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Abstract

We introdue the general notions of an index and a ore of a relation. We postulate a

limited form of the axiom of hoie |spei�ally that all partial equivalene relations have

an index| and explore the onsequenes of adding the axiom to standard axiom systems

for point-free reasoning. Examples of the theorems we prove are that a ore/index of a

difuntion is a bijetion, and that the so-alled \all or nothing" axiom used to failitate

pointwise reasoning is derivable from our axiom of hoie.

1 Introduction

We introdue the general notions of an \index" and a \ore" of a relation. As suggested by

the terminology, the pratial signi�ane of both notions is to substantially redue the size

of a (possibly very large) binary relation in suh a way that the relation an nevertheless

easily be reovered. Example 1 illustrates the notions.

Example 1 Fig. 1 depits a relation (on the left) and two instanes of ores of the relation

(in the middle and on the right). All are depited as bipartite graphs. The relation R is a

relation on blue and red nodes. The middle �gure depits a ore as a relation on squares of

blue nodes and squares of red nodes, eah square being an equivalene lass of the left per

domain of R (on the left) or of the right per domain of R (on the right). The rightmost

�gure depits a ore as a relation on representatives of the equivalene lasses: the relation

depited by the thik green edges. The rightmost �gure also depits an index of the relation;

the middle does not: although the relations depited in the middle and rightmost �gures are

isomorphi, they have di�erent types.

✷

Although the notion of the \ore" of a relation is more general than the notion of an

\index", a signi�ant disadvantage is that a \ore" typially has a type that is di�erent from

the relation itself; in ontrast, an \index" of a relation is a \ore" that has the same type as

the relation. This is useful for pratial purposes, partiularly in the ontext of heterogeneous

relations, beause it avoids the neessity to introdue type judgements. For this reason, our

fous us on the notion of an index.

The paper is divided into three parts. The �rst part, onsisting of setions 2 and 3, sets up

the framework on whih our alulations are based. Setion 2 summarises the axiom system
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Figure 1: A Relation, a Core and an Index.

and the notation we use; setion 3 lists a number of derived onepts and their properties.

These properties are given without proof.

In setion 4, we formalise the notions of a \ore" and an \index" of a relation in the

ontext of point-free relation algebra. We establish a large olletion of properties of these

notions whih form a basis for the third part of the paper. (Beause the notions are new,

almost all the properties are new. An example of a property that some readers may reognise,

albeit expressed di�erently, is that a difuntion has an index that is a bijetion.)

Setion 5 speialises the notion of an index to partial equivalene relations and difuntions.

Setion 5.2 onludes by the introdution of a restrited form of the axiom of hoie: we

postulate that every partial equivalene relation has an index. This is the same as saying

that it is possible to hoose a representative element of every equivalene lass of a partial

equivalene relation. Setion 5.3 then shows that every relation has an index. Setion 6 is

about applying our axiom of hoie to the derivation of well-known haraterisations of pers

and difuntions.

Setion 7 examines the onsequenes of adding our axiom of hoie to point-free relation

algebra in order to failitate pointwise reasoning. We show that so doing has surprising and

remarkable onsequenes. One suh onsequene is that we an derive the so-alled \all-

or-nothing" rule; this is a rule introdued by Gl�uk [Gl�u17℄ also as a means of failitating

pointwise reasoning. (See [BDGv22℄ for examples of how the rule is used in reasoning about

graphs.) The main theorem in setion 7 is that, with the addition of our axiom of hoie,

the type A∼B of relations is isomorphi to the powerset 2A×B (the set of subsets of the

artesian produt of A and B ).

Setion 8 onludes the paper with a disussion of the signi�ane of the notions we have

introdued and a pointer to the potential value for pratial appliations.

2 Axioms of Point-free Relation Algebra

In traditional, pointwise reasoning about relations, it is not the relations themselves that

are the fous of interest. Rather, a relation R of type A∼B is de�ned to be a subset of

the artesian produt A×B and the fous of interest is the boolean membership property

(a, b)∈R where a and b are elements of type A and B , respetively. Equality of relations

R and S is de�ned in terms of membership (typially in terms of \if and only if"), leading to
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a lak of onision (and frequently preision). In point-free relation algebra, the membership

relation plays no role, and reasoning is truly about properties of relations.

In this setion, we give a brief summary of the axioms of point-free relation algebra. For

full details of the axioms, see [BDGv22℄.

2.1 Summary

Point-free relation algebra omprises three layers with interfaes between the layers plus

additional axioms peuliar to relations. The axiom system is typed. For types A and B ,

A∼B denotes a set; the elements of the set are alled (heterogeneous) relations of type

A∼B . Elements of type A∼A , for some type A , are alled homogeneous relations.

The �rst layer axiomatises the properties of a partially ordered set. We postulate that,

for eah pair of types A and B , A∼B forms a omplete, universally distributive lattie. In

antiipation of setion 7, where we add axioms that require A∼B to be a powerset, we use

the symbol \⊆ " for the ordering relation, and \∪ " and \∩ " for the supremum and in�mum

operators. We assume that this notation is familiar to the reader, allowing us to skip a

more detailed aount of its properties. However, we use ⊥⊥ for the least element of the

ordering (rather than the onventional ∅ ) and ⊤⊤ for the greatest element. In keeping with

the onventional pratie of overloading the symbol \ ∅ ", both these symbols are overloaded.

The symbols \⊥⊥ " and \⊤⊤ " are pronouned \bottom" and \top", respetively. (Stritly we

should write something like A⊥⊥B and A⊤⊤B for the bottom and top elements of type A∼B .

Of ourse, are needs to be taken when overloading operators in this way but it is usually

the ase that elementary type onsiderations allow the appropriate type to be dedued.)

It is important to note that there is no axiom stating that a relation is a set, and there is no

orresponding notion of membership. (In, for example, [ABH

+
92℄ and [Voe99℄, we used the

symbols \⊑ ", \⊔ " and \⊓ " and the name \spe alulus" rather than \relation algebra" in

order to avoid misunderstanding.) The lak of a notion of membership distinguishes point-free

relation algebra from pointwise algebra.

The seond layer adds a omposition operator. If R is a relation of type A∼B and S is

a relation of type B∼C , the omposition of R and S is a relation of type A∼C whih we

denote by R◦S . Composition is assoiative and, for eah type A , there is an identity relation

whih we denote by IA . We often overload the notation for the identity relation, writing just

I . Oasionally, for greater larity, we do supply the type information.

The interfae between the �rst and seond layers de�nes a relation algebra to be an

instane of a regular algebra [Ba06℄ (also alled a standard Kleene algebra, or S-algebra

[Con71℄). For this paper, the most important aspet of this interfae is the existene and

properties of the fator operators. These are introdued in setion 2.2. Also, ⊥⊥ is a zero of

omposition: for all R , ⊥⊥◦R=⊥⊥=R◦⊥⊥ .

The ompleteness axiom in the �rst layer allows the reexive-transitive losure R∗ of

eah element R of type A∼A , for some type A , to be de�ned. For pratial appliations,

this is possibly the most important aspet of regular algebra but suh appliations are not

onsidered in this paper. For this paper, ompleteness is only relevant when we add axioms

to the algebra that model pointwise reasoning. We do require, however, the existene of R∪S

and R∩S , for all pairs of relations R and S of the same type, and the usual properties of
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set union and intersetion.

The third layer is the introdution of a onverse operator. If R is a relation of type

A∼B , the onverse of R , whih we denote by R
∪

(pronouned R \wok") is a relation of

type B∼A . The interfae with the �rst layer is that onverse is a poset isomorphism (in

partiular, ⊥⊥
∪

=⊥⊥ and ⊤⊤
∪

=⊤⊤ ), and the interfae with the seond layer is formed by

the two rules I
∪= I and, for all relations R and S of appropriate type, (R◦S)∪ = S

∪
◦R

∪

.

Additional axioms haraterise properties peuliar to relations. The modularity rule (aka

Dedekind's rule [Rig48℄) is that, for all relations R , S and T ,

R◦S∩ T ⊆ R ◦ (S ∩ R
∪
◦ T) .(2)

The dual property, obtained by exploiting properties of the onverse operator, is, for all

relations R , S and T ,

S◦R∩ T ⊆ (S ∩ T ◦R
∪

) ◦R .(3)

The modularity rule is neessary to the derivation of some of the properties we state without

proof (for example, the properties of the domain operators given in setion 3.1). Another

rule is the one rule :

〈∀R :: ⊤⊤◦R◦⊤⊤ = ⊤⊤ ≡ R 6=⊥⊥〉 .(4)

The one rule limits onsideration to \unary" relation algebras: onstruting the artesian

produt of two relation algebras to form a relation algebra (whereby the operators are de�ned

pointwise) does not yield an algebra satisfying the one rule.

2.2 Factors

If R is a relation of type A∼B and S is a relation of type A∼C , the relation R\S of type

B∼C is de�ned by the Galois onnetion, for all T (of type B∼C ),

T ⊆ R\S ≡ R◦T ⊆ S .(5)

Similarly, if R is a relation of type A∼B and S is a relation of type C∼B , the relation R/S

of type A∼C is de�ned by the Galois onnetion, for all T ,

T ⊆ R/S ≡ T◦S ⊆ R .(6)

The existene of fators is a property of a regular algebra; in relation algebra, fators are also

known as \residuals". Fators have the anellation properties:

T ◦ T\U ⊆ U ∧ R/S ◦S ⊆ R .(7)

The relations R\R (of type B∼B if R has type A∼B ) and R/R (of type A∼A if R has

type A∼B ) play a entral role in what follows. As is easily veri�ed, both are preorders.

That is, both are transitive :

R\R ◦R\R ⊆ R\R ∧ R/R ◦R/R ⊆ R/R(8)
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and both are reexive :

I ⊆ R\R ∧ I ⊆ R/R .(9)

(The notation \ I " is overloaded in the above equation. In the left onjunt, it denotes the

identity relation of type B∼B and, in the right onjunt, it denotes the identity relation of

type A∼A , assuming R has type A∼B .) We also have the anellation property, for all R ,

R ◦R\R = R = R/R ◦R .(10)

Fators enjoy a rih theory whih underlies many of our alulations. However, for spae

reasons, we omit further details here.

3 Some Definitions

In point-free relation algebra, \oreexives" of a given type represent sets of elements of that

type. A oreexive of type A is a relation p suh that p⊆ IA . Frequently used properties

are that, for all oreexives p ,

p = p
∪

= p◦p

and, for all oreexives p and q ,

p◦q = p∩q = q◦p .

(The proof of these properties relies on the modularity rule.) In the literature, oreexives

have several di�erent names, usually depending on the appliation area in question. Examples

are \monotype", \pid" (short for \partial identity") and \test".

3.1 The Domain Operators

The \domain operators" (see eg. [BH93℄) play a dominant and unavoidable role. We exploit

their properties frequently in alulations, so muh so that we assume great familiarity with

them.

Definition 11 (Domain Operators) Given relation R of type A∼B , the left domain

R<
of R is a relation of type A de�ned by the equation

R< = IA ∩ R ◦R
∪

and the right domain R>
of R is a relation of type B is de�ned by the equation

R> = IB ∩ R
∪
◦R .

✷

The name \domain operator" is hosen beause of the fundamental properties: for all R

and all oreexives p ,

R=R◦p ≡ R> = R> ◦p(12)
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and

R=p◦R ≡ R< = p ◦R< .(13)

A simple, often-used onsequene of (12) and (13) is the property:

R< ◦R = R = R ◦R> .(14)

In words, R>
is the least oreexive p suh that restriting the \domain" of R on the right

has no e�et on R . It is in this sense that R<
and R>

represent the set of points on the left

and on the right on whih the relation R is \de�ned", i.e. its left and right \domains".

By instantiating p to ⊥⊥ in (12) and (13) we get

(R<=⊥⊥) = (R=⊥⊥) = (R>=⊥⊥) .(15)

Additional properties used frequently below are as follows.

Theorem 16 For all relations R and oreexives p ,

R>⊆p ≡ R⊆⊤⊤◦p and R<⊆p ≡ R⊆p◦⊤⊤ ,(17)

R>⊆p ≡ R⊆R◦p and R<⊆p ≡ R=p◦R .(18)

✷

Theorem 19 For all relations R and S ,

(a) ⊤⊤ ◦R> = ⊤⊤◦R and R< ◦⊤⊤ = R◦⊤⊤ ,

(b) (R∪)> = R<
and (R∪)< = R>

, and

(c) (R◦S)> = (R> ◦S)> and (R◦S)< = (R ◦S<)< .

✷

We also use the fat that the domain operators are monotoni (as is evident from de�nition

11).

3.2 Pers and Per Domains

Given relations R of type A∼B and S of type A∼C , the symmetri right-division is the

relation R\\S of type B∼C de�ned in terms of right fators as

R\\S = R\S ∩ (S\R)
∪

.(20)

Dually, given relations R of type B∼A and S of type C∼A , the symmetri left-division is

the relation R//S of type B∼C de�ned in terms of left fators as

R//S = R/S ∩ (S/R)
∪

.(21)
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The relation R\\R is an equivalene relation

1

. Voermans [Voe99℄ alls it the \greatest right

domain" of R . Riguet [Rig48℄ alls R\\R the \noyau" of R (but de�nes it using nested

omplements). Others (see [Oli18℄ for referenes) all it the \kernel" of R .

As remarked elsewhere [Oli18℄, the symmetri left-division inherits a number of (left)

anellation properties from the properties of fatorisation in terms of whih it is de�ned.

For our purposes, the only anellation property we use is the following (inherited from (10)).

For all R ,

R ◦R\\R = R = R//R ◦R .(22)

In this setion the fous is on the left and right \per domains" introdued by Voermans

[Voe99℄.

Definition 23 (Right and Left Per Domains) The right per domain of relation R ,

denoted R≻
, is de�ned by the equation

R≻ = R> ◦R\\R .(24)

Dually, the left per domain of relation R , denoted R≺
, is de�ned by the equation

R≺ = R//R ◦R< .(25)

✷

The left and right per domains are \pers" where \per" is an abbreviation of \partial

equivalene relation".

Definition 26 (Partial Equivalence Relation (per)) A relation is a partial equiva-

lene relation i� it is symmetri and transitive. That is, R is a partial equivalene relation

i�

R=R
∪

∧ R◦R⊆R .

Heneforth we abbreviate partial equivalene relation to per.

✷

That R≺
and R≻

are indeed pers is a diret onsequene of the symmetry and transitivity

of R\\R .

The left and right per domains are alled \domains" beause, like the oreexive domains,

we have the properties: for all relations R and pers P ,

R=R◦P ≡ R≻ = R≻ ◦P , and(27)

R=P◦R ≡ R≺ = P ◦R≺ .(28)

As with the oreexive domains, we also have:

R≺ ◦R = R = R ◦R≻ .(29)

1

This is a well-known fat: the relation R\\R is the symmetri losure of the preorder R\R . The easy proof

is left to the reader.
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(The seond of these equalities is an immediate onsequene of (22) and the properties of

(oreexive-) domains; the �rst is symmetri.) Indeed, R≺
and R≻

are the \least" pers that

satisfy the equalities (29). See [Voe99℄ for details of the ordering relation on pers.

The right per domain R≻
an be de�ned equivalently by the equation

R≻ = R\\R ◦R> .(30)

Moreover,

(R≻)< = R> = (R≻)> .(31)

(See [Ba21℄ for the proofs of these properties.) Symmetrial properties hold of R≺
.

The following lemma extends [Rig48, Corollaire, p.134℄ from equivalene relations to pers.

Lemma 32 For all relations R , the following statements are all equivalent.

(i) R is a per (i.e. R=R∪

∧ R◦R⊆R ) ,

(ii) R = R
∪
◦R ,

(iii) R=R≺
,

(iv) R=R≻
.

✷

For further properties of pers and per domains, see [Voe99℄.

3.3 Functionality

A relation R of type A∼B is said to be left-funtional i� R ◦R
∪ = R<

. Equivalently, R is

left-funtional i� R ◦R
∪ ⊆ IA . It is said to be right-funtional i� R

∪
◦R = R>

(equivalently,

R
∪
◦R ⊆ IB ). A relation R is said to be a bijetion i� it is both left- and right-funtional.

Rather than left- and right-funtional, the more ommon terminology is \funtional"

and \injetive" but publiations di�er on whih of left- or right-funtional is \funtional"

or \injetive". We hoose to abbreviate \left-funtional" to funtional and to use the term

injetive instead of right-funtional. Typially, we use f and g to denote funtional relations,

and Greek letters to denote bijetions (although the latter is not always the ase). Other

authors make the opposite hoie.

3.4 Difunctions

Formally, relation R is difuntional i�

R ◦R
∪
◦R ⊆ R .(33)

As for pers, there are several equivalent de�nitions of \difuntional". We begin with the

point-free de�nitions:

Theorem 34 For all R , the following statements are all equivalent.
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(i) R is difuntional (i.e. R ◦R
∪
◦R ⊆ R ) ,

(ii) R = R ◦R
∪
◦R ,

(iii) R> ◦R\R = R
∪
◦R ,

(iv) R≻ = R
∪
◦R ,

(v) R/R ◦R< = R ◦R
∪

,

(vi) R≺ = R ◦R
∪

,

(vii) R = R∩ (R\R/R)∪ .

✷

The equivalene of 34(i) and 34(ii) is well-known and due to Riguet [Rig48℄; the equiva-

lene of 34(i), (iv) and (vi) is due to Voermans [Voe99℄. The equivalene of 34(i), (iii) and

(v) is formally stronger: a onsequene is that, if R is difuntional,

R≻ = R> ◦R\R ∧ R≺ = R/R ◦R< .(35)

(Cf. (24).) De�nition (33) is the most useful when it is required to establish that a partiular

relation is difuntional, whereas properties 34(ii)-(vii) are more useful when it is required to

exploit the fat that a partiular relation is difuntional.

The ombination of theorem 34 (in partiular 34(ii) and 34(iv) with lemma 32 allows one

to prove that a per is a symmetri difuntion. (We leave the easy alulation to the reader.)

This property is sometimes used to speialise properties of difuntions to properties of pers.

3.5 Squares and Rectangles

We now introdue the notions of a \retangle" and a \square"; retangles are typially het-

erogeneous whilst squares are, by de�nition, homogeneous relations. Squares are retangles;

properties of squares are typially obtained by speialising properties of retangles.

Definition 36 (Rectangle and Square) A relation R is a retangle i� R=R◦⊤⊤◦R . A

relation R is a square i� R is a symmetri retangle.

✷

It is easily shown that a retangle is a difuntion and a square is a per.

Lemma 37 For all relations R and S , R◦⊤⊤◦S is a retangle. It follows that R◦T◦S is a

retangle if T is a retangle.

Proof Beause the proof is based on the one rule, a ase analysis is neessary. In the ase

that either R or S is the empty relation, the lemma learly holds (beause R◦⊤⊤◦S is the

empty relation, and the empty relation is a retangle). Suppose now that both R and S are

non-empty. Then
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R◦⊤⊤◦S◦⊤⊤◦R◦⊤⊤◦S

= { one rule: (4) (applied twie), assumption: R 6=⊥⊥ and S 6=⊥⊥ }

R◦⊤⊤◦S .

If T is a retangle, R◦T◦S=R◦T◦⊤⊤◦T◦S ; thus R◦T◦S is a retangle.

✷

3.6 Isomorphic Relations

The (yet-to-be-de�ned) ores and indexes of a given relation are not unique; in ommon

mathematial jargon, they are unique \up to isomorphism". In order to make this preise,

we need to de�ne the notion of isomorphi relation and establish a number of properties.

Definition 38 Suppose R and S are two relations (not neessarily of the same type).

Then we say that R and S are isomorphi and write R∼=S i�

〈∃φ,ψ

: φ ◦φ
∪ = R< ∧ φ

∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S>

: R = φ ◦S ◦ψ
∪

〉 .
✷

The relation between R and S in de�nition 38 an be strengthened to the onjuntion

R = φ ◦S ◦ψ
∪

∧ φ
∪
◦R ◦ψ = S .(39)

Alternatively, the leftmost onjunt an be replaed by the rightmost onjunt. This is a

onsequene of the following lemma.

Lemma 40 For all φ , ψ , R and S ,

(R = φ ◦S ◦ψ
∪ ≡ φ

∪
◦R ◦ψ = S)

⇐ φ ◦φ
∪ = R< ∧ φ

∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S> .

✷

We often hoose one or other of the onjunts in (39), whihever being most onvenient

at the time.

Lemma 41 The relation

∼= is reexive, transitive and symmetri. That is,

∼= is an

equivalene relation.

✷

The task of proving that two relations are isomorphi involves onstruting φ and ψ that

satisfy the onditions of the existential quanti�ation in de�nition 38; we all the onstruted

values witnesses to the isomorphism.

Note that the requirement on φ in de�nition 38 is that it is both funtional and injetive;

thus it is required to \witness" a (1{1) orrespondene between the points in the left domain

of R and the points in the left domain of S . Similarly, the requirement on ψ is that it

\witnesses" a (1{1) orrespondene between the points in the right domain of R and the

points in the right domain of S . Formally, R<
and S<

are isomorphi as \witnessed" by φ

and R>
and S>

are isomorphi as \witnessed" by ψ :
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Lemma 42 Suppose R and S are relations suh that R∼=S . Then R<∼=S<
and R>∼=S>

.

Spei�ally, if φ and ψ witness the isomorphism R∼=S ,

R< = φ ◦S< ◦φ
∪

∧ R> = ψ ◦S> ◦ψ
∪

.

Proof Suppose φ and ψ are suh that

φ ◦φ
∪

= R< ∧ φ
∪
◦φ = S< ∧ ψ ◦ψ

∪

= R> ∧ ψ
∪
◦ψ = S> .

Then

R<

= { R<
is a oreexive }

R< ◦R<

= { assumption }

φ ◦φ
∪
◦φ ◦φ

∪

= { assumption }

φ ◦S< ◦φ
∪

.

That is R< = φ ◦S< ◦φ
∪

. Similarly, R> = ψ ◦S> ◦ψ
∪

. But also (beause the domain opera-

tors are losure operators),

φ ◦φ
∪

= (R<)< ∧ φ
∪
◦φ = (S<)< ∧ ψ ◦ψ

∪

= (R>)> ∧ ψ
∪
◦ψ = (S>)> .

Applying de�nition 38 with R,S,φ,ψ := R< , S< ,φ ,φ and R,S,φ,ψ := R> , S> ,ψ ,ψ , the lemma

is proved.

✷

The property of the left and right domains stated in lemma 42 is also valid for the left

and right per domains:

Lemma 43 Suppose R and S are relations suh that R∼=S . Then R≺∼=S≺
and R≻∼=S≻

.

Spei�ally, if φ and ψ witness the isomorphism R∼=S ,

R≺ = φ ◦S≺ ◦φ
∪

∧ R≻ = ψ ◦S≻ ◦ψ
∪

.

Proof Suppose φ and ψ witness the isomorphism R∼=S . We show that the pair (ψ,ψ)

witnesses the isomorphism R≻∼=S≻
. By assumption, ψ ◦ψ

∪ = R>
, ψ

∪
◦ψ = S>

. Moreover,

for all R , (R≻)> = (R≻)< = R>
; thus ψ ◦ψ

∪ = (R≻)> and ψ
∪
◦ψ = (S≻)> . So it remains to

show that R≻ = ψ ◦S≻ ◦ψ
∪

. Now

R≻ = ψ ◦S≻ ◦ψ
∪

⇐ { transitivity }

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

.

The alulation thus splits into two steps: the proof of the leftmost equality and the proof of

the rightmost equality. The leftmost equality proeeds as follows.

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪

= { (27), ψ ◦S≻ ◦ψ
∪

is a per (see below) }

R = R ◦ψ ◦S≻ ◦ψ
∪

.
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Continuing with the right hand side:

R ◦ψ ◦S≻ ◦ψ
∪

= { R = φ ◦S ◦ψ
∪

}

φ ◦S ◦ψ
∪
◦ψ ◦S≻ ◦ψ

∪

= { ψ
∪
◦ψ = S>

, domains: (14) and (29) }

φ ◦S ◦ψ
∪

= { see lemma 41 }

R .

Combining the two alulations, we have established that

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪

.

Now, for the rightmost equality, we have:

R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

= { (R≻)< = R>
, domains: (14) }

R> ◦R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

= { R> = ψ ◦ψ
∪

}

ψ ◦ψ
∪
◦R≻ ◦ψ ◦S≻ ◦ψ

∪ = ψ ◦S≻ ◦ψ
∪

⇐ { Leibniz }

ψ
∪
◦R≻ ◦ψ ◦S≻ = S≻

= { onverse (noting that R≻
and S≻

are symmetri) }

S≻ ◦ψ
∪
◦R≻ ◦ψ = S≻

= { (27), ψ
∪
◦R≻ ◦ψ is a per (see below) }

S ◦ψ
∪
◦R≻ ◦ψ = S

= { as above, with R,S,ψ := S ,R ,ψ∪

}

true .

Note that the usage of (27) relies on the fat that both ψ ◦S≻ ◦ψ
∪

and ψ
∪
◦R≻ ◦ψ are pers.

The straightforward proof is omitted.

✷

Lemma 44 A relation R is isomorphi to a oreexive i� R is a bijetion.

Proof The proof is by mutual impliation. Suppose �rst that R is a bijetion. That is,

R ◦R
∪

= R< ∧ R
∪
◦R = R> .

We prove that R is isomorphi to R<
. (Symmetrially, R is isomorphi to R>

.) For the

witnesses we take R<
and R . Instantiating de�nition 38, we have to verify that

R< ◦ (R<)
∪

= R< ∧ (R<)
∪
◦R< = R< ∧ R ◦R

∪

= (R<)> ∧ R
∪
◦R = R>

and

R< = R< ◦R ◦R
∪

.



13

The veri�ation is a straightforward appliation of properties of the left domain operator.

Now suppose that oreexive p is isomorphi to R . Suppose the witnesses are φ and

ψ . That is,

φ ◦φ
∪

= p ∧ φ
∪
◦φ = R< ∧ ψ

∪
◦ψ = R>

(45)

and

p = φ ◦R ◦ψ
∪

.(46)

Then

R<

= { φ
∪
◦φ = R< = R< ◦R< }

φ
∪
◦φ ◦φ

∪
◦φ

= { φ ◦φ
∪ = p = p ◦p

∪

}

φ
∪
◦p ◦p

∪
◦φ

= { (46) }

φ
∪
◦φ ◦R ◦ψ

∪
◦ (φ ◦R ◦ψ

∪)∪ ◦φ

= { onverse }

φ
∪
◦φ ◦R ◦ψ

∪
◦ψ ◦R

∪
◦φ

∪
◦φ

= { (45) }

R< ◦R ◦R> ◦R
∪
◦R<

= { domains: (14) }

R ◦R
∪

.

We onlude that R< = R ◦R
∪

. Symmetrially, R> = R
∪
◦R . That is, R is a bijetion.

✷

Theorem 47 Suppose P is a per. Then,

P< = P ⇐ P< ∼= P .

In partiular, for all R ,

R< = R≺ ⇐ R< ∼= R≺ .

Symmetrially, for all R ,

R> = R≻ ⇐ R> ∼= R≻ .

Proof This is an instane of lemma 44. Spei�ally, assuming that P< ∼= P , we may

apply the instantiation p,R := P< , P in lemma 44 to dedue that P is a bijetion. That is,

P ◦P
∪ = P<

. But P is a per (i.e. P = P ◦P
∪

). So we onlude that

P=P< .

That, for all R , R<=R≺
if R< ∼= R≺

now follows by making the instantiation P :=R≺
and

using the fat that (R≺)<=R<
. The symmetri property of the right domain operators follows

by making the instantiation P :=R≻
and using the fat that (R≻)<=R>

.

✷
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4 Indexes and Core Relations

This setion introdues the notions of \index" and \ore" of a relation. An \index" is a

speial ase of a \ore" of a relation but, in general, it is more useful. The properties of both

notions are explored in depth.

4.1 Indexes

Reall �g. 1. We said that the middle and rightmost �gures depit \ore relations". The

property that is ommon to both is aptured by the following de�nition.

Definition 48 (Core Relation) A relation R is a ore relation i� R<=R≺
and R>=R≻

.

✷

The rightmost �gure of �g. 1 is what we all an \index" of the relation depited by the

leftmost �gure. The de�nition of an \index" of a relation is as follows.

Definition 49 (Index) An index of a relation R is a relation J that has the following

properties:

(a) J⊆R ,

(b) R≺ ◦ J ◦R≻ = R ,

(c) J< ◦R≺ ◦ J< = J< ,

(d) J> ◦R≻ ◦ J> = J> .

✷

Note partiularly requirement 49(a). A onsequene of this requirement is that an index

of a relation has the same type as the relation. This means that the relation depited by the

middle �gure of �g. 1 is not an index of the relation depited by the leftmost �gure beause

the relations have di�erent types.

An obvious property is that a ore relation is an index of itself:

Theorem 50 Suppose R is a ore relation. Then R is an index of R .

Proof Straightforward appliation of de�nitions 48 and 49 together with the properties of

(oreexive and per) domains.

✷

In general, the existene of an index of an arbitrary relation is not derivable in systems

that axiomatise point-free relation algebra. In setion 5.2 we add a limited form of the axiom

of hoie that guarantees the existene of indexes of arbitrary pers; we also show that this

then guarantees the existene of indexes for arbitrary relations. For the moment, we establish

a number of properties of indexes assuming they exist. For example, we show that all indexes

of a given relation are isomorphi: see theorem 60.
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Lemma 51 If J is an index of the relation R then

J≺ ⊆ R≺ ∧ J≻ ⊆ R≻ .

It follows that

J< = J≺ ∧ J> = J≻ .

That is, an index is a ore relation.

Proof We �rst prove that J≺ ⊆ R≺
.

R≺

= { de�nition }

R//R ◦ R<

⊇ { 49(a) and monotoniity }

R//R ◦ J<

⊇ { see below }

J≺ .

The last step in the above alulation proeeds as follows.

J≺ ⊆ R//R ◦ J<

⇐ { (J≺)> = J< (so J≺ = J≺ ◦ J< ) and J< ◦ J< = J<

monotoniity }

J≺ ⊆ R//R

= { de�nition of R//R }

J≺ ⊆ R/R ∩ (R/R)∪

= { J≺ = (J≺)∪ }

J≺ ⊆ R/R

= { shunting }

J≺ ◦R ⊆ R .

We ontinue with the lefthand side of the above inlusion.

J≺ ◦R

= { 49(b) }

J≺ ◦R≺ ◦ J ◦R≻

= { (J≺)>= J< and domains: (14) }

J≺ ◦ J< ◦R≺ ◦ J< ◦ J ◦R≻

= { 49() }

J≺ ◦ J< ◦ J ◦R≻

= { (orefexive and per) domains: (14) and (29) }

J ◦R≻

⊆ { 49(a) }

R ◦R≻

= { per domains: (29) }

R .
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We onlude that J≺ ⊆ R≺
. The equation J≺= J< uses anti-symmetry.

J≺

⊇ { per domains: (25), and reexivity of J//J }

J<

= { 49() }

J< ◦R≺ ◦ J<

⊇ { J≺ ⊆ R≺
(see above), omposition of oreexives is idempotent }

J< .

The other two properties are symmetrial.

✷

An immediate orollary of lemma 51 is the following theorem.

Theorem 52 If J is an index (of some relation) then J is an index of J .

Proof Suppose J is an index of R . Then we have to prove the properties 49(a), (b), ()

and (d) with R := J. These are the properties:

(e) J⊆ J ,

(f) J≺ ◦ J ◦ J≻ = J ,

(g) J< ◦ J≺ ◦ J< = J< ,

(h) J> ◦ J≻ ◦ J> = J> .

Properties (e) and (f) are true of all relations J . Properties (g) and (h) follow from lemma

51 and the fat that omposition of oreexives is idempotent.

✷

The indexes of a relation are uniquely de�ned by their left and right domains. See orollary

54, whih is an immediate onsequene of the following lemma.

Lemma 53 Suppose J is an index of the relation R . Then

J = J< ◦R ◦ J> .

Proof

J

= { domains: (14) }

J< ◦ J ◦ J>

= { 49() and (d) }

J< ◦R≺ ◦ J< ◦ J ◦ J> ◦R≻ ◦ J>

= { domains: (14) }

J< ◦R≺ ◦ J ◦R≻ ◦ J>

= { 49(b) }

J< ◦R ◦ J> .

✷
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Corollary 54 Suppose J and K are both indexes of the relation R . Then

J=K ≡ J<=K< ∧ J>=K> .

Proof Impliation is an immediate onsequene of Leibniz's rule. For the \if" part, we

assume that J<=K<
and J>=K>

. Then

J

= { J is an index of R , lemma 53 }

J< ◦R ◦ J>

= { assumption: J<=K< ∧ J>=K> }

K< ◦R ◦K>

= { K is an index of R , lemma 53 with J :=K }

K .

✷

The following lemma beomes relevant when we study indexes of difuntions. (See setion

5.1.)

Lemma 55 Suppose J is an index of R . Then

R ◦ J
∪
◦R = R ◦R

∪
◦R .

Proof

R ◦ J
∪
◦R

= { per domains: (24) and (25) }

R ◦R≻ ◦ J
∪
◦R≺ ◦R

= { 49(b) and onverse }

R ◦R
∪
◦R .

✷

We now formulate a ouple of lemmas that lead to lemma 58 whih, in turn, leads to

theorem 59.

Lemma 56 Suppose J is an index of R . Then R≺ ◦ J< ◦R≺
and R≻ ◦ J> ◦R≻

are pers.

Proof We prove that

R≺ ◦ J< ◦R≺ = R≺ ◦ J< ◦R≺ ◦ (R≺ ◦ J< ◦R≺)
∪

.

We have:

R≺ ◦ J< ◦R≺ ◦ (R≺ ◦ J< ◦R≺)∪

= { R≺
is a per, J< is a oreexive, onverse }

R≺ ◦ J< ◦R≺ ◦ J< ◦R≺

= { 49() }

R≺ ◦ J< ◦R≺ .

✷
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Lemma 57 Suppose J is an index of R . Then

(R≺ ◦ J< ◦R≺)< = R< .

Symmetrially,

(R≻ ◦ J> ◦R≻)> = R> .

Proof

(R≺ ◦ J< ◦R≺)<

= { domains: theorem 19(), (R≺)< = R< }

(R≺ ◦ J< ◦R<)<

= { by 49(a), J<⊆R<
, domains }

(R≺ ◦ J)<

= { by 49(a), J>⊆R>
, domains }

(R≺ ◦ J ◦R>)<

= { domains: theorem 19(), (R≻)< = R> }

(R≺ ◦ J ◦R≻)<

= { 49(b) }

R< .

✷

Lemma 58 Suppose J is an index of R . Then

(a) R≺ ◦ J< ◦R≺ = R≺ ,

(b) R≻ ◦ J> ◦R≻ = R≻ .

Proof

R≺

= { R≺
is a per }

R≺ ◦R≺ ◦R≺

⊇ { R≺⊇R< }

R≺ ◦R< ◦R≺

⊇ { J is an index of R ; de�nition 49(a) and monotoniity }

R≺ ◦ J< ◦R≺

= { R≺
is a per }

R≺ ◦ J< ◦R≺ ◦R≺

⊇ { lemma 56: R≺ ◦ J< ◦R≺
is a per }

(R≺ ◦ J< ◦R≺)< ◦ R≺

= { lemma 57 }

R< ◦ R≺

= { (R≺)< = R< }

R≺ .
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By anti-symmetry of the subset relation we have proved (a). Property (b) is symmetrial.

✷

Theorem 59 Suppose J is an index of R . Then J< is an index of R≺
and J> is an index

of R≻
.

Proof We prove that J< is an index of R≺
. That J> is an index of R≻

is symmetrial.

Instantiating de�nition 49 with R,J := R≺ , J< , our task is to prove the four properties:

(a) J< ⊆ R≺ ,

(b) (R≺)≺ ◦ (J<)< ◦ (R≻)≺ = R≺ ,

(c) (J<)< ◦ (R≺)≺ ◦ (J<)< = (J<)< ,

(d) (J<)> ◦ (R≺)≻ ◦ (J<)> = (J<)> .

The proof of property (a) is straightforward:

J< ⊆ R≺

⇐ { R<⊆R≺
, transitivity }

J< ⊆ R<

⇐ { monotoniity }

J⊆R

= { J is an index of R , 49(a) }

true .

Property (b) simpli�es using the fat that (R≺)≺=R≺
, (R≻)≺=R≻

and J<=(J<)< to:

(b’) R≺ ◦ J< ◦R≻ = R≺ ,

This is the �rst of the two properties proved in lemma 58. Using the fat that (R≺)≺=R≺
and

J<=(J<)< , property () is the same as property () of de�nition 49; similarly, using the fat

that R≺=(R≺)≻ , and J<=(J<)> , property (d) is also the same as property () of de�nition

49.

✷

We show later that the onverse of theorem 59 is a presription for onstruting an index

of an arbitrary relation. See theorem 76.

Theorem 60 If R and S are isomorphi relations then indexes of R and S are also

isomorphi. In partiular, indexes of a relation R are isomorphi.

Proof Suppose φ and ψ witness the isomorphism R∼=S and J is an index of R and K

is an index of S . We verify that λ and ρ de�ned by

λ = J< ◦R≺ ◦φ ◦S≺ ◦K< ∧ ρ = J> ◦R≻ ◦ψ ◦S≻ ◦K>

witness the isomorphism J∼=K .

The task is to verify that

J< = λ ◦λ
∪

∧ λ
∪
◦λ = K< ∧ ρ ◦ρ

∪

= J> ∧ ρ
∪
◦ρ = K>

and
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J = λ ◦K ◦ρ
∪

.

The four domain properties are all essentially the same so we only verify the �rst onjunt:

λ ◦λ
∪

= { de�nition, onverse }

J< ◦R≺ ◦φ ◦S≺ ◦K< ◦S≺ ◦φ
∪
◦R≺ ◦ J<

= { K is an index of S , lemma 56 with J,R :=K,S }

J< ◦R≺ ◦φ ◦S≺ ◦φ
∪
◦R≺ ◦ J<

= { theorem 60 }

J< ◦R≺ ◦R≺ ◦R≺ ◦ J<

= { R≺
is a per, J is an index of R , de�nition 49() }

J< .

Finally,

λ ◦K ◦ρ
∪

= { de�nition, onverse }

J< ◦R≺ ◦φ ◦S≺ ◦K< ◦K ◦K> ◦S≻ ◦ψ
∪
◦R≻ ◦ J>

= { domains: (14) }

J< ◦R≺ ◦φ ◦S≺ ◦K ◦S≻ ◦ψ
∪
◦R≻ ◦ J>

= { K is an index of S , de�nition 49(b) }

J< ◦R≺ ◦φ ◦S ◦ψ
∪
◦R≻ ◦ J>

= { R = φ ◦S ◦ψ
∪

}

J< ◦R≺ ◦R ◦R≻ ◦ J>

= { per domains: (29) }

J< ◦R ◦ J>

= { J is an index of R , de�nition 49(b) }

J .

That the indexes of a relation R are isomorphi follows beause R is isomorphi to itself

(with witnesses R<
and R>

), i.e. the isomorphism relation is reexive.

✷

The onstrution of the witnesses λ and ρ looks very muh like the proverbial rabbit out

of a hat! In fat, they were alulated using the type judgements formulated in Voermans'

thesis [Voe99℄. We hope at a later date to exploit Voermans' alulus in order to make the

proess of onstruting witnesses muh more methodial.

4.2 Core Relations

Indexes are a speial ase of what we all \ore" relations. (Reall de�nition 48.) This setion

is about the properties of a \ore" of a given relation R , �rst introdued in [BO23℄.

Definition 61 (Core) Suppose R is an arbitrary relation and suppose C is a relation

suh that

C = λ ◦R ◦ρ
∪
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for some relations λ and ρ satisfying

R≺ = λ
∪
◦λ ∧ λ< = λ ◦λ

∪

∧ R≻ = ρ
∪
◦ρ ∧ ρ< = ρ ◦ρ

∪

.

Then C is said to be a ore of R as witnessed by λ and ρ .

✷

(The terminology just introdued antiipates theorem 65 whih establishes that a ore of

a relation is indeed a ore relation aording to de�nition 48.)

The existene of a ore of a given relation R has a onstrutive element: it is neessary to

onstrut the \witnesses" λ and ρ . In general, given a per P , a funtional relation f with

the property that P equals f
∪
◦ f is alled a \splitting" of P . Construting a ore of relation

R thus involves \splitting " the pers R≺
and R≻

into funtional relations λ and ρ . As with

indexes, the existene of ores is not derivable in point-free relation algebra. However, just

as for indexes, all ores of a given relation are isomorphi in the sense of de�nition 38. See

setion 6 for further disussion of the onstrution of ores of pers.

Immediately obvious is that an index of a relation is a ore of the relation:

Theorem 62 Suppose R is an arbitrary relation and suppose J is an index of R . Then

J is a ore of R as witnessed by J< ◦R≺
and J> ◦R≻

.

Proof First,

J

= { lemma 53 }

J< ◦R ◦ J>

= { per domains: (29) }

J< ◦R≺ ◦R ◦R≻ ◦ J>

= { onverse, domains are oreexive }

(J< ◦R≺) ◦R ◦ (J> ◦R≻)∪ .

This establishes the required property of C in de�nition 61, with C := J . (The parentheses

in the last line of the alulation indiate the de�nitions of the splittings λ and ρ .) Seond,

(J< ◦R≺)∪ ◦ J< ◦R≺

= { onverse, (R≺)∪ =R≺
and (J<)∪ ◦ J< = J< }

R≺ ◦ J< ◦R≻

= { lemma 58 }

R≺ .

Third,

J< ◦R≺ ◦ (J< ◦R≺)∪

= { onverse, (J<)∪ = J< and R≺ ◦ (R≺)∪ = R≺ }

J< ◦R≺ ◦ J<

= { J is an index of R , de�nition 49() }

J<
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= { theorem 59; in partiular, J<⊆R< }

(J< ◦R<)<

= { (R≺)<=R<
, domains: theorem 19() }

(J< ◦R≺)< .

This establishes the required properties of λ in de�nition 61 (with λ := J< ◦R≺
). The prop-

erties of ρ in de�nition 61 (with ρ := J> ◦R≻
) are established similarly.

✷

Fig. 2 illustrates theorem 62 applied to the relation introdued in �g. 1. The index J is

depited by the green edges in the lower bipartite graph. The deomposition of the relation

in the de�nition of a ore is illustrated by the row of bipartite graphs at the top; the relations

depited are, in order, λ
∪

, λ , R , ρ and ρ
∪

. The omposition of the middle three �gures is

the index J .

Figure 2: Deomposition of a Relation into a Core and Witnesses

A number of properties of indexes are derived from the fat that indexes are ores. The

remainder of this setion atalogues suh properties.

The name \ore" in de�nition 61 antiipates theorem 65 where we show that the relation

C is a ore relation as de�ned by de�nition 48. Some preliminary lemmas are needed �rst.

For later use, we alulate the left and right domains of the ore of a relation.

Lemma 63 Suppose R , λ , ρ and C are as in de�nition 61. Then

R< = λ> ∧ C< = λ< ∧ R> = ρ> ∧ C> = ρ< .

Proof We prove the middle two equations. First,

R>

= { (31) }

(R≻)<

= { de�nition 61 }
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(ρ∪
◦ρ)<

= { domains }

ρ> .

The dual equation, R< = λ>
, is proved similarly. Seond,

C<

= { de�nition 61 }

(λ ◦R ◦ρ
∪)<

= { R> = ρ>
(just proved) }

(λ ◦R ◦R>)<

= { domains: (14) }

(λ ◦R<)<

= { R< = λ>
(see above) }

λ< .

The �nal equation is also proved similarly.

✷

Lemma 64 Suppose R , λ , ρ and C are as in de�nition 61. Suppose also that J is an

index of R . Then C∼= J as witnessed by λ ◦ J< and ρ ◦ J> .

Proof We onstrut the witnesses as follows.

C

= { de�nition 61 }

λ ◦R ◦ρ
∪

= { J is an index of R , de�nition 49(b) }

λ ◦R≺ ◦ J ◦R≻ ◦ρ
∪

= { de�nition 61 }

λ ◦λ
∪
◦λ ◦ J ◦ρ

∪
◦ρ ◦ρ

∪

= { λ and ρ are funtional,

so λ< = λ ◦λ
∪

and ρ< = ρ ◦ρ
∪

}

λ ◦ J ◦ρ
∪

= { domains: (14) and onverse }

λ ◦ J< ◦ J ◦ (ρ ◦ J>)∪ .

Comparing the last line with the de�nition of an isomorphism of relations (de�nition 38 with

the instantiation R,S,φ,ψ := C , J , λ ◦ J< , ρ ◦ J> ), we postulate λ ◦ J< and ρ ◦ J> as witnesses

to the isomorphism.

It remains to show that λ ◦ J< and ρ ◦ J> are bijetions on the appropriate domains. First,

(ρ ◦ J>)∪ ◦ρ ◦ J>

= { onverse }

J> ◦ρ
∪
◦ρ ◦ J>

= { de�nition 61 }
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J> ◦R≻ ◦ J>

= { J is an index of R , de�nition 49(d) }

J> .

Symmetrially,

(λ ◦ J<)
∪
◦λ ◦ J< = J< .

Finally, )

(ρ ◦ J>)<

= { ρ is funtional, and ρ
∪
◦ρ = R≻

,

i.e. ρ = ρ ◦ρ
∪
◦ρ = ρ ◦R≻ }

(ρ ◦R≻ ◦ J>)<

= { J>⊆R>
and R>=(R≻)> }

(ρ ◦R≻ ◦ J> ◦ (R≻)>)<

= { domains: theorem 19(b) and (), R≻=(R≻)∪ }

(ρ ◦ R≻ ◦ J> ◦R≻)<

= { domains: theorem 19() }

(ρ ◦ (R≻ ◦ J> ◦R≻)<)<

= { lemmas 56 and 57(b) }

(ρ ◦ R>)<

= { (31) and domains: theorem 19() }

(ρ ◦ R≻)<

= { ρ = ρ ◦R≻
(see �rst step) }

ρ<

= { lemma 63 }

C> .

Symmetrially, (λ ◦ J<)<=C<
.

Putting all the alulations together, we onlude that λ ◦ J< and ρ ◦ J> are bijetions;

the left domain of λ ◦ J< is C<
and its right domain is J< ; the left domain of ρ ◦ J> is C>

and its right domain is J> .

✷

We now prove the theorem alluded to by the nomenlature of de�nition 61, namely any

ore of a given relation R is a ore relation in the sense of de�nition 48.

Theorem 65 Suppose C is a ore of R . Then, if R has an index,

C≻ = C>
, and(66)

C≺ = C< .(67)

That is, if R has an index, any ore C of R is a ore relation. (See de�nition 48.)

Proof Assume that J is an index of R . The proof is a ombination of several preeding

lemmas and theorems.
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C≺ = C<

⇐ { theorem 47 }

C≺ ∼= C<

⇐ { Leibniz }

J≺= J< ∧ C≺ ∼= J≺ ∧ J< ∼= C<

⇐ { index J is a ore relation (lemma 51) }

C≺ ∼= J≺ ∧ J< ∼= C<

⇐ { lemmas 43 and 42 }

C ∼= J

= { lemma 64 }

true .

✷

Note Theorem 65 assumes that relation R has an index J . Likewise, a orollary of

lemma 64 is that, assuming relation R has an index, all ores of R are isomorphi. It is

straightforward to prove that all ores of R are isomorphi without the assumption that R

has an index. Similarly, theorem 65 an be proved without this assumption but the proof is

quite long and omplex. See [Ba21℄ for full details.

We argue later that this assumption has no pratial signi�ane: in setion 5.3 we show

that every relation R has an index if both its per domains have an index. This means that,

for a given R , it is neessary to alulate indies of R≺
and R≻

; however, in pratie, this is

not an issue. End of Note

5 Indexes of Difunctions and Pers

5.1 Indexes of Difunctions

We now speialise the notion of index to difuntions.

Lemma 68 Suppose J is an index of relation R and J is difuntional. Then R is

difuntional.

Proof

R ◦R
∪
◦R

= { J is an index of R , lemma 55 }

R ◦ J
∪
◦R

= { J is an index of R , 49(b) }

R≺ ◦ J ◦R≻ ◦ J
∪
◦R≺ ◦ J ◦R≻

= { domains: (14) and theorem 19(b) }

R≺ ◦ J ◦ J> ◦R≻ ◦ J> ◦ J
∪
◦ J< ◦R≺ ◦ J< ◦ J ◦R≻

= { J is an index of R , 49(d) and () }

R≺ ◦ J ◦ J> ◦ J
∪
◦ J< ◦ J ◦R≻

= { domains: (14) and theorem 19(b), and J is difuntional (i.e. J = J ◦ J
∪
◦ J ) }

R≺ ◦ J ◦R≻

= { 49(b) }

R .
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✷

The property that R is a difuntion is equivalent to R≺ = R ◦R
∪

(and symmetrially to

R≻ = R
∪
◦R ). Also, sine R = R ◦R

∪
◦R , the right side of lemma 55 simpli�es to R . In this

way, the de�nition of an index of a difuntion an be restated as follows.

Definition 69 (Difunction Index) An index of a difuntion R is a relation J that has

the following properties:

(a) J⊆R ,

(b) R ◦ J
∪
◦R = R .

(c) J< ◦R ◦R
∪
◦ J< = J< ,

(d) J> ◦R
∪
◦R ◦ J> = J> ,

✷

Lemma 70 An index J of a difuntion R is a bijetion between J< and J> .

Proof

J<

= { 69() }

J< ◦R
∪
◦R ◦ J<

⊇ { 69(a) }

J< ◦ J
∪
◦ J ◦ J<

= { domains: (14) and theorem 19(b) }

J
∪
◦ J

⊇ { domains: de�nition 11 }

J< .

Thus, by anti-symmetry,

J< = J
∪
◦ J .

Symmetrially, J> = J ◦ J
∪

. That is, J is a bijetion.

✷

Corollary 71 formulates a method to determine whether a relation is a difuntion: ompute

an index of the relation and then determine whether it is a difuntion. By 49(a), the seond

step in this proess will be no less eÆient than determining difuntionality diretly and, in

many ases, may be substantially more eÆient. (There is, however, no guarantee of improved

eÆieny sine the inequality in 49(a) may be an equality.)

Corollary 71 Suppose J is an index of relation R . Then R is a difuntion i� J is a

difuntion.

Proof Lemma 68 establishes \if". Lemma 70 establishes \only if" (sine a bijetion is a

difuntion).

✷
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5.2 Indexes of Pers

That every difuntion has an index is a desirable property but it is not provable in standard

axiomati formulations of relation algebra. Rather than postulate its truth, we shall postulate

that all pers have an index, and then show that a onsequene of the postulate is that all

difuntions have an index.

A relation R is a per i� R=R≺=R≻
. Using this property, the de�nition of index an

be simpli�ed for pers. Spei�ally, an index J of per R has the following properties. (Cf.

de�nition 49.)

(a) J⊆R ,

(b) R◦J◦R = R ,

(c) J< ◦R ◦ J< = J< ,

(d) J> ◦R ◦ J> = J> .

Lemmas 72 and 73 prepare the way for de�nition 74.

Lemma 72 If a per has an index, then it has an index that is a oreexive.

Proof Suppose R is a per and J is an index of R . The lemma is proved if we show that

J< is an index of R . We thus have to prove that

(e) J<⊆R ,

(f) R ◦ J< ◦R = R ,

(g) (J<)< ◦R ◦ (J<)< = (J<)< ,

(h) (J>)> ◦R ◦ (J>)> = (J>)> ,

assuming the properties (a), (b), () and (d) above.

Of the four properties, only (f) is non-trivial. (Properties (g) and (h) follow beause

J<=(J<)< and J>=(J>)> . Property (e) follows beause, sine R is a per, R<⊆R .)

Property (f) is proved as follows.

R ◦ J< ◦R

= { by lemma 70, J ◦ J
∪ = J< }

R ◦ J ◦ J
∪
◦R

= { domains: (14) }

R ◦ J ◦ J> ◦ J
∪
◦R

= { (d) }

R ◦ J ◦ J> ◦R ◦ J> ◦ J
∪
◦R

= { domains: (14) }

R ◦ J ◦R ◦ J
∪
◦R

= { (b) }

R ◦ J
∪
◦R

= { R is a per, so R=R∪

; onverse }
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(R◦J◦R)∪

= { R is a per, so R=R∪

; (b) and onverse }

R .

✷

Lemma 73 For all pers R , if R has an index then there is a relation J suh that

(a) J⊆R< ,

(b) J◦R◦J = J ,

(c) R◦J◦R = R .

Conversely, for all pers R , if relation J satis�es the properties (a), (b) and () above, then J

is an index of R .

Proof First, suppose R is a per that has an index. By lemma 72, R has a oreexive index.

Let J be suh a oreexive index of R . We must show that properties (a), (b) and () hold.

We have

J⊆R<

⇐ { 49(a) and monotoniity }

J= J<

= { J is a oreexive }

true .

This proves (a). Now for (b):

J◦R◦J

= { J is a oreexive, so J= J< ,

R is a per, so R=R≺ }

J< ◦R≺ ◦ J<

= { 49() }

J<

= { J is a oreexive, so J= J< }

J .

Finally, ():

R◦J◦R

= { R is a per, so R=R≺ }

R≺ ◦ J ◦R≺

= { 49(b) }

R .

For the onverse, assume R is a per and J satisi�es the properties (a), (b) and () above.

We have to hek the four properties listed in de�nition 49. First, 49(a):
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J

⊆ { assumption: (a) above }

R<

⊆ { R is per }

R .

The properties 49(b), () and (d) follow beause J= J<= J> and R=R≺=R≻
.

✷

As a onsequene of lemma 73, we postulate the following de�nition of an index of a per.

Definition 74 (Index of a Per) Suppose P is a per. Then a (oreexive) index of P

is a relation J suh that

(a) J⊆P< ,

(b) J◦P◦J = J ,

(c) P◦J◦P = P .

✷

We also postulate that every per has a oreexive index. We all this the axiom of hoie.

Axiom 75 (Axiom of Choice) Every per has a oreexive index.

✷

5.3 From Pers To Relations

It is a desirable property that every relation has an index. However, as mentioned earlier,

this an't be proved in standard relation algebra. It an be proved if we assume that every

per has an index. The onstrution is suggested by theorem 59.

Theorem 76 Suppose J and K are (oreexive) indies of R≺
and R≻

, respetively.

Then J◦R◦K is an index of R .

Proof For onveniene, we list the properties of J and K. These are obtained by instanti-

ating de�nition 74 with J,R := J ,R≺
and J,R := K ,R≻

. (Domain properties have been used

to simplify (a) and (d).)

(a) J⊆R< ,

(b) J ◦R≺ ◦ J = J ,

(c) R≺◦ J ◦R≺ = R≺ ,

(d) K⊆R> ,

(e) K ◦R≻ ◦K = K ,

(f) R≻◦K ◦R≻ = R≻ .
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We have to prove the four properties 49(a)-(d) with the instantiation J,R := J◦R◦K ,R . By

(a), J= J∪= J<= J> . Similarly for K . The proof obligations are thus:

(g) J◦R◦K ⊆ R ,

(h) R≺ ◦ J ◦R ◦K ◦R≻ = R .

(i) (J◦R◦K)< ◦R≺ ◦ (J◦R◦K)< = (J◦R◦K)< ,

(j) (J◦R◦K)> ◦R≻ ◦ (J◦R◦K)> = (J◦R◦K)> ,

Property (g) is an easy ombination of (a) and (d). For (h) we have:

R≺ ◦ J ◦R ◦K ◦R≻

= { per domains: (29) }

R≺ ◦ J ◦R≺ ◦R ◦R≻ ◦K ◦R≻

= { (b) and (f) }

R≺ ◦R ◦R≻

= { per domains: (29) }

R .

For (i), we have

(J◦R◦K)> ◦R≻ ◦ (J◦R◦K)>

= { (J◦R◦K)> ⊆ K> = K ,

omposition of oreexives is intersetion }

(J◦R◦K)> ◦K ◦R≻ ◦K ◦ (J◦R◦K)>

= { (e) }

(J◦R◦K)> ◦K ◦ (J◦R◦K)>

= { (J◦R◦K)> ⊆ K> = K

omposition of oreexives is intersetion }

(J◦R◦K)> .

The proof is (j) is symmetrial.

✷

Theorem 76 shows how to onstrut an index of a relation R from indexes J and K of its

left and right per domains. In ombination with lemma 53 and orollary 54, the onstrution

is unique. Spei�ally, the steps are, �rst to hoose from eah equivalene lass of R≺
and

eah equivalene lass of R≻
a single representative. The olletion of suh representatives

de�nes the oreexives J and K . Then the index is de�ned to be J◦R◦K .

6 Characterisations of Pers and Difunctions

This setion is about haraterising pers and difuntions in terms of funtional relations.

Although the haraterisations are well known, they are not derivable in point-free relation

algebra. We show that they are derivable using our axiom of hoie.
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6.1 Characterisation of Pers

A well-known property is that a relation R is a per i�

〈

∃f : f ◦ f
∪

= f< : R = f
∪
◦ f
〉

.(77)

This property is said to be a harateristi property of pers. Perhaps surprisingly, it is not

derivable in systems that axiomatise point-free relation algebra. Freyd and

�

S�edrov [Fv90,

1.281℄ all the funtional f witnessing the existential quanti�ation a \splitting

2

" of R.

Typially, the existene of \splittings" is either postulated as an axiom (eg. Winter [Win04℄)

or by adding axioms formulating relations as a so-alled \power allegory" [Fv90, 2.422℄, or by

adding the so-alled \all-or-nothing" axiom [Ba21℄. (See setion 7.6 for disussion of \all or

nothing".) See [BO23℄ for a omparison of the tehniques used to establish (77) using these

di�erent axiom systems. Here we show that the existene of \splittings" is a onsequene of

our axiom of hoie:

Theorem 78 If per P has a oreexive index J , then

P = (J◦P)
∪
◦ (J◦P) ∧ J = (J◦P) ◦ (J◦P)

∪

.

Thus, assuming the axiom of hoie, for all relations R ,

per.R ≡
〈

∃f : f ◦ f
∪

= f< : R = f
∪
◦ f
〉

.

Proof The proof is very straightforward. We have

(J◦P)∪ ◦ (J◦P)

= { distributivity }

P
∪
◦ J ◦ J ◦P

= { J is oreexive, so J◦J= J ; P=P∪

}

P◦J◦P

= { J is an index of P , de�nition 74() }

P

and

(J◦P) ◦ (J◦P)∪

= { distributivity }

J ◦P ◦P
∪
◦ J

= { P is a per, so by lemma 32(ii), P = P
∪
◦P }

J◦P◦J

= { J is an index of P , de�nition 74(b) }

J .

2

Freyd and

�

S�edrov de�ne a \splitting" in the more general ontext of a ategory rather than an allegory;

the notion is appliable to \idempotents" whih are also more general than pers.
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This proves the �rst property. It also establishes that (assuming the axiom of hoie), for all

R ,

per.R ⇒
〈

∃f : f ◦ f
∪

= f< : R = f
∪
◦ f
〉

.

(The witness is J◦R .) The onverse is obvious: see [BO23℄ for details. The equivalene follows

by mutual impliation.

✷

A seond so-alled \harateristi" property is that a relation R is a difuntional i�

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪
◦g

〉

.

Like the harateristi property of pers, it is not derivable in systems that axiomatise point-

free relation algebra. It is, however, a orollary of the existene of \splittings" (and thus of

theorem 78), as shown by Winter [Win04℄.

6.2 Unicity of Characterisations

The haraterisation of a per in the form f
∪
◦ f where f is a funtional relation is not unique.

(There are typially many representatives one an hoose for eah equivalene lass; so there

are very many distint indexes of a per.) The haraterisation is sometimes desribed as

being \essentially" unique or sometimes as unique \up to isomorphism". See our working

doument [BV℄ for full details.

7 Enabling Pointwise Reasoning

In this setion, our goal is to apture the notion that a relation is a set with elements pairs

of points.

In traditional pointwise reasoning about relations, a basi assumption is that a type is

a set that forms a omplete, universally distributive lattie under the subset ordering; the

type of a (binary) relation is a set of pairs. The set of relations of a given type thus forms a

powerset of a set of pairs.

In setion 7.1, we reall a general theorem on the struture of powersets. Briey, theorem

81 states that a set is isomorphi to the powerset of its \atoms" i� it is \saturated". The

setion de�nes these onepts; the onepts then form the bakbone of later setions where

we speialise the theorem to relations.

One (of several) mehanisms for introduing pointwise reasoning within the framework

of point-free relation algebra involves the introdution of the so-alled \all-or-nothing rule"

whih was postulated as an axiom by Gl�uk [Gl�u17℄. This rule is ombined with ompleteness

and \extensionality" axioms whih state that, for eah type A , the oreexives of type A

form a omplete, saturated lattie. This was the approah taken in [BDGv22℄ where pointwise

reasoning was used to formulate and prove properties of graphs. Theorem 102 establishes that

the all-or-nothing rule is a onsequene of our axiom of hoie (axiom 75: every per has an

index). Together with the \extensionality" axiom, this enables the appliation of theorem 81

to establish that the type A∼B is isomorphi to the powerset 2A×B (the set of subsets of

the artesian produt A×B ). See theorems 102 and 103 in setion 7.6.
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Setion 7.2 introdues \points" and states the extensionality axiom that we assume. A

number of setions are then neessary in order to establish theorem 103. Setion 7.3 introdues

\partiles" and \pairs"; it is then shown that partiles are points whilst setion 7.4 shows

that |assuming the axiom of hoie| points are partiles. (For this reason, the terminology

\partile" is temporary.) Setion 7.5 shows that proper atoms (of a given type) are \pairs".

These are the ingredients for deriving the \all-or-nothing" rule in setion 7.6. Setion 7.6

also shows that the point-free de�nition of a \pair" in setion 7.3 does orrespond to what

one normally understands to be a pair of points. The setion onludes with theorem 103.

7.1 Powersets

As mentioned above, this setion de�nes \atoms" and \saturated" in the ontext of a partially

ordered set. We then state a fundamental theorem relating these onepts to powersets.

The de�nition of an atom is the following.

Definition 79 (Atom and Atomicity) Suppose A is a set partially ordered by the

relation ⊑ . Then, the element p is an atom i�

〈∀q :: q⊑p ≡ q=p ∨ q=⊥⊥〉 .

Note that ⊥⊥ is an atom aording to this de�nition. If p is an atom that is di�erent from

⊥⊥ we say that it is a proper atom. A lattie is said to be atomi if

〈∀q :: q 6=⊥⊥ ≡ 〈∃a : atom.a∧a 6=⊥⊥ : a⊑q〉〉 .

In words, a lattie is atomi if every proper element inludes a proper atom.

✷

The de�nition of saturated is as follows.

Definition 80 (Saturated) A omplete lattie (ordered by ⊑ ) is saturated i�

〈∀p :: p = 〈⊔a : atom.a ∧ a⊑p : a〉〉 .
✷

The set of subsets of a type is a powerset i� the lattie is saturated, as formulated in the

following theorem.

Theorem 81 Suppose A is a omplete, universally distributive lattie. Then the following

statements are equivalent.

(a) A is saturated,

(b) A is atomi and omplemented,

(c) A is isomorphi to the powerset of its atoms.

✷
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(See [ABH

+
92, theorem 6.43℄ for the proof of theorem 81.)

We use theorem 81 in two ways. Firstly, for all types A , we simply postulate that the set

of oreexives of type A is isomorphi to a powerset under the ⊆ ordering: the atoms are

the \points" introdued in setion 7.2. Seond, we use this postulate together with our axiom

of hoie to show that, for all types A and B , the type A∼B of (heterogeneous) relations

is also isomorphi to a powerset under the ⊆ ordering: the atoms are \pairs" introdued in

setion 7.3. The proof that \pairs" are indeed atoms is the subjet of setion 7.5. A prelude

to this is theorem 94, proved in setions 7.3 and 7.4, is that \points" are a speial ase of

\pairs".

7.2 Points

We begin by postulating that eah type A is a set of \points". We also postulate that the set

of oreexives of type A forms a omplete, universally distributive lattie under the subset

ordering. Finally, we postulate that the lattie is saturated. With theorem 81 in mind, we

de�ne \points" to be the proper atoms of the lattie:

Definition 82 (Point) A homogeneous relation a of type A is a point i� it has the

following three properties.

(a) a 6=⊥⊥ ,

(b) a⊆ I , and

(c) 〈∀b : b 6=⊥⊥ ∧ b⊆a : b=a〉 .

In words, a point is a proper, oreexive atom.

✷

If A is a type, we use a , a ′
et. to denote \points" of type A . Similarly for \points"

of type B . \Points" represent elements of the appropriate type.

For points a and a ′
of the same type,

a=a ′ ∨ a◦a ′=⊥⊥ .(83)

The proof is straightforward. Suppose a and a ′
are points. Then

a=a◦a ′

⇐ { a is an atom, de�nition 79 }

a◦a ′ 6=⊥⊥ ∧ a◦a ′⊆a

⇐ { a ′⊆ I }

a◦a ′ 6=⊥⊥ .

Interhanging a and a ′
,

a ′=a◦a ′
⇐ a ′

◦a 6=⊥⊥ .

But, sine omposition of oreexives is symmetri, a◦a ′=a ′
◦a . We onlude that

a=a◦a ′=a ′
⇐ a◦a ′ 6=⊥⊥ .
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This is equivalent to (83).

In point-free relation algebra, subsets of a type are modelled by oreexives of that type.

In order to model the property that the oreexives of a given type form a lattie that is

isomorphi to the set of subsets of the type we need to add to our axiom system a saturation

property, viz.:

Definition 84 (Saturation) Suppose A is a type. The lattie of oreexives of type A

is said to be saturated i�

〈∀p :: p⊆ IA ≡ p = 〈∪a : point.a ∧ a⊆p : a〉〉 .(85)

✷

The axiom that we all \extensionality" is then:

Axiom 86 (Extensionality) For eah type A , the points of type A form a omplete,

universally distributive, saturated lattie under the subset ordering.

✷

Applying theorem 81, a onsequene of axiom 86 is that the oreexives of type A form

a lattie that is isomorphi to the powerset 2A . In this sense, the oreexives in point-

free relation algebra represent sets of points in traditional pointwise formulations of relation

algebra.

We now want to show how to formulate the property that the set of relations of type A∼B

is isomorphi to the powerset 2A×B , i.e. relations in point-free relation algebra represent pairs

(a, b) of points a and b of type A and B , respetively.

7.3 Pairs and Particles

We now turn our attention to the lattie of relations of a given type. We begin with a point-

free de�nition of a \pair". In subsetion 7.6, we show that de�nition 87 does indeed apture

the notion of a \pair of points" whereby the points are the \partiles" also introdued in the

de�nition.

Definition 87 (Pair) A relation Z is a pair i� it has the following properties:

(a) Z 6=⊥⊥ ,

(b) Z = Z◦⊤⊤◦Z ,

(c) Z< = Z ◦Z
∪

,

(d) Z> = Z
∪
◦Z .

We all a relation a partile if it is a pair and it is symmetri.

✷
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In words, a pair Z is a non-empty \retangle" (properties 87(a) and 87(b)) that is a

\bijetion" on its left domain and right domains (properties 87() and 87(d)).

(De�nition 87 was introdued in [Voe99℄ but using the terminology \singleton" instead of

\pair", and \singleton square" instead of \partile".)

Our goal is to prove that the points are exatly the partiles. This setion is about showing

that a partile is a point. See orollary 92.

One task is to show that partiles are atoms. The more general property, whih we need

in later setions, is that pairs are atoms.

Lemma 88 A pair is an atom.

Proof Suppose Z is a pair and suppose Y is suh that Y⊆Z . By the de�nition of atom,

de�nition 79, we must show that Y=⊥⊥ ∨ Y=Z . Equivalently, assuming Y 6=⊥⊥ , we must

show that Y=Z . This is done as follows.

Y

= { assumption: Y⊆Z . So, Y<⊆Z<
and Y>⊆Z>

; domains: (18) }

Z< ◦Y ◦Z>

= { Z is a pair, so Z< = Z ◦Z
∪ = (Z◦⊤⊤◦Z) ◦Z∪

; similarly for Z> }

Z ◦⊤⊤ ◦Z ◦Z
∪
◦Y ◦Z

∪
◦Z ◦⊤⊤ ◦Z

= { domains: theorem 19(a) and theorem 19(b) }

Z ◦⊤⊤ ◦Z< ◦Y ◦Z> ◦⊤⊤ ◦Z

= { Z< ◦Y ◦Z> = Y (see �rst step above) }

Z◦⊤⊤◦Y◦⊤⊤◦Z

= { assumption: Y 6=⊥⊥ , one rule }

Z◦⊤⊤◦Z

= { Z is a pair }

Z .

✷

Sine a partile is, by de�nition, a pair, we have:

Corollary 89 A partile is an atom.

✷

Lemma 90 A partile is oreexive.

Proof Suppose Z is square and a pair. Then

Z

= { assumption: Z is a pair, so Z=Z◦⊤⊤◦Z ;

[ ⊤⊤◦Z = ⊤⊤ ◦Z< ◦Z = ⊤⊤ ◦Z
∪
◦Z ] }

Z ◦⊤⊤ ◦Z
∪
◦Z

= { assumption: Z is a square, so Z = Z ◦⊤⊤ ◦Z
∪ = Z

∪

}

Z
∪
◦Z

= { assumption: Z is a pair, so Z> = Z
∪
◦Z }

Z> .



37

That is, Z equals Z>
whih is oreexive.

✷

Corollary 91 (Particle) A relation Z is a partile i� it has the following three properties.

(a) Z 6=⊥⊥ ,

(b) Z⊆ I , and

(c) Z = Z◦⊤⊤◦Z .

In words, a partile is a proper, oreexive retangle.

Proof \Only-if" is the ombination of the de�nition of a partile and lemma 90. \If" is a

straightforward onsequene of the properties of domains and oreexives.

✷

Corollary 92 A partile is a proper, oreexive atom. That is, a partile is a point.

Proof This is a ombination of lemmas 88 and 90.

✷

7.4 Points are Particles

We now prove the onverse of orollary 92. We use the assumption that every per has a

oreexive index: the axiom of hoie (axiom 75).

Lemma 93 Assuming axiom 75, a point is a partile.

Proof Suppose that a is a point. Comparing the de�nition of a point, de�nition 82, with

the de�ning properties of a partile, orollary 92, it suÆes to prove that a=a◦⊤⊤◦a . Clearly

a◦⊤⊤◦a is a per. (The simple proof uses the fat that a=a∪

, beause a is oreexive, and

⊤⊤◦a◦⊤⊤=⊤⊤ beause a 6=⊥⊥ .) So, by the axiom of hoie, a◦⊤⊤◦a has an index J , say.

We show that J is a partile and J=a .

To show that J is a partile, we must establish the three properties listed in orollary 91

with the instantiation Z := J . Part (a) is proved as follows.

J=⊥⊥

⇒ { ⊥⊥ is zero of omposition }

a◦⊤⊤◦a◦J◦a◦⊤⊤◦a = ⊥⊥

= { J is an index of per a◦⊤⊤◦a , de�nition 74() }

a◦⊤⊤◦a = ⊥⊥

⇒ { a◦a◦a⊆a◦⊤⊤◦a and a◦a◦a=a (beause a⊆ I ) }

a⊆⊥⊥

= { [ R⊆⊥⊥ ≡ R=⊥⊥ ] with R :=a }

a=⊥⊥

= { assumption: a is proper, i.e. a 6=⊥⊥ }

false .
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We onlude that J 6=⊥⊥ . The next step is to show that J=a .

J=a

⇐ { assumption: a is an atom }

J=⊥⊥ ∨ J⊆a

= { J 6=⊥⊥ (see above) }

J⊆a

= { assumption: a⊆ I , so a=(a◦⊤⊤◦a)< }

J ⊆ (a◦⊤⊤◦a)<

= { assumption: J is an index of a◦⊤⊤◦a

de�nition 74(a) }

true .

Property (b) of orollary 91 immediately follows beause a is oreexive. We now show that

J= J◦⊤⊤◦J .

J◦⊤⊤◦J

= { J=a (proved above) and a⊆ I }

J◦a◦⊤⊤◦a◦J

= { assumption: J is an index of a◦⊤⊤◦a

de�nition 74() with P :=a◦⊤⊤◦a }

J .

We onlude that J=a= J◦⊤⊤◦J . Thus a=a◦⊤⊤◦a as required.

✷

Combining orollary 92 with lemma 93, we onlude:

Theorem 94 Assuming axiom 75, a relation is a point i� it is a partile.

✷

7.5 Proper Atoms are Pairs

The goal of this setion is to show that a proper atom is a pair. Aiming to exploit the

equivalene of points and partiles, we begin with lemmas on the left and right domains of a

proper atom.

Lemma 95 Suppose R is a proper atom. Then R<
and R>

are proper atoms

3

.

Proof First, that R<
and R>

are both proper is immediate from (15).

To show that R<
is an atom we have to show that, for all p ,

p⊆R< ∧ p 6=⊥⊥ ≡ p=R< .

We do this by mutual impliation. First, the follows-from:

3

Note: stritly we should detail the lattie under onsideration here. However, it is easy to show that

a oreexive being an atom in the lattie of oreexives is equivalent to its being an atom in the lattie of

relations. This justi�es the omission.
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p⊆R< ∧ p 6=⊥⊥ ⇐ p=R<

= { prediate alulus }

(p⊆R< ⇐ p=R<) ∧ (p 6=⊥⊥ ⇐ p=R<)

⇐ { left onjunt: anti-symmetry, right onjunt: Leibniz }

true ∧ R< 6= ⊥⊥

⇐ { R<
is proper (see above) }

true .

Now we prove the onverse. Assume p⊆R<
and p 6=⊥⊥ . Then

p=R<

= { anti-symmetry and assumption: p⊆R< }

R< ⊆ p

⇐ { assumption: p⊆R<
and R<⊆ I , so p=p<

; (p◦R)<⊆p< }

R< = (p◦R)<

⇐ { Leibniz }

R = p◦R

= { p◦R 6= ⊥⊥ (see below for proof)

R is an atom, de�nition 79 (appropriately instantiated) }

p◦R ⊆ R

= { assumption: p⊆R<
and R<⊆ I , monotoniity }

true .

In order to verify the penultimate step in the above alulation, we show that p◦R=⊥⊥ ⇒ false

under the assumption that p⊆R<
and p 6=⊥⊥ .

p◦R=⊥⊥

= { one rule: (4) }

⊤⊤◦p◦R◦⊤⊤ = ⊥⊥

= { domains: theorem 19(a) }

⊤⊤ ◦p ◦R< ◦⊤⊤ = ⊥⊥

⇒ { assumption: p⊆R<
, omposition of oreexives is intersetion }

⊤⊤◦p◦⊤⊤ = ⊥⊥

= { assumption: p 6=⊥⊥ , one rule: (4) }

false .
✷

Corollary 96 If R is a proper atom, R<
and R>

are partiles.

Proof By lemma 95 and de�nition 82 of a point, if R is a proper atom, R<
and R>

are

points. Thus, by lemma 93, R<
and R>

are partiles.

✷

We now aim to verify properties 87(b), () and (d) of a pair, with Z instantiated to

proper atom R . Property 87(b) is the following lemma.

Lemma 97 A proper atom is a retangle.
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Proof Suppose R is a proper atom. Then

R ◦⊤⊤ ◦R

= { domains: theorem 19(a) }

R< ◦ ⊤⊤ ◦ R>

= { R 6=⊥⊥ , one rule: (4) }

R< ◦ ⊤⊤ ◦ R ◦ ⊤⊤ ◦ R>

= { domains: (14) }

R< ◦ ⊤⊤ ◦ R< ◦ R ◦ R> ◦ ⊤⊤ ◦ R>

= { by orollary 96, R<
and R>

are partiles;

orollary 91() with Z :=R<
and Z :=R> }

R< ◦ R ◦ R>

= { domains: (14) }

R .

That is, R ◦⊤⊤ ◦R = R . Thus, by de�nition, R is a retangle.

✷

We now have all the ingredients for our goal.

Lemma 98 Suppose R is a proper atom. Then, assuming axiom 75, R is a pair.

Proof Suppose R is a proper atom. We have to verify properties 87(b), () and (d) (with

Z :=R ) of a pair.

Property 87(b) is lemma 97. Properties 87() and (d) assert that R is a bijetion. To

prove this, let J be an index of R . (This is where axiom 75 is assumed.) Then

J=R

= { R is an atom }

J 6=⊥⊥ ∧ J⊆R

= { J is an index of R , de�nition 49 }

true .

That is, J=R . But R is a retangle and thus a difuntion. So, applying lemma 70, J |and

thus R| is a bijetion, as required.

✷

To onlude this setion and setions 7.3 and 7.4, we have:

Theorem 99 Assuming axiom 75, for all types A and B , and all relations R of type

A∼B , R is a proper atom i� R is a pair.

Proof This is a ombination of lemmas 88 and 98.

✷

7.6 Pairs of Points and the All-or-Nothing Rule

The �nal step is to show that we an derive the \all-or-nothing" rule.

Lemma 100 If Z is a pair then Z<
and Z>

are partiles.
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Proof Suppose Z is a pair. We begin by showing that its left and right domains are also

pairs.

Properties 87(a), () and (d) |with Z :=Z<
and Z :=Z>

| are properties of the domain

operators . This leaves 87(b). For the instane Z :=Z<
, we have:

Z< ◦⊤⊤ ◦Z<

= { domains: theorem 19(a) and (b) }

Z ◦⊤⊤ ◦Z ◦Z
∪

= { assumption: Z is a pair, so Z◦⊤⊤◦Z=Z }

Z ◦Z
∪

= { assumption: Z is a pair, so Z ◦Z
∪ = Z< }

Z< .

The proof that Z>
is a pair is symmetrial.

It now follows immediately that Z<
and Z>

are squares: a square is a symmetri ret-

angle, and both are retangles (see above); also, both are oreexives, and oreexives are

symmetri.

✷

The following theorem is [Voe99, lemma 4.41(d)℄.

Theorem 101 For all Z ,

pair.Z ≡ 〈∃a,b : point.a∧ point.b : Z=a◦⊤⊤◦b〉 .

Proof By mutual impliation. First,

pair.Z

⇒ { lemma 100;

de�nition 87(b) and [ Z◦⊤⊤◦Z = Z< ◦⊤⊤ ◦Z> ] }

particle . Z< ∧ particle . Z> ∧ Z = Z< ◦⊤⊤ ◦Z>

⇒ { orollary 92 }

point . Z< ∧ point . Z> ∧ Z = Z< ◦⊤⊤ ◦Z>

⇒ { a,b := Z< , Z> }

〈∃a,b : point.a∧point.b : Z=a◦⊤⊤◦b〉 .

For the onverse, assume that a and b are points. We have to prove that a◦⊤⊤◦b is a pair.

Applying de�nition 87, this means heking four properties:

(a) a◦⊤⊤◦b 6= ⊥⊥ ,

(b) a◦⊤⊤◦b = a◦⊤⊤◦b◦⊤⊤◦a◦⊤⊤◦b ,

(c) (a◦⊤⊤◦b)< = (a◦⊤⊤◦b) ◦ (a◦⊤⊤◦b)∪ ,

(d) (a◦⊤⊤◦b)> = (a◦⊤⊤◦b)∪ ◦ (a◦⊤⊤◦b) .

Properties (a) and (b) are instanes of the one rule together with the assumption that a

and b are proper. We prove () as follows.
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(a◦⊤⊤◦b) ◦ (a◦⊤⊤◦b)∪

= { onverse }

a ◦⊤⊤ ◦b ◦b
∪
◦⊤⊤ ◦a

= { assumption: b is a point, one rule: (4) }

a◦⊤⊤◦a

= { assumption: a is a point; so, by orollary 93, a is a pair;

de�nition 87(b) with Z :=a }

a

= { a◦⊤⊤◦b is a non-empty retangle }

(a◦⊤⊤◦b)< .

Property (d) is proved symmetrially.

✷

We onlude with the theorem that Gl�uk's \all-or-nothing" axiom [Gl�u17℄ is a onse-

quene of our axiom of hoie.

Theorem 102 (All or Nothing)

〈∀a,b,R : point.a∧point.b : a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 .

Proof Suppose a and b are points. By theorem 101, a◦⊤⊤◦b is a pair. So, by lemma 88,

a◦⊤⊤◦b is an atom. Applying the de�nition of atomi, we have, for all R ,

true

= { monotoniity, R⊆⊤⊤ }

a◦R◦b ⊆ a◦⊤⊤◦b

= { a◦⊤⊤◦b is an atom, de�nition 79 }

a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b .

✷

The signi�ane of the all-or-nothing rule is that, together with theorem 81, it follows

that the lattie of relations of type A∼B is isomorphi to the powerset 2A×B .

Theorem 103 Suppose, for types A and B , the latties of oreexives of types A and B

are both extensional (i.e. omplete, universally distributive and saturated). Then the lattie

of relations of type A∼B is saturated; the atoms are elements of the form a◦⊤⊤◦b where a

and b are atoms of the poset of oreexives (of types A and B , respetively). It follows

that, if the lattie of relations of type A∼B is omplete and universally distributive, it is

isomorphi to the powerset of the set of elements of the form a◦⊤⊤◦b where a and b are

points of types A and B , respetively.

Proof By theorems 101 and 99, a◦⊤⊤◦b is an atom. It suÆes to prove that the lattie of

relations of type A∼B is saturated. This is easy: for all R of type A∼B ,

R

= { I is unit of omposition,

latties of oreexives of types A and B are extensional }

〈∪a :point.a :a〉 ◦R ◦ 〈∪b :point.b :b〉
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= { distributivity of omposition over ∪ }

〈∪a,b : point.a∧point.b : a◦R◦b〉

= { all-or-nothing rule: theorem 102, ⊥⊥ is zero of supremum }

〈∪a,b : point.a ∧ point.b ∧ a◦R◦b 6=⊥⊥ : a◦⊤⊤◦b〉 .

That the lattie of relations is a powerset follows from theorem 81. By theorem 101, every

pair is a relation of the form a◦⊤⊤◦b ; also, by lemma 88, a◦⊤⊤◦b is an atom.

✷

Summarising theorem 103, the saturation property is that

〈∀R :: R = 〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉〉 .(104)

Combining theorem 103 with theorem 81, we get the irreduibility property: if R is a

funtion with range relations of type A∼B and soure K , then, for all points a and b of

appropriate type,

a◦⊤⊤◦b ⊆ ∪R ≡ 〈∃k : k∈K : a◦⊤⊤◦b⊆R.k〉 .(105)

Property (104) formalises the interpretation of the property a◦⊤⊤◦b⊆R as the property

(a, b)∈R in standard set-theoreti aounts of relation algebra.

Theorem 103 assumes that the latties of oreexives (of appropriate type) are extensional.

Conversely, if we assume that, for all types A and B , the lattie of relations of type A∼B

is extensional then so is the lattie of oreexives of type A , for all A . This is theorem 106.

(The proof of theorem 106 an be found in the ompanion doument [BV℄.)

Theorem 106 Suppose, for all types A and B , the lattie of relations of type A∼B is

extensional, whereby the atoms are elements of the form a◦⊤⊤◦b where a and b are atoms

of the poset of oreexives (of types A and B , respetively). Then, for all A , the lattie of

oreexives of type A is extensional.

✷

Combining theorems 103 and 106, we get:

Corollary 107 Suppose, for all types A and B , the lattie of relations of type A∼B is

omplete and universally distributive. Then for all types A and B , the lattie of relations

of type A∼B is extensional i� for all types A , the lattie of oreexives of type A is

extensional.

✷

Although the saturation property allows us to identify atoms of the form a◦⊤⊤◦b with

elements (a, b) of the set A×B , it does not establish that the operators of relation algebra

(onverse, omposition et.) orrespond to their standard set-theoreti interpretations. This

is straightforward. For example, for omposition we have, for all R and S ,

R◦S

= { saturation: (104) }

〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉 ◦ 〈∪b ′,c : b ′
◦⊤⊤◦c⊆S : b ′

◦⊤⊤◦c〉

= { distributivity }
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〈∪a,b,b ′,c : a◦⊤⊤◦b⊆R ∧ b ′
◦⊤⊤◦c⊆S : a◦⊤⊤◦b◦b ′

◦⊤⊤◦c〉

= { b and b ′
are points, so b◦b ′ 6=⊥⊥ ≡ b ′=b

ase analysis on b ′=b ∨ b ′ 6=b , one-point rule }

〈∪a,b,c : a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c ⊆ S : a◦⊤⊤◦b◦b◦⊤⊤◦c〉

= { b ranges over points, so b◦b=b 6=⊥⊥ , one rule: (4) }

〈∪a,b,c : a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c ⊆ S : a◦⊤⊤◦c〉

= { range disjuntion }

〈∪a,c : 〈∃b :: a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c⊆S〉 : a◦⊤⊤◦c〉 .

Comparing the �rst and last lines of this alulation (and interpreting a◦⊤⊤◦b⊆R as (a, b)∈R

and b◦⊤⊤◦c⊆S as (b, c)∈S ) we reognise the standard set-theoreti de�nition of R◦S .

The important step to note in the above alulation is the use of the distributivity of

omposition over union. The validity of suh universal distributivity | both from the left

and from the right| is a onsequene of the Galois onnetions (5) and (6) de�ning fators.

A similar step needed in the alulation for onverse relies on the fat that onverse is the

upper and lower adjoint of itself.

We onlude this setion with a brief omparison of extensionality as formulated here

with the notion of extensionality formulated by Voermans [Voe99℄.

Voermans [Voe99, setion 4.5℄ postulated that the lattie of binary relations of a given

type is saturated by relations of the form X◦⊤⊤◦Y where X and Y are partiles. Relations

of this form are then shown to model pairs (x, y) in standard set-theoreti presentations of

relation algebra. Here, we have postulated that eah type A forms a lattie that is saturated

by points : see axiom 86; this postulate is ombined with our axiom of hoie: all pers have an

index. Then pairs in standard set-theoreti presentations of relation algebra are modelled by

relations of the form a◦⊤⊤◦b , where a and b are points. Beause partiles are points (orol-

lary 92), the saturation property postulated by Voermans is formally stronger than axiom

86. As a onsequene, it beomes slightly harder to establish that, for example, the omposi-

tion of two relations does indeed orrespond to the set-theoreti notion of omposition. (See

[Voe99, setion 4.5℄ for details of what is involved.) More importantly, the ombination of

axioms 75 and 86 failitates a better separation of onerns: axiom 75 provides a powerful

extension of point-free reasoning, whilst axiom 86 �lls the gap where pointwise reasoning is

unavoidable.

8 Conclusion

Point-free relation algebra has been developed over many, many years (beginning in the 19th

entury) and is generally regarded as a muh better basis for the development of the theory of

relations than pointwise reasoning. However, for pratial appliations, pointwise reasoning

is at times unavoidable. For example, path-�nding algorithms on graphs must ultimately

be expressed in terms of the nodes and edges of the graph (the points and elements of the

relation de�ned by the graph). Good pratie is to develop suh algorithms in a stepwise

fashion, beginning with point-free reasoning (typially using regular algebra) and delaying

the introdution of points until absolutely neessary.

It is ommon pratie to represent an equivalene relation by hoosing a spei� element of
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eah equivalene lass. For example, the lass of integers modulo 3 is ommonly represented

by the set of three elements 0 , 1 and 2 . The haraterisation of an equivalene relation

by a representative funtion is not derivable in point-free relation algebra sine there is

a onstrutive element in the hoie of representatives. Extensions to point-free relation

algebra, suh as the postulate that relations form a so-alled \power allegory" [Fv90, 2.4℄,

are intended to enable pointwise reasoning but nevertheless fail to properly apture the use

of representatives. Our axiom of hoie (axiom 75) together with our point-free formulation

of the notion of an index of a relation does apture the use of representatives. The strength

of the axiom together with the fat that an index of a relation has the same type as the

relation makes the notion of an index |in our view| very attrative and useful. Moreover,

its ombination with the extensionality axiom (axiom 86) permits the derivation of Gl�uk's

\all-or-nothing" axiom [Gl�u17℄. In this way, point-free reasoning has been strengthened whilst

also failitating pointwise reasoning when unavoidable.

It might be argued that our axiom of hoie is too strong. On the ontrary, we would

argue that it orresponds muh better to standard pratie. For example, the omputation of

the strongly onneted omponents of a graph involves omputing a representative node for

eah omponent. (Tarjan [Tar72℄, Sharir [Sha81℄, Aho, Hoproft and Ullman [AHU82℄ and

Cormen, Leiserson, Rivest and Stein [CLRS09, p.619℄ all the representative of a strongly

onneted omponent of a graph the \root" of the omponent; Cormen, Leiserson and Rivest

[CLR90, p.490℄ all it the \forefather" of the omponent.) A suggestion for future work

is to exploit our notion of an index in order to reformulate |muh more suintly| the

properties of depth-�rst searh that underlie its e�etiveness in suh omputations.

Our fous in this paper has been on doumenting the properties of indexes and the

onsequenes for axiom systems enabling pointwise reasoning. The original motivation for this

work was, however, quite di�erent. Seventy years ago, in a series of publiations [Rig48, Rig50,

Rig51℄, Jaques Riguet introdued the notions of a \relation difontionelle", the \di��erene"

of a relation and \relations de Ferrers". In view of possible pratial impliations, partiularly

in respet of relational databases, our goal was to bring Riguet's work up to date, making

it more aessible to modern audienes. In the proess, we began to realise that substantial

improvements ould be made by introduing the notions of \ore" and \index" of a relation,

drawing inspiration from Voerman's [Voe99℄ notion of the (left- and right-) per domains of a

relation. The results of this work are doumented in the ompanion working doument [BV℄.

We plan to submit a separate paper reporting on this aspet of our work in the near future.
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