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In a paper I reeived from Martin Simons the following theorem is veri�ed.

Let X and Y be sets and suppose there exist one-to-one maps f∈X→Y and g∈Y→X .

Then there exists a bijetive map h from X onto Y.

The proof Martin sent me uses a lemma (\Banah Deomposition") whih omes out

of the blue. I wanted to see if I ould onstrut a proof of the theorem | rather than

verify the theorem. This note desribes the outome.

First, I found it bene�ial to translate the theorem into the algebra of relations. Given

are two relations f and g. Both are funtional and injetive, and the range of the one is

ontained in the domain of the other. That is,

f∪ ◦ f = rng.f ⊑ dom.g = g ◦g∪
(1)

and

g∪ ◦g = rng.g ⊑ dom.f = f ◦ f∪ .(2)

(The ondition f∪ ◦ f = rng.f expresses that f is funtional { from left to right {, the

ondition dom.g = g ◦g∪
that g is injetive.)

Required is to onstrut two relations h and k suh that

h=k∪
(3)

h◦k= dom.f(4)

k◦h=dom.g .(5)

This then is the problem. Apart from reformulating it in the algebra of relations I have

also introdued the funtion k for the simple reason that by doing so the symmetry

between f and g remains intat.

Using (2) and (3) we an rewrite (4) into the form

h ◦h∪ = f ◦ f∪ .(6)
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Similarly, (5) an be rewritten into the form

k ◦k∪ = g ◦g∪ .(7)

The obvious assignments h := f and k :=g do not however neessarily satisfy (3).

On the other hand, the assignments h := f and k := f∪ satisfy (4) and (6) but not

neessarily (7). Dually, the assignments h :=g and k :=g∪
satisfy (4) and (7) but not

neessarily (6). The solution would thus seem to be to assign to h some ombination of

f and g∪
, and to k some ombination of f∪ and g. Let us therefore introdue monotypes

(\guards") A and B and postulate

h = A◦f ⊔ ¬A ◦g∪
(8)

and

k = B◦g ⊔ ¬B ◦ f∪ .(9)

(Note that the form of these postulates has been arefully hosen so as to retain the

symmetry in the problem.)

Now we try to solve (3) through (9). We begin with (3).

h=k∪

≡ { (8) and (9), onverse }

A◦f ⊔ ¬A ◦g∪ = g∪ ◦B ⊔ f ◦¬B

⇐ { Leibniz and ommutativity of ⊔ }

A◦f = f ◦¬B ∧ ¬A ◦g∪ = g∪ ◦B

≡ { onverse }

A◦f = f ◦¬B ∧ B◦g = g ◦¬A .

Thus we demand

A◦f = f ◦¬B(10)

and

B◦g = g ◦¬A .(11)

The follows-from step above may seem to be very oarse, but it is justi�ed by the fat that

the only known relationship between f and g is the relationship between their domains.

In the next step we use some elementary domain alulus.
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A◦f = f ◦¬B

≡ { domain translation (exploiting dom.f = f ◦ f∪) }

f ◦ rng.(A◦f) = f ◦¬B

⇐ { Leibniz }

rng.(A◦f)=¬B .

Symmetrially,

B◦g = g ◦¬A ⇐ rng.(B◦g)=¬A .

We therefore replae (10) and (11) by

rng.(A◦f)=¬B(12)

rng.(B◦g)=¬A .(13)

The key step is to observe that (12) and (13) do have (simultaneous) solutions in the

unknowns A and B. Spei�ally, by eliminating B we obtain the requirement on A

rng.(¬(rng.(A◦f)) ◦g)=¬A .

But the funtion A 7→¬(rng.(¬(rng.(A◦f)) ◦g)) is monotoni (sine rng is monotoni and

¬ is anti-monotoni). Moreover, the relations (of a given type) form a omplete lattie

under the usual subset ordering. The funtion thus has a �xed point { ourtesy of the

Knaster-Tarski theorem. Equally, the funtion B 7→¬(rng.(¬(rng.(B◦g)) ◦ f)) also has a

�xed point, and substituting the two �xed points for A and B, respetively, we obtain a

solution to the two requirements (12) and (13).

It remains to see whether (12) and (13) automatially guarantee (4) and (5). By

symmetry it is suÆient to hek (4). Realling that (12) and (13) are implied by (10)

and (11), we have:

h◦k

= { (8) and (9) }

(A◦f ⊔ ¬A ◦g∪)◦(¬B ◦ f∪ ⊔ B◦g)

= { distributivity }

A ◦ f ◦¬B ◦ f∪ ⊔ A◦f◦B◦g ⊔ ¬A ◦g∪ ◦¬B ◦ f∪ ⊔ ¬A ◦g∪ ◦B ◦g

= { (10) and (11) }

A ◦ f ◦ (A◦f)∪ ⊔ f ◦¬B ◦B ◦g ⊔ g∪ ◦B ◦¬B ◦ f∪ ⊔ (B◦g)∪ ◦B ◦g
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= { domain alulus and (2); monotypes;

monotypes; range alulus and (7) }

dom.(A◦f) ⊔ ⊥⊥ ⊔ ⊥⊥ ⊔ rng.(B◦g)

= { alulus }

dom.(A◦f)⊔ rng.(B◦g)

= { domain alulus; }

A ◦dom.f ⊔ rng.(B◦g)

= { rng.(B◦g)⊑{monotoniity} rng.g⊑{(2)} dom.f }

A ◦dom.f ⊔ rng.(B◦g) ◦dom.f

= { (13) and alulus }

dom.f .

This ompletes the proof.
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