

alulation. Historially one argument against alulations in the style above is the need

to save spae. But modern tehnology |the muh redued reliane on \hard opy"|

makes this argument muh less relevant.
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Appendix

In the proof we use a number of properties without spei� mention. These properties

will be well-known to readers well-versed in relation algebra but for others may not be

so. For this reason, we give a very brief summary of the relevant properties.

Variables R , S and T in the proof all denote homogeneous binary relations. The

set notation we use (\⊆ ", \∩ " and \∪ ") has its standard meaning and we do assume

familiarity with the properties of the set operators. (Some readers may not be familiar

with the Heyting Galois onnetion: the existene of an upper adjoint of ∩S (for all S )

is a onsequene of the universal distributivity of set-intersetion over set-union.)

Relation omposition and onverse are denoted by \

◦
" and \

∪

", respetively, and the

identity relation is denoted by I . All of intersetion, union, omposition and onverse

are monotoni with respet to the subset ordering. Also, the logial operator \∧ " is

monotoni with respet to the \⇐ " relation.

An example of a step that uses a number of the above properties without spei�

mention is the �nal step in the initial alulation. In full detail, we use the fat that

I∩S⊆ I , that the subset relation is transitive (so I∩S⊆ I ∧ I⊆ T ⇒ I∩S⊆T ) and that

\∧ " is monotoni with respet to the \⇐ " relation. Monotoniity of omposition is

used when the anellation rule for the Heyting Galois onnetion is applied.
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Converse is de�ned by the Galois onnetion, for all R and S ,

R
∪

⊆ S ≡ R ⊆ S
∪

together with the distributivity property, for all R and S ,

(R◦S)
∪

= S
∪

◦R
∪

and the property that

I
∪

= I .

The modularity rule (aka the Dedekind rule) is used in both its forms: for all R , S and

T ,

R◦S ∩ T ⊆ R◦(S ∩ R
∪

◦T)

and its symmetri ounterpart

R ∩ S◦T ⊆ (R ◦T
∪

∩ S)◦T .

The rule is important beause omposition does not distribute over intersetion: it gives

a handle on expressions involving both operators where the intersetion is on the lower

side of a set inlusion.

R∗
denotes the reexive, transitive losure of R . The indutive de�nition of R∗

used

here

2

is the property that, for all T ,

R∗

⊆ T ⇐ I ∪ R◦T ⊆ T .

That is, R∗
is the least pre�x point of the funtion mapping T to I ∪ R◦T . We don't

diretly use the fat that R∗
is a �xed point of this funtion but we do use the (derived)

properties that, for all R ,

I ⊆ R∗ ∧ (R∗)∗ = R∗ ∧ R∗
◦R∗ = R∗ ∧ (R

∪

)∗ = (R∗)
∪

.

We also use the fat that the star operator is monotoni with respet to the subset

ordering. As an example of the expliit use of these properties we present the proof of

the omitted inlusion:

(R∩ (R
∪

)∗)∗ ⊆ R∗∩ (R
∪

)∗

= { Galois onnetion de�ning intersetion }

(R∩ (R
∪

)∗)∗ ⊆ R∗ ∧ (R∩ (R
∪

)∗)∗ ⊆ (R
∪

)∗

2

An alternative �xed-point de�nition |alluded to in the text| is the diret formalisation of the

property that R∗
is the least reexive, transitive relation that ontains R .
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⇐ { 1st onjunt: star is monotoni

2nd onjunt: (R∗)∗ = R∗
(with R :=R

∪

) and star is monotoni }

R∩ (R
∪

)∗ ⊆ R ∧ R∩ (R
∪

)∗ ⊆ (R
∪

)∗

= { Galois onnetion de�ning intersetion }

R∩ (R
∪

)∗ ⊆ R∩ (R
∪

)∗

= { reexivity of the subset relation }

true .

It is mentioned in the introdution that the identity we have proved is entral to a

number of algorithms that exploit graph theory. In suh algorithms, the relation R is

the edge relation on nodes of a �nite graph: spei�ally, two nodes u and v are related

by R i� there is an edge in the orresponding graph from u to v . Conversely, two

nodes u and v are related by R
∪

i� there is an edge in the graph from v to u . The

graph orresponding to R
∪

is thus the graph obtained by reversing the edges of the

graph orresponding to R . Nodes u and v are related by R∗
i� there is a path from u

to v in the graph, and by (R
∪

)∗ i� there is a path from u to v in the graph formed of

reversed edges. (Equivalently, u and v are related by (R
∪

)∗ if there is a path from v to

u in the graph. Formally, the equivalene is expressed by the identity (R
∪

)∗ = (R∗)
∪

.)

The relation R∗∩ (R
∪

)∗ holds between nodes u and v if there is both a path from

u to v and a path from v to u in the orresponding graph. Thus R∗∩ (R
∪

)∗ is the

equivalene relation that holds between nodes u and v when both are in the same

strongly onneted omponent of the graph.

The relation R∩ (R
∪

)∗ holds between nodes u and v i� there is an edge from u

to v and a path from v to u . The proven identity thus states that nodes u and

v are strongly onneted i� there is a path from u to v in the graph orresponding

to this relation. This insight is fundamental to algorithms that determine the strongly

onneted omponents of a graph as well as the deomposition of a graph into its strongly

onneted omponents together with an ayli graph onneting suh omponents.
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