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1 What’s It All About?

It took Courant and Robbins [3] more than 500 pages to answer the question
“What is Mathematics?”. The name “Mathematics of Program Construc-
tion” given to the conference first held in 1989 and chaired by Jan van de
Snepscheut was chosen with much care but the question exactly what it
names is as hard to answer as Courant and Robbins’ question, if not more
so. After all, Mathematics is a discipline that has been in existence for more
than 2000 years whereas the Mathematics of Program Construction is not yet
a recognised field with recognised paradigms and/or results. The question
is in fact “what should constitute the mathematics of program construction
and what goals should scientists endeavouring to develop it into a recognised
field have?”. This paper presents one view on the answer to that question.

1.1 Construction

We begin with “construction” because, of the three terms, “mathematics”,
“program” and “construction”, this is the one that is the most characteristic
of the field we are striving to create.

Construction is building: designing and making things that do not ex-
ist. The word “construction” was deliberately included in the title of the
1989 conference because, at that time, the sum of “mathematics” and “pro-
gramming” was commonly associated with program verification. The same
misconception still seems to prevail.

It’s easy to find examples illustrating the difference between construction
and verification. The first time that I can recall having been aware of the
difference was when I was taught that the sum of the consecutive numbers
1, 2, . . . , n is 1/2 n (n+1) . It must have been about the same time that I
read how Gauss constructed this property (actually a particular instance of
a more general property [1], but let’s not be pedantic) as a young child by
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mentally writing down the row of numbers and underneath it the same of
row of numbers but in reverse order:

1 2 . . . n− 1 n
n n− 1 . . . 2 1

Observing that the sum of two numbers in the same column is constantly
n+1 and that there are n such sums, Gauss was thus able to construct the
general formula.

Although the construction of this property is easy to explain, the prop-
erty was introduced to me and my class to illustrate the process of verifying
formulae by mathematical induction. Particularly disconcerting was that,
when the step was taken to considering the sum of the squares or the cubes
of the first n numbers (thus 12+22+. . .+n2 or 13+23+. . .+n3 ) there was
no question whatsoever of presenting a method of constructing the appropri-
ate formula; instead the formulae were fished out of the blue and subjected
to verification by mathematical induction. My teacher was frank in his ad-
mission that he had no idea how to construct any of these formulae let alone
extend the list to higher powers.

I do not suppose that my experience was atypical. There is a major
tendency, in publications of all kinds, to verify rather than construct. A
solution is presented and its validity is checked. The problem is that it takes
considerably more time and effort to explain the process of construction than
it does to verify a solution. Moreover, construction requires a higher degree
of abstraction.

1.2 Program Construction

Constructive problem solving is a vast field. Program construction is much
narrower but nevertheless pretty vast.

Lest the reader make unwarranted assumptions, it is important to say at
the outset that “program construction” is not synonymous with the design of
algorithms or “programming in the small”. Program construction includes
the whole process from problem analysis through design to final product.
Programs can vary from large systems incorporating millions of lines of code
to small algorithms of less than ten lines.

Of course, it is not the case that the mathematics of program construction
can have relevance to all aspects of program construction. Indeed, it probably
has relevance to only a few — there are many management and human issues
involved in large projects that mathematics does not claim to even attack let
alone posit solutions.
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The leitmotif of program construction is the tension between precision
and concision. By their very nature, computers demand an unprecedented
and unnatural degree of precision from their programmers —they are after all
just machines whose task it is to mechanically carry out our instructions—.
Programmers and users alike, however, demand concision because our brains
are just not capable of coping with substantial amounts of detail.

Precision and concision tend to conflict with each other, the one being
most often achieved at the expense of the other. The reconciliation of preci-
sion with concision is a major intellectual challenge; new it may not be, but
intense and vital it certainly is thanks to the electronic computer.

1.3 Mathematics

Concision is evident in systems design as uniformity —the minimisation of
ad hoc features and the maximisation of utility. Concision is achieved by
abstraction, the process of eliminating unnecessary detail typically by gen-
eralisation.

Mathematics is the one science that seeks to combine rigour with ab-
straction, and thus to reconcile precision with concision. The mathemat-
ics of program construction, whose subject matter is mathematically-based
methodologies for building computer software, aims to improve our intellec-
tual skills in recognising, formulating and exploiting suitable abstractions in
the process of designing computer software.

2 Contribution

2.1 Potential

Idealistic goals are one thing, but the demand most usually made is for
concrete “results”. Mathematicians are often obliged to walk a tightrope.
Among themselves they will agree that the most important contribution of
mathematics is that indefinable entity called “the mathematical method”
and they will take great pleasure in the beauty and, above all, simplicity of
a tightly constructed argument; to other scientists and particularly to the
man in the street they will emphasise “results”, the inherent difficulty of the
problems they tackle, the complexity of their solutions and the genius of the
solver.

The mathematics of program construction has no such identity crisis. It is
not result-oriented but method-oriented. Its goal is to enhance the problem-
solving techniques needed to design and build computer software. Its aim is
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to achieve the utmost simplicity, so that the method may be emulated by
others and not remain the preserve of an elite.

We are not trying to signal the discovery of a panacea; there is no “silver
bullet” that can offer a dramatic effect on programming practice.

The areas of mathematics that are of most relevance to programming
are algebra and logic. Algebra is particularly relevant because it epitomises
usability and reusability, the two most essential characteristics of a computer
program. Algebra epitomises usability because it stresses the formulation of
simple calculational rules, for example the associativity of multiplication and
addition; the rules are usable because they are simple and concise. Algebra
epitomises reusability because it stresses the identification of abstractions
that are common to a variety of mathematical domains, associativity being
again a good example; good abstractions are reusable because they occur
again and again even outside the areas in which they were first identified.
Logic is relevant to programming because it is the glue that binds together
all the (algebraic) reasoning that is used in program design [4].

This is not to say that every programmer should be subjected to a lengthy
apprenticeship in advanced algebra and advanced logic before being allowed
to embark on a profession in the software industry. The practising program-
mer needs to be skilled in using logic and algebra rather than be a logician or
an algebraicist. Those whose goal it is to improve the programming method,
on the other hand, need to be all three — good programmers, good logicians
and good algebraicists!

2.2 The Ideal

Without a shadow of a doubt, the best illustration of the potential benefits
of reconciling precision with concision is afforded by the Algol 60 report [5].
The Algol 60 report introduced the so-called Backus-Naur form (BNF) for
precisely describing the syntax of a programming language. The simplicity
and concision of BNF not only made it much easier for newcomers to learn
Algol 60, it made a significant contribution to the structure of programming
languages and their compilers.

The Algol 60 report struck a judicious balance between formality and
informality based on the state of the art at the time it was written. By so
doing it set a standard of communication that is rarely equalled. As our
fluency with mathematical reasoning increases we can expect the balance to
tip more and more towards formality without impeding communication or
understanding. That is the ideal for which we are striving.
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3 Conclusion

The developed world has great expectations of its scientists and technologists.
This in spite of the fact that, according to a number of leading figures, science
and technology have relevance to at best one tenth of the world’s problems,
and, according to a recent survey, only thirteen percent of the population of
the U.S. has “a minimally acceptable level of understanding of the process
of science”.

The expectations and ignorance of society at large are often exploited by
the scientists themselves in their rush to win the hearts and minds of those
who hold the purse strings; the almost magical development of computer
hardware over the last thirty years has led society to expect similar magi-
cal developments in computer software. As a result, short term marketing
policy driven by a fear of losing the national software industry, rather than
the pursuit of knowledge or the development of the intellect, continues to
impede the development of the science of computing. But the demise of in-
tellectual capital is the most serious threat to a nation’s welfare. The folly of
expecting magical solutions could not be better expressed than by the words
of Frederick P. Brookes [2] when he wrote:

The first step toward the management of disease was replacement
of demon theories and humours theories by the germ theory. That
very step, the beginning of hope, in itself dashed all hopes of
magical solutions. It told workers that progress would be made
stepwise, at great effort, and that a persistent, unremitting care
would have to be paid to a discipline of cleanliness. So it is with
software engineering today.

And so it is with the mathematics of program construction.
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