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Put your hand in your pocket and pull out a number of coins, preferably
all of the same denomination. Show them to a friend and ask how many
there are. If there are less than five your friend will be able to see instantly
how many there are; if there are more than five he will be obliged to count
them before giving a reliable response.

I have no doubt that there are many learned articles dealing with this
and similar experiments in a proper, scientific way. For me, however, the
experiment has a very simple and far-reaching — albeit subjective — signif-
icance. The experiment demonstrates to me just how unintelligent I and my
fellow human beings are. We may try to convince ourselves of our supreme
intelligence but the fact remains that we are quite incapable of assimilating
or exploiting all but small amounts of information at any one time.

In spite of our inherent stupidity the human race has achieved a very
great deal (achievement being quite different from intelligence). Recognition
of one’s limitations is the first step towards improving one’s achievements.

The evolution of mathematical notation has been of fundamental impor-
tance to the development of science. Because it is both concise and precise,
mathematical notation helps to simplify concepts to a level at which we can
begin to understand them and to overcome our tendency to woolly and dis-
orderly thinking. However, whether it is used well or badly can make all the
difference between whether mathematical notation makes molehills out of
mountains or mountains out of molehills. The ergonomics of mathematical
notation is a little-discussed but vital aspect of creative mathematics.

A non-mathematical example may be the best introduction to the sort of
points I want to make. If, when doing a crossword puzzle, I suspect that one
of the answers is an anagram of some phrase then I write the letters of the

1



2

phrase in a circle. This notational trick is enormously helpful in enabling the
eye to see different permutations of letters. Compactness of the notation is
highly significant: a computer-generated listing of all permutations of a given
set of letters may be a more reliable way of discovering all the anagrams but
is decidedly less effective. Computer-generated lists are just not for human
consumption!

Recognising human characteristics is important to the design of good
notation. One of the first rules that one should learn about mathematical
notation is that the precedence chosen for a binary operator should determine
the size of the symbol used to denote that operator, the higher the precedence
the smaller the symbol. This is because small symbols “pull” their neighbours
together thus suggesting a grouping of the symbols. For example, in the
expression

a + b.c + d

one naturally sees the sequence b.c as a group because the variables b and c
are close together.

Note that the size of a symbol should also include the amount of white
space around it. Text produced by a typewriter illustrates this well. The
expression

a+b.c+d

has been printed in teletype mode, i.e. in such a way that each symbol
has exactly the same width. The intention may be that the dot has higher
precedence than plus but one must work very hard in order to read the
expression in that way.

The principle underlying the precedence rule is that mathematical nota-
tion should suggest relevant groupings of symbols, or at least not be biased
to specific groupings. For example, if ⊕ is an associative operator then one
should denote its application using infix notation; for then in an expression
like

a⊕ b⊕ c⊕ d

one can choose at will whether to continue the calculation by manipulating
a ⊕ b, b ⊕ c, or c ⊕ d. In contrast, if Polish notation is used the expression
above could be written in five different ways

⊕(⊕(⊕(a, b), c), d)
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⊕(⊕(a, b),⊕(c, d))
⊕(⊕(a,⊕(b, c)), d)
⊕(a,⊕(⊕(b, c), d))
⊕(a,⊕(b,⊕(c, d)))

each of which is biased to particular groupings of the arguments.
The advantages of infix notation for associative operators are not so strik-

ing because they are very familiar. A less familiar example is provided by
so-called “abide” laws. Two binary operators ⊗ and ⊘ are said to abide with
each other if for all u,v,w and x

(u⊗ v)⊘ (w ⊗ x) = (u⊘ w)⊗ (v ⊘ x)

Written as above the law seems hideously complex; a two-dimensional nota-
tion reveals the true nature of such laws. The name “abide” signifies that
the operators can be written above or beside each other as shown below

u ⊗ v u v
⊘ = ⊘ ⊗ ⊘

w ⊗ x w x

A standard example of an abide law is provided by multiplication and division
in real arithmetic. (Replace “⊗” by “×” and “⊘” by “/”.) The validity of
this law is the only justification I know for why the operands in a division
are written one on top of the other. Take, for example,

u · v

w · x

Because the arguments are pulled together the eye is more readily encouraged
to spot different groupings of the operands — u · v, u

w
, w · x, v

x
and, since

multiplication is commutative, u

x
or v

w
.

Aside Abide laws abound in mathematics, sometimes being called inter-
change laws. However, they don’t seem to be well known. One example
occurs in boolean algebra: Suppose p . . . u are booleans and define

p〈q〉r ≡ if q then p else r.

Then
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p 〈q〉 r p r
〈s〉 = 〈s〉 〈q〉 〈s〉

t 〈q〉 u t u

End of Aside

(Readers of The Squigolist will know that the term “abide law” was coined
by Richard Bird and that the above example of such a law is due to Tony
Hoare.)

Subscripts and superscripts are probably the most abused elements of
mathematical notation. Because they are smaller than the symbols around
them they are easily overlooked. Just like the small print in legal documents
this can be deliberately used to deceive the reader, or it can be used to
suppress details that are only relevant in exceptional circumstances. Very
occasionally deception can be beneficial! Suppose a given function distributes
over a given binary operator. Denoting the function by C, the operator by
× and function application by an infix dot, distributivity can be expressed
syntactically by

C.(X × Y ) = C.X × C.Y

for all X and Y . An alternative denotation is obtained by choosing c to
denote the function and using superscripting to denote function application.
We then obtain

(X × Y )c = Xc × Y c

for all X and Y . (To emphasise my point about the size of superscripts I
have used capital letters for the dummies.) What is the essential difference
between the two notations? Well, compare C.X ×C.Y with Xc×Y c. In the
former “X” and “Y ” are relatively far apart, in the latter “X” and “Y ” have
been pulled together by the relative size of the dummies and the superscript.
In the latter, therefore, the intention is that the eye is tricked into overlooking
the superscript and grouping together X and Y . The notation avoids the
need to consciously remember the distributivity law.

Now you know why the “Eindhoven School” insists on beautiful handwrit-
ing: clear handwriting, paying attention to the ergonomics of mathematical
notation, pays dividends whereas bad handwriting can often deceive you into
making mistakes. And those computer algebra systems that are currently all
the rage? How anyone can begin to do creative mathematics with an input-
output system that is hardly better than that of a teletype is beyond me!


