
Factor Theory and the Unity of Opposites

Roland Backhouse

School of Computer Science, University of Nottingham, Nottingham NG8 1BB, England

Preprint submitted to Elsevier January 27, 2016

Factor Theory and the Unity of Opposites

Roland Backhouse

School of Computer Science, University of Nottingham, Nottingham NG8 1BB, England

Abstract

The theory of factors of a regular language is used to illustrate the unity-of-
opposites theorem of Galois connections. Left and right factors of a language
are characterised as unions of right- and left-invariant equivalence classes, re-
spectively, and this characterisation is exploited in the construction of the fac-
tor graph. The factor graph is a representation of the poset of left factors and,
isomorphically by the unity of opposites, the poset of right factors. Two il-
lustrative examples are given, one of which is the failure function used in the
Knuth-Morris-Pratt pattern-matching algorithm.

Keywords: Galois connection, regular algebra, regular language, factor
theory, factor matrix, factor graph, pattern matching

Quien sabe por algebra sabe scientificamente. [Who knows by al-
gebra knows scientifically.] Petrus Nonius Salaciensis (Pedro Nunes
Salaciense), Libro de Algebra, 1567

1. Introduction

In 1971, I chanced upon a thin book entitled “Regular Algebra and Finite
Machines” by J.H. Conway [Con71]. I was attracted by the word “Algebra” in
its title and bought it without hesitation because I was convinced that algebra
is the key to turning the art of programming into a science. It subsequently
formed the basis of much of my PhD thesis [Bac75].

Particularly inspiring for me was Conway’s theory of what he called “factors”
of a regular language and its application to the construction of “biregulators”
and the derivation of regularity-preserving operations on languages. Compared
to some other research papers that I had been wading through, Conway’s book
came as a breath of fresh air. A highlight was page 58 which contains a table
of biregulators; in this table each line is an algebraic formula —in the form of
a “biregulator”— representing a function mapping languages to languages. By
applying the theorem that biregulators preserve regularity, he was thus able

Preprint submitted to Elsevier January 27, 2016

to prove that all the functions in the table map regular languages to regular
languages. Here was evidence indeed of the power of algebra.

Disappointingly, shortly after completing my PhD the relevance of factor
theory had not lived up to my expectations. My enthusiasm was reawakened
when I spotted a connection between the “failure function” that is a vital ele-
ment in the Knuth-Morris-Pratt pattern matching algorithm [KMP77] and the
“factor graph” of a regular language, which notion I had introduced in my the-
sis. With the help of an MSc student, Rudi Lutz, its connection with the KMP
algorithm and its generalisation to sets of patterns [Wei73, AC75] was formu-
lated and published in [BL77]. However the euphoria at this discovery proved
short-lived; I was unable to find further practical applications and —based on
the number of citations of Conway’s book at the time— nor could others. (Al-
though the book has become more widely cited as its author’s fame has grown1,
I still do not know of any publications other than my own or ones written by
my colleagues that make use of and/or extend factor theory.)

It wasn’t until the late 1980s that I began to look again at factor theory
after learning about Galois connections, particularly in the context of relation
algebra. I was inspired because I realised that Conway’s “factors” could be
formulated in terms of Galois connections and that many of his theorems were
instances of more general properties of such connections. For my own benefit, I
wrote a short technical note on the topic but have never attempted to publish
it.

When asked to write an article to celebrate José Nuno Oliveira’s 60th birth-
day, I knew immediately that I should write something about algebra and Galois
connections: for the simple reason that I know that José loves both these top-
ics. Since José already knows about basic factor theory, I looked again at my
thesis to see whether there is anything “new” I could say about factors and
Galois connections. And, indeed, there is! In my thesis, I characterised factors
differently from Conway because this made it easier to formulate an algorithm
to construct the factor graph of a language. On rereading the thesis, I realised
that this alternative characterisation provides a non-trivial illustration of the
“unity-of-opposites” theorem which Lambek and Scott [LS86] describe as “the
most interesting consequence of a Galois correspondence”. (“Unity of oppo-
sites” is the name I have given to the theorem; the name is not used by Lambek
and Scott.) This then is what this paper is about.

To make the contents more accessible to other readers, the paper begins
in section 2 with a short summary of the theory of Galois connections; this is
followed in section 3 by a longer calculational presentation of Conway’s factor
theory that exploits their properties.

The introduction to Galois connections concludes with the unity-of-opposites
theorem. Briefly, the theorem asserts an isomorphism between the partial or-
derings on the image sets of two Galois-connected functions. Its application is

1“Conway” is a common English name; “J.H.Conway” is the now-famous mathematician
John Horton Conway.

3

the subject of section 4. A summary of how the existence of factor graphs is
established for regular languages is given in section 4.1. This is followed by an
algorithm for its construction in section 4.2. It is at this point that we give a
concrete illustration of the unity of opposites. Section 4.3 provides a further il-
lustration based on the failure function used in the Knuth-Morris-Pratt pattern
matching algorithm.

Apart from illustrating the unity-of-opposites theorem, several elements of
the paper are novel in the sense that they have never been published in a journal
or conference paper before now. This includes the calculational presentation of
Conway’s factor theory in section 3, the characterisation of factors as unions
of certain (well-known) equivalence classes in section 3.3, and the algorithm to
compute factor graphs in section 4.2.

2. Galois Connections

2.1. Definition and Examples

A Galois connection involves two partially ordered sets2 (A, ≤) and (B ,�)
and two functions, F ∈A←B and G∈B←A . These four components together
form a Galois connection iff for all x∈B and y∈A the following holds3

F.x≤ y ≡ x�G.y .

This compact definition of a Galois connection was introduced in [Sch53]. We
refer to F as the lower adjoint and to G as the upper adjoint.

Since the context of the main contribution of this paper is language the-
ory, it seems appropriate to use functions on languages as examples of Galois
connections. Suppose T is a finite set. The elements of T are called symbols

and T itself is called the alphabet . A word of length n , where n is a natural
number, is a sequence of symbols of length n . The empty word , denoted by ε ,
is the word of length zero. Concatenation is the operation of forming a word
of length m+n from two words of lengths m and n by appending the latter
after the former. For example, if T = {a,b} then ab and bba are both words
and their concatenation is the word abbba . We use T ∗ to denote the set of all
words. A language over alphabet T is a subset of T ∗ .

Example 1. Below is a list of functions on languages each of which is a
lower adjoint in a Galois connection. Each is followed by details of the Galois
connection.

2Galois connections can be defined for preordered sets but, for our purposes, we restrict
the definition to posets.

3An infix dot is used to denote function application. The symbol “ ≡ ” denotes equality
of booleans (regrettably, often introduced as “if and only if”). We do not use the standard
untyped equality symbol here in order to avoid confusion with continued equalities and in-
equalities, e.g. m<n= p≤ q , which are conventionally read conjunctionally. We do use the
conventional equality symbol for booleans in calculations when the meaning is indeed con-
junctional, i.e. p= q= r means p= q and q= r (and hence also p= r by transitivity of
equality) whatever the type of p , q and r .

4

(a) The boolean-valued function X 7→ (w∈X) that determines whether a fixed
word w is in the given language X.

For all words w , languages X and booleans b ,

w∈X⇒ b ≡ X ⊆ if b → T ∗
✷¬b→¬{w} fi .

(¬{w} denotes the set of all words over alphabet T , but excluding the
word w .) The upper adjoint is thus the function mapping boolean b to4

if b → T ∗
✷¬b→¬{w} fi ,

and the ordering on booleans is “only if”.

(b) The boolean-valued function X 7→ (X⊆L) that determines whether the
given language X is a subset of a fixed language L .

For all languages X and L , and all booleans b ,

X⊆L⇐ b ≡ X ⊆ if b→L ✷ ¬b→T ∗ fi .

The upper adjoint is thus the function mapping boolean b to

if b→L ✷ ¬b→T ∗ fi ,

and the ordering on booleans is “if” (i.e. “⇐ ”).

(c) The function (from languages to numbers) that determines the length of a
shortest word in a given language.

Denoting, the function by the prefix operator “ # ”, we have, for all lan-
guages X and all natural numbers k ,

#X≥k ≡ X⊆T≥k .

(T≥k denotes the set of all words over alphabet T that have length at
least k .) The upper adjoint is thus the function mapping natural number
k to

T≥k

and the ordering on numbers is the at-least ordering.

(d) The function prefix that extends the prefix function on words to languages;
specifically, this is the function from languages to languages defined by,
for all languages L , prefix .L = {u,v : uv∈L : u} 5.

4We use the Guarded Command [Dij76] notation if b→S ✷ c→T fi to denote conditional
statements.

5We use the so-called Eindhoven notation [Dij76] for quantifiers. In particular, bound
variables and their scope are always made explicit. For example, in the expression
{u,v : uv∈L : u} the bound variables are u and v , and their scope is delimited by the

5

For all languages L and M ,

prefix .L ⊆ M ≡ L ⊆ {y | 〈∀u,v : y=uv : u∈M〉} .

The upper adjoint is the function mapping language M to

{y | 〈∀u,v : y=uv : u∈M〉} ,

and the ordering is the subset relation.

✷

2.2. Commutativity Properties

Inverse functions are Galois connected: if f and g are inverse functions
then, for all x and y of appropriate type, f.x= y ≡ x= g.y . (Equality is, of
course, a pre-order.) A vital property of inverse functions is that they have
“inverse” algebraic properties. The exponential function, for instance, has as
its inverse the logarithmic function; moreover,

exp(−x) =
1

expx
and exp(x+ y) = expx · exp y

whereas

−lnx = ln(
1

x
) and lnx+ ln y = ln(x · y) .

In general, if θ and φ are inverse functions then, for any functions f and g
of appropriate type,

〈∀x :: θ.(f.x)= g.(θ.x)〉 ≡ 〈∀y :: f.(φ.y)=φ.(g.y)〉 .

More generally, and expressed at function level, if (θ0 , φ0) and (θ1 , φ1) are
pairs of inverse functions, then for all functions f and g of appropriate type6,

θ0•f = g•θ1 ≡ f•φ1 =φ0
•g . (1)

Algebraic properties like this are the key to efficient computation and a goal of
computing science is to try to predict such properties of unfamiliar functions.

accolades; the variable L is free. The subexpression uv∈L gives the range of the bound
variables and the rightmost occurrence of u is the term of the quantification. The expres-
sion 〈∀ u,v : y= uv : u∈M〉 denotes a universal quantification, with bound variables u and
v whose scope is delimited by the angle brackets; the range is the subexpression y=uv
and the term is u∈M . Occasionally, if there is exactly one bound variable that is the
term of a set-valued quantification, we use the more conventional notation exemplified by
{y | 〈∀ u,v : y=uv : u∈M〉} : importantly, in this example the variable M is free and not
bound.

6Composition of functions is denoted by a raised, bold infix dot. Specifically,
(θ•φ).x= θ.(φ.x) for all functions θ and φ and all values x of appropriate type.

6

Many have the form of what we call “commutativity properties”. Among them
are, for example, the property −(2·x)= 2·(−x) which expresses the fact that
multiplication by 2 commutes with negation. We also include properties like
ln 1

x
=−(lnx) in which the order of application of the logarithmic function is

“commuted” but in so doing a change occurs in the function with which it is
commuted (in this case the reciprocal function becomes negation). In this way,
distributivity properties also become commutativity properties. For instance the
property that x·(y+z)= (x·y)+(x·z) is a commutativity property of addition:
multiplication by x after addition commutes to addition after the function
(y, z) 7→ (x·y , x·z) .

In general, for a given function F we are interested in discovering functions
g and h for which F •g=h•F . In the case that F is defined by a Galois
connection we can often answer this question most effectively by translating it
into a question about the commutativity properties of its adjoint — especially
in the case that the adjoint is a known function with known properties, or a
“trivial” function whose algebraic properties are easily determined.

The rule that is the key to this strategy is the following. Suppose, for
numbers m and n , 0≤m and 0≤n , and for all i , 0≤ i<m+n , (Fi, Gi) is
a Galois-connected pair of functions. Then, assuming the functions are so typed
that the compositions and equalities are meaningful,

F0
• . . . •Fm−1 = Fm• . . . •Fm+n−1 ≡ Gm+n−1

• . . . •Gm = Gm−1
• . . . •G0 .

(2)
(Note that the cases m=0 and n=0 are included; the composition of zero
functions is of course the identity function.) In particular, if for i=0..1 , (hi, ki)
is a Galois-connected pair of functions and so too is (F,G) then

h0
•F =F •h1 ≡ k1•G=G•k0 . (3)

The rule (3) captures the strategy we use to discover algebraic properties of an
unknown function F , namely to translate to the discovery of properties of the
adjoint function.

2.3. Unity of Opposites

Suppose A=(A,⊑) and B=(B,�) are partially ordered sets and f ∈A←B
is a monotonic function. Then an infimum of f is a solution of the equation:

x :: 〈∀a :: x⊒ a ≡ 〈∀b :: f.b⊒a〉〉 . (4)

Equation (4) need not have a solution. If it does, for a given f , we denote its
solution by ⊓f . By definition, then,

〈∀a :: ⊓f ⊒a≡ 〈∀b :: f.b⊒a〉〉 . (5)

The poset A is B -complete if there is a function ⊓ that is the upper adjoint
of the constant combinator K of type (A←B)←A (defined by K.a.b=a for
all a and b). That is, for all a∈A and f ∈A←B ,

⊓f ⊒a ≡ f ⊒̇K.a . (6)

7

(The dot above the ⊒ relation on the right signifies the pointwise extension
of that relation to functions. We frequently make use of pointwise extensions
below, occasionally implicitly.) Dually, a supremum of f is a solution of the
equation:

x :: 〈∀a :: x⊑ a ≡ 〈∀b :: f.b⊑a〉〉 . (7)

As for infima, equation (7) need not have a solution. If it does, for a given f ,
we denote its solution by ⊔f . By definition, then,

〈∀a :: ⊔f ⊑a≡ 〈∀b :: f.b⊑a〉〉 . (8)

The poset A is B -cocomplete if there is a function ⊔ that is the lower adjoint
of the constant combinator. That is, for all a∈A and f ∈A←B ,

⊔f ⊑a ≡ f ⊑̇K.a . (9)

In the above definitions, B is called the shape poset. Examples of the shape
poset are a 2-element set {0,1} ordered by equality —used when defining binary
suprema or infima— and the natural numbers ordered by the at-most relation
—used in defining the notion of continuity of a function— .

Theorem 1 (Unity of Opposites). Suppose F ∈A←B and G∈B←A are
Galois connected functions, F being the lower adjoint and G being the upper
adjoint. Then F.B and G.A are isomorphic posets; in particular, F •G•F =F
and G•F •G=G . Moreover, if one of A or B is C -complete, for some shape
poset C , then F.B and G.A are also C -complete. Assuming that B is C -
complete and C -cocomplete, the supremum and infimum operators are given
by

⊓G.A.f = ⊓B.f

⊔G.A.f = G.(F.(⊔B.f))

⊓F.B.f = F.(⊓B.(G•f))

⊔F.B.f = F.(⊔B.(G•f)) .

✷

Picturing the posets A and B as sets in which larger elements are above
smaller elements, the unity-of-opposites theorem is itself summarised in the
following diagram. The two larger lenses picture the sets A (on the left) and
B (on the right); the bottom-left lens pictures F.B and the top-right lens
G.A . The latter two sets are pictured as having the same size because they
are isomorphic, whereas A and B are pictured as having different size because
they will not be isomorphic in general. Note that F maps the least element
of B (denoted ⊥B in the diagram) to the least element of A (denoted ⊥A).
Furthermore, G maps the greatest element of A (denoted ⊤A in the diagram)
to the greatest element of B (denoted ⊤B). The posets F.B and G.A are
“opposites” in the sense that the former contains small elements whereas the
latter contains large elements. In particular, F.B includes the least element of

8

A and G.A includes the greatest element of B . They are unified, however, by
the fact that they are isomorphic.

✉

F.⊤B

✉

⊥A

✉

⊤B

✉

G.⊥A

✉

⊤A

✉

✉

✉

⊥B

✘✘✘✘✘✘✘✘✘✘✘✘✿

✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚✚❃

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚❂

❳❳❳❳❳❳❳❳❳❳❳②

G

F

G

F

2.4. Existence of Adjoints

We conclude this summary of the properties of Galois connections with a
fundamental existence theorem.

Theorem 2 (Fundamental Theorem). Suppose that (B,�) is a poset
and (A,⊑) is a complete poset. Then a monotonic function G∈B←A is an
upper adjoint in a Galois connection equivales G is inf-preserving7.

Dually, if (B,�) is a co-complete poset and (A,⊑) is a poset, a monotonic
function F ∈A←B is a lower adjoint in a Galois connection equivales F is
sup-preserving.

✷

7That is, for all monotonic functions f with range A , G.(⊓(A,⊑).f) is the infimum in
(B,�) of G•f .

9

3. Factors

Now that we have prepared the way, we turn to the application we have
in mind. In this section we focus on the combination of the monoid structure
of concatenation and the subset ordering of languages. We give a calculational
proof of Conway’s theorem that every regular language defines a so-called “factor
matrix”.

In more detail, section 3.1 introduces the notions of a “factor” and a “left”
and “right” factor of a language via several Galois connections. In this way
we can immediately identify several algebraic properties of factorisation (some-
thing that Conway did not do). A running example, which we first introduce
in section 3.1, illustrates the benefits of the algebraic approach. Section 3.2
introduces Conway’s factor matrix in a general algebraic setting, whilst section
3.3 specialises the results to regular languages. The calculational presentation
of the factor matrix in section 3.2 is very different from Conway’s presentation.
In particular, the construction of appropriate factorisations is made explicit.

3.1. Product and Factors of Languages

Suppose T is an alphabet (a set of symbols). Then T ∗ is a set con-
taining a distinguished element ε (the empty word) and which is closed un-
der the binary concatenation operator. Moreover, concatenation is associative
((uv)w=u(vw)) and ε is both its left and right unit (εu=u=uε). The set
T ∗ thus forms a monoid.

Recall that a language is a subset of T ∗ . We consider the poset L consisting
of all languages ordered by set inclusion. This is a complete lattice. We extend
the monoid structure of T ∗ to L . We do this by first defining, for each word
w and each language M , the product w·M by:

w·M = 〈∪x : x∈M : {wx}〉 .

We then define the product , L·M , of two languages L and M by:

L·M = 〈∪w : w∈L : w·M〉 .

For example, taking the alphabet once again to be {a,b} , the product of word
ab and language {a,bb} is the language ab·{a,bb}= {aba,abbb} . The product
of the two languages {a,bb} and {b,cc} is the language {ab,acc,bbb,bbcc} .

The use of the same symbol to denote the product of a word with a language
and the product of a language with a language is justified by the identity

{w}·M =w·M .

Indeed, a common convention is to make no distinction between the word w
and the set {w} .

From these few simple definitions and our knowledge of Galois connections
we can now enumerate a whole host of consequences. To begin, since the func-
tion (w·) (which is an endofunction on L) is defined to be universally distribu-
tive, we know from the fundamental theorem of Galois connections that it has
an upper adjoint. Indeed,

10

w·L ⊆ M

= { definition of concatenation }

〈∪x : x∈L : {wx}〉 ⊆ M

= { definition of supremum }

〈∀x : x∈L : wx ∈M〉

= { define the w -derivative of M ,

denoted ∂wM , by x∈∂wM ≡wx∈M }

〈∀x : x∈L : x∈ ∂wM〉

= { definition of infimum }

L ⊆ ∂wM .

The upper adjoint of (w·) is the so-called word derivative ∂w [Brz64] defined
by

x∈∂wM ≡ wx∈M .

The algebraic properties of word concatenation predict algebraic properties of
derivatives. Since concatenation is associative it is straightforward to verify that

w·(x·L)= (wx)·L .

Correspondingly —to be precise, by application of (2) with the instantiations
F0 := (w·) , F1 := (x·) , F2 := (wx ·) and m := 2 — ,

∂x(∂wL)=∂wxL .

(Note that the order of x and w switches.) Also, since ε is the left unit of
concatenation, (ε·) is equal to the identity function. It follows that its upper
adjoint ∂ε is also equal to the identity function.

Example 2. We assume that the reader is already familiar with derivatives
of regular languages and their use to construct a reduced, deterministic finite-
state automaton that recognises a given regular language. We expect, however,
that few readers will be familiar with the theory of factors of a language. So
let us take the opportunity to introduce a very simple example to which we will
continually refer throughout this section and the next. The example we will
take is the language (a+b)∗ a (a+b)∗ over the alphabet {a,b} . Let us denote
this language by E and the alphabet by T . Then, using equational properties
of regular languages (which we assume the reader is familiar with), we have:

E = (a+b)∗ a (a+b)∗ = b∗ a (a+b)∗ = (a+b)∗ a b∗ .

From these equations, it is easy to calculate that E has just two distinct deriva-
tives: ∂εE and ∂aE . Specifically,

∂εE = E and ∂aE = (a+b)∗ .

11

It is also easy to construct the reduced, deterministic finite-state automaton
recognising E . It is shown in fig. 1(a). For brevity, we follow Conway and call
it the machine of E .

(a) (Anti−)Machine

a

b a,b

a,b,ε a,b,ε

(d) Cmax+ Lmax

E

T*
T*

(c) Factor Matrix

a

b b
ε

b* T*

E

∅

a

a,b,ε

(e) Factor Graph

(b) Languages Recognised

T*

Figure 1: Recognisers of (a+b)∗ a (a+b)∗

For greater simplicity, the example language we have chosen is such that
it is the reverse of itself. (The reverse of a language is the set consisting of
the reverse of all words in the language.) This means that the “anti-machine”
of E is identical to its machine, as indicated by the caption of fig. 1(a). The
“anti-machine” of a language is the machine of the reverse of the language.

We assume that the reader is familiar with the construction of the machine.
So, for example, ∂bE=E , from which equation we construct the edge labelled
b from the start node to itself in fig. 1(a). We also assume that the reader is
familiar with how the machine is used to recognise words in the language. Fig.
1(b) shows the languages recognised by state transitions; for example, the set
of all state transitions from the start state (indicated in the usual way by an
unlabelled incoming arrow) to the final state (also indicated in the usual way

12

by two concentric circles) is the language E , and the set of all state transitions
from the final state to the empty state is ∅ (the empty set).

In the following sections, we explain figs. 1(c), (d) and (e). We have grouped
them all together so that we can draw parallels at the appropriate time. For the
moment, note that fig. 1(e) is also a recogniser of E but is non-deterministic.
The edge labelled ε from the final state to the start state of fig. 1(e) can be
regarded as a “failure” transition: when in the final state of fig. 1(e), if the
next symbol fails to match the symbol b (the only symbol for which there is a
transition from the final state), this edge is followed; subsequently this process
of choosing a transition is repeated. Fig. 1(c) shows the languages recognised
by state transitions in fig. 1(e). Similarly, fig. 1(d) is also a non-deterministic
recogniser of E . Comparing figs. 1(d) and 1(e), the set of labels on each edge
of fig. 1(d) is a superset of the labels on the corresponding edge of fig. 1(e) but
the languages recognised are the same.

The motivation for these observations and the definition and construction of
each of these figures will become clearer as we proceed.
✷

So far, thus, we assume that there are no surprises for the reader. But
suppose we take the process one step further. We observed that the function
(w·) has an upper adjoint. By a similar argument, the function (L·) has an
upper adjoint. We have, for all languages L , M , and N ,

L·M ⊆ N

= { definition of concatenation }

〈∪w : w∈L : w·M〉 ⊆ N

= { definition of supremum }

〈∀w : w∈L : w·M ⊆ N〉

= { ∂w is the upper adjoint of (w·) }

〈∀w : w∈L : M ⊆ ∂wN〉

= { definition of infimum }

M ⊆ 〈∩w : w∈L : ∂wN〉 .

We denote the language 〈∩w :w∈L :∂wN〉 by L\N . It is called a right factor

of the language N. (The notion and terminology, although not the notation,
were introduced by J.H. Conway. The terminology is intended to reinforce an
analogy with real arithmetic, whereby concatenation is linked to multiplication
and factoring to division.) In summary we have:

L·M ⊆ N ≡ M ⊆ L\N . (10)

As for (w·) we may now conclude that the function (L·) preserves unions and
(L\) preserves intersections. In particular, (L\) is monotonic and

L\(M∩N) = (L\M)∩ (L\N) .

13

The next step is to mirror all the above calculations. Instead of defining the
function (w·) we could equally well have defined the function (·w),

L·w = 〈∪x : x∈L : xw〉 ,

and extended its definition to the definition of a function (·M) for each language
M . Noting that L·w as just defined is equal to L·{w} as defined earlier —
this requires a short calculation— there is no ambiguity in denoting application
of the function (·M) to L by L·M . By a completely dual argument to that
above, the function (·w) has an upper adjoint (which we won’t bother supplying
a notation for) and the function (·M) also has an upper adjoint, which we will
denote by the postfix operator (/M). That is,

L·M ⊆ N ≡ L ⊆ N/M . (11)

The function (/M) preserves intersections. The language N/M is a left factor

of N .
More interesting is if we combine the Galois connections (10) and (11). By

transitivity of equivalence we have:

M ⊆ L\N ≡ L ⊆ N/M .

Rewriting in the form:

N/M ⊇ L ≡ M ⊆ L\N ,

we recognise a Galois connection (actually a family of Galois connections indexed
by the variable N). The lower adjoint is the function (N/) to the poset of
languages ordered by set containment (⊇) from the poset of languages ordered
by set inclusion (⊆). The upper adjoint is the function (\N) to the poset of
languages ordered by set inclusion (⊆) from the poset of languages ordered by
set containment (⊇). By the fundamental theorem it thus follows that (N/)
maps a union of languages into an intersection of languages. The same is true
of the function (\N). In particular, we have:

N/(L∪M) = (N/L)∩ (N/M) (12)

and
(L∪M)\N = (L\N)∩ (M\N) . (13)

What other properties do we get for free? We remarked earlier that the set
of all words T ∗ forms a monoid under the concatenation of words, the unit
of the monoid being the empty word ε . It is not difficult to prove that as a
consequence the set of languages over T ∗ forms a monoid under the product
operation on languages as defined above, and with {ε} as unit. In other words,
for all languages L , M , and N ,

(L·M)·N = L·(M ·N) (14)

14

and
L·{ε} = L = {ε}·L . (15)

(These properties are not for free. They can easily be verified from the definition
of product and known properties of set union.) Now, property (14) captures in
one equation three identities between functions on languages, and each of these
identities can be translated into a property of factors. First, by abstracting on
the variable N , (14) asserts the equality of the two functions ((L·M)·) and
(L·)•(M ·) . By applying (2) with the instantiations F0 := ((L·M)·) , F1 := (L·) ,
F2 := (M ·) and G0 := ((L·M)\) , G1 := (L\) , G2 := (M\) , we infer the prop-
erty:

(L·M)\ = (M\)•(L\) .

Re-introducing the variable N , this is equivalent to:

(L·M)\N = M\(L\N) , (16)

for all N . Second, by abstracting on the variable M , (14) asserts the equality
of the two functions (·N)•(L·) and (L·)•(·N) . Thus, again applying (2), we
infer the property:

(/N)•(L\) = (L\)•(/N) .

Re-introducing the variable M , this is equivalent to:

(L\M)/N = L\(M/N) , (17)

for all M . Finally, by abstracting on the variable L , applying (2) and reintro-
ducing the variable L , we infer the property:

(L/N)/M = L/(M ·N) . (18)

Here is evidence indeed of the effectiveness of recognising Galois connections.
We can very quickly deduce several properties of the operators just by knowing
that they are connected to product and the properties of product (which are
well known).

Example 3. The example language introduced earlier (example 2) is too
simple to illustrate all the properties we have listed but we can use it to illustrate
almost all. The language T ∗aT ∗ where T = {a,b} , has just two distinct factors:
T ∗aT ∗ itself and T ∗ . For example,

T ∗aT ∗ = ε\(T ∗aT ∗) = (T ∗aT ∗)/ε = b\(T ∗aT ∗) = (T ∗aT ∗)/b .

The leftmost of these equalities8 follows from the equation, for all M , ε·M =M
and hence

ε·M ⊆ T ∗aT ∗ ≡ M ⊆ T ∗aT ∗

8The reader familiar with the algebra of derivatives of regular expressions may use the
identity w\E= ∂wE , for all E and all words w , to verify this equality and some others
that follow. Symmetrically, anti-derivatives are used to calculate E/w for regular expressions
E and words w .

15

and the rightmost from the equation, for all L ,

L·b ⊆ T ∗aT ∗ ≡ L ⊆ T ∗aT ∗ .

(Compare these equations with the definitions of right and left factors, (10) and
(11), respectively.) Symmetry justifies the other equalities. We also have

T ∗ = a\(T ∗aT ∗) = (T ∗aT ∗)/a

since, for all M , M ⊆ T ∗ and a·M ⊆T ∗aT ∗ ; hence

a·M ⊆ T ∗aT ∗ ≡ M ⊆ T ∗ .

The equation
T ∗ = ∅\(T ∗aT ∗) = (T ∗aT ∗)/∅

is derived by similar reasoning. Other factorisations can be deduced from the
properties listed above. For example, we use (13) to deduce that

{a,b}\(T ∗aT ∗) = a\(T ∗aT ∗)∩ b\(T ∗aT ∗) = T ∗aT ∗

and (18) and induction to deduce that, for all k ,

(T ∗aT ∗)/ bk = T ∗aT ∗ .

Using (12) we conclude that

(T ∗aT ∗)/ b∗ = T ∗aT ∗ .

The reader is invited to check instances of (17) as well as to check the general
formula: for all L and N ,

L\(T ∗aT ∗)/N = T ∗ ⇐ L∪N ⊆ T ∗aT ∗ ,

and otherwise
L\(T ∗aT ∗)/N = T ∗aT ∗ .

Note that Conway did not introduce the factor operators. This meant that he
also did not identify their algebraic properties, and so left the construction of
factors to a piecemeal, ad hoc process.
✷

3.2. The Factor Matrix

In this section, we introduce Conway’s factor matrix. As it turns out, very
few of the properties of languages are exploited in the construction of the factor
matrix. All that is needed is a partially ordered monoid that admits factorisa-
tion. To make this clear, we assume in this section that (A, · , 1) is a monoid,
(A,⊆) is a complete lattice, and A admits factorisation: that is, there are
operators \ and / such that, for all X , Y and Z in A

X ·Y ⊆Z ≡ X⊆Z/Y and X ·Y ⊆Z ≡ Y ⊆X\Z .

16

We call such a structure a regular algebra. Another name, according toWikipedia,
is a unital quantale. (In the literature on quantale theory —which I have only
skimmed briefly— a factor is called a residual.)

In a regular algebra, the “Kleene star” operator can be defined in several
ways. For us, the most convenient definition of X∗ is the least fixed-point
of the function mapping Y to 1∪X ∪Y ·Y , where “∪ ” denotes the binary
supremum operator. In particular, for all X ,

X=X∗ ≡ X ⊇ 1∪X ·X . (19)

In words, borrowing terminology from relation algebra, X is its own star if it is
“reflexive” (i.e. X⊇ 1) and “transitive” (i.e. X⊇X ·X). Equivalent definitions
are: X∗ is the supremum of finite powers of X , X∗ is the least fixed-point
of the function mapping Y to 1∪X ·Y , and X∗ is the least fixed-point of the
function mapping Y to 1∪Y ·X .

It may surprise some readers that our definition of a regular algebra does
not include the so-called “Kleene star” operator as a primitive. Several authors
have studied axiom systems for regular languages in which the star operator is
indeed primitive: Salomaa [Sal66] may well have been the first to do so; Kozen
[Koz94] includes an extensive bibliography. But such axiom systems are typi-
cally designed for the sole task of being complete with respect to establishing the
equality of regular expressions and, consequently, are inadequate for our pur-
poses here. Conway studies several different “Kleene” algebras [Con71, chapter
4, pp34–40] all of which are derivatives of what he calls a standard Kleene alge-

bra or S-algebra [Con71, p27]. Such an algebra has just two primitive operators,
product and supremum, and, whilst lacking our emphasis on admitting factori-
sation via explicit naming of the factor operators, is identical to our “regular
algebra”.

Since Conway’s factor theory seems to be almost unknown, it may help for
us to provide a short summary. Conway does not define factors via a Galois
connection as we have done; in particular, as we remarked earlier, he does not
introduce the binary operators / and \ (although a definition of the ternary
operator mapping X , Y and Z to X\Y/Z is implicit in his proof of theorem
1 in chapter 6 on Factors and the Factor Matrix). Instead he assumes a fixed
“event” E , he defines a “subfactorization” of E and then defines a factor as
an event that is maximal in a subfactorization. (“Events” are elements of an
S-algebra.) He defines “left factors” and “right factors” and observes a one-to-
one correspondence between left and right factors of E . He then assumes that
the correspondence is encoded via an indexing of the left and right factors: he
names the left factors Li and the right factors Ri where i ranges over some
anonymous index set. He then defines factor Eij effectively to be what we have
denoted by Li\E/Rj . He then asserts the existence of a “factor matrix” as
follows [Con71, Theorem 4, p.48]:

Each Eij is a factor, and each factor is one of the Eij . There
exist unique indices l , r such that E=Lr =Rl=Elr and Li=Eli

17

and Ri=Eir for each i . Hence the factors naturally form a square
matrix among the entries of which is E .

Note that at this stage in the development nothing is stated or assumed about
the index set; in particular, it is not assumed that it is finite. That is, Conway’s
use of the word “square matrix” does not comply with the standard notion
where the elements of the matrix are indexed by a finite set. Conway sub-
sequently proves the theorem that an event over a finite input alphabet is a
regular language if and only if it has a finitely many factors. So, for regular
events, the “factor matrix” is indeed a square matrix in the conventional sense.
Several theorems, however, do not rely on the assumption that E is a regular
language.

Example 4. Fig. 1(c) displays the factor matrix of (a+b)∗ a (a+b)∗ in the
form of a graph. That is, if we use the set of nodes as index set, the ij th factor
is the label of the edge from node i to node j . Left factors are the labels of
the edges from the start node (i.e. l is the index assigned to the start node)
and right factors are the labels of the edges to the final node (i.e. r is the index
assigned to the final node).
✷

To properly relate our work to Conway’s, it will be convenient for us to use
the word “matrix” to describe any function that has domain a cartesian product
I×J for some sets I and J and range a regular algebra, irrespective of whether
or not the sets are finite. A “square matrix” is a function with domain I×I
for some (possibly infinite) I . The product of two “matrices” f and g with
domains I×J and J×K , respectively, and the same range (a regular algebra)
is the function with domain I×K defined by

(f×g)(i,k) = 〈∪j :: f(i,j)·g(j,k)〉 .

Matrices with the same domain and range are ordered pointwise: if f and h
both have domain I×J ,

f ⊆̇h ≡ 〈∀ i,j :: f(i,j)⊆h(i,j)〉 .

Extending the supremum and infimum operators pointwise as well, the square
matrices with domain I×I , for some I , and range a regular algebra themselves
form a regular algebra [Bac06, theorem 4.20]9; the product is matrix product
and the unit is the identity matrix, which we denote by I .

An example of “matrix” algebras is afforded by binary relations. The booleans
form a regular algebra with conjunction as the product operator and implication
as the ordering. “Matrices” of booleans are binary relations and the product
operator is relational composition.

9The proof is straightforward; Conway [Con71, p.40] states that it is trivial. (Strictly, he
only makes this claim for finite-dimensional matrices; however, the finiteness assumption is
only relevant for non-standard Kleene algebras.)

18

Let E denote a fixed element of A . (We use “E ” as did Conway to help
the reader to relate the properties stated here to those in Conway’s book.) A
factor of E is any element of A that can be expressed in the form X\E/Y
for some X and Y . (That parentheses have been omitted here is permitted by
virtue of (17).) An element of A is a left factor of E if it can be expressed in
the form E/Y for some Y and a right factor of E if it can be expressed in the
form X\E for some X . The function mapping X and Y to X\E/Y , where
X and Y range over all elements of A , thus forms a “matrix” of factors with
index set A but this matrix is not Conway’s factor matrix. Conway’s factor
matrix is a matrix indexed by the left factors (or equally the right factors) of E ,
this index set being finite in the case that E is a regular language (as opposed
to A which is infinite). In more detail, his theorem states that the factors of
E organise themselves into a reflexive, transitive matrix indexed by the left (or
right) factors of E . Moreover, E itself and all left and right factors of E are
elements of the matrix. Below we give a 4-step proof of the theorem.

Step 1. According to our definition of a matrix, the binary operators \ and
/ , with domains restricted to I×I for arbitrary set I , I ⊆A , are both square
matrices over A . Conway’s first observation is that the factor matrix is its own
star. Indeed, this is true of any square \ or / matrix, as we can easily show:

Recall that an event is its own star if it is reflexive and transitive. (See
equation (19).) Reflexivity of a \ matrix with domain I×I is the property
1⊆L\L for all L∈I . By the Galois connection between factors and product,
this is equivalent to L·1⊆L which follows from the requirement that 1 is a
right unit of product. The transitivity of the matrix follows from the following
calculation:

L\M ·M\N ⊆ L\N

= { Galois connection defining factors }

L ·L\M ·M\N ⊆ N

⇐ { cancellation: L ·L\M ⊆ M

monotonicity of product and transitivity of ⊆ }

M ·M\N ⊆ N

= { cancellation }

true .

Dually a / matrix is reflexive and transitive and hence its own star.

The clue we obtain from this step to the construction of the factor matrix
is that it suffices to construct a suitable index set for the matrix \ (or for the
matrix /).

Step 2. Define the functions ⊳ and ⊲ by

X⊳ = E/X , (20)

X⊲ = X\E . (21)

19

By definition, the range of ⊳ is the set of left factors of E and the range of
⊲ is the set of right factors of E . It is an easy calculation to derive the Galois
connection: for all X and Y ,

X⊆Y ⊳ ≡ Y ⊆X⊲ .

Note that because of the reversal of the ordering, both operators ⊳ and ⊲ are
anti-monotonic. That is, X⊆Y ⇒ X⊳⊇Y ⊳ ∧ X⊲⊇Y ⊲ .

From the Galois connection, we deduce that, for all X ,

X⊳⊲⊳ = X⊳ , (22)

X⊲⊳⊲ = X⊲ . (23)

Moreover,

E⊳⊲ = E = E⊲⊳ , (24)

X⊳ \Y ⊳ = X⊳⊲ / Y ⊳⊲ , (25)

X⊲/Y ⊲ = X⊲⊳ \ Y ⊲⊳ . (26)

Properties (22) and (23) are instances of the unity of opposites, theorem 1. The
rightmost equality in (24) is established as follows. The proof of the leftmost
equality is similar.

E⊲⊳ = E

= { antisymmetry }

E⊲⊳ ⊆ E ∧ E⊲⊳ ⊇ E

= { X⊆Y ⊳ ≡ Y ⊆X⊲ with X,Y := E ,E⊲ ,

reflexivity of ≥ }

E⊲⊳ ⊆ E

= { definition }

E/(E\E)⊆E

⇐ { E/ is an anti-monotonic function, E/1=E }

E\E⊇ 1

= { factors, unit }

true .

To establish (25) and (26), and for later use, it is convenient to observe that
(17), appropriately instantiated, gives the identity

X\(Z⊳) = (X⊲)/Z . (27)

The calculation of (25) is now easy:

20

X⊳\Y ⊳

= { (22) }

X⊳ \ Y ⊳⊲⊳

= { (27) }

X⊳⊲ / Y ⊳⊲ .

Property (26) is calculated in the same way.
This step records a (1-1) correspondence between left and right factors of

E (properties (22) and (23)). Also, any matrix indexed by left factors can be
mapped directly into a matrix indexed by right factors, and vice-versa (prop-
erties (25) and (26)). Moreover —property (24)— E is both a left and right
factor of itself.

Example 5. For our running example, where E = T ∗aT ∗ , the left and right
factors have already been calculated in example 3. Specifically, T ∗ and T ∗aT ∗

are both left factors and also both right factors. We also have

(T ∗aT ∗)⊳ = T ∗ ,

(T ∗)⊳ = T ∗aT ∗ ,

(T ∗aT ∗)⊲ = T ∗ ,

(T ∗)⊲ = T ∗aT ∗ .

The left factors are totally ordered: T ∗aT ∗ ⊆ T ∗ . Likewise, the right factors
are totally ordered: (T ∗aT ∗)⊲ ⊇ (T ∗)⊲ . Vice-versa, the right factors are totally
ordered: T ∗aT ∗ ⊆ T ∗ , and so are the left factors: (T ∗aT ∗)⊳ ⊇ (T ∗)⊳ . The
equations (22) and (23) are easily verified.
✷

Let L denote the set of left factors of E . The conclusion from steps 1 and
2 is that there are only two reasonable candidates for Conway’s factor matrix,
the matrix \ indexed by L and the matrix / also indexed by L . After a
moment’s thought it is obvious that the latter matrix is uninteresting, so we
consider the former.

Step 3. Define the factor matrix of E to be the binary operator \ re-
stricted to L×L . Thus entries in the matrix take the form L0\L1 where L0

and L1 are left factors of E . By step 1, this is a reflexive, transitive matrix.
Also, by definition of a left factor and a factor, all entries in the matrix are
factors of E .

Suppose that F is a factor, L is a left factor, and R is a right factor of
E . We now construct left factors L0 , L1 , L2 , L3 , L4 , L5 such that

F = L0\L1 , (28)

L = L2\L3 , (29)

R = L4\L5 . (30)

21

Moreover, L2 is independent of L and L5 is independent of R and

E = L2\L5 . (31)

Suppose F is a factor of E . In particular, suppose that F =U\E/V . We
construct X and Y such that F = X⊳\Y ⊳ as follows.

X⊳\Y ⊳ = U\E/V

= { X \Y ⊳ = X⊲/Y with X,Y := X⊳ ,Y , U\E=U⊲ }

X⊳⊲/Y = U⊲/V

⇐ { Postulate Y =V }

X⊳⊲ = U⊲

⇐ { U⊲⊳⊲ = U⊲ }

X=U⊲ .

Thus U\E/V = U⊲⊳ \V ⊳ .
Now consider the left factor V ⊳ . This is written in the form X⊳\Y ⊳ as

follows.

V ⊳

= { definition }

E/V

= { (24) }

E⊳⊲/V

= { X \Y ⊳ = X⊲/Y with X,Y := E⊳ , V }

E⊳ \V ⊳ .

Thus V ⊳ = E⊳ \V ⊳ . Finally, consider the right factor U⊲ . We write this in
the form X⊳\Y ⊳ as follows:

U⊲

= { definition }

U\E

= { (24) }

U \E⊲⊳

= { (27) with X,Z := U ,E⊲ }

U⊲/E⊲

= { (23) }

U⊲⊳⊲/E⊲

22

= { (27) with X,Z := U⊲⊳ , E⊲ }

U⊲⊳ \E⊲⊳ .

Thus, U⊲ = (U⊲)⊳ \ (E⊲)⊳ .
The terms L2 and L5 in (29) and (30) are thus E⊳ and E . The verification

of (31) is then:

E⊳ \E

= { definition }

E⊳⊲

= { (24) }

E .

By these explicit constructions, we have established Conway’s theorem 4 [Con71,
p.48]. Let us do some renaming in order to make it easier to compare our for-
mulation of the theorem with Conway’s. As always, E denotes a fixed “event”
(thus not necessarily a regular language). Consider the “matrix” defined by the
binary operator \ indexed by left factors of E . So, each “entry” in the matrix
has the form i\j for some left factors i and j of E . Conway uses the notation
Eij for such an entry. Then each entry is a factor of E since j is a left factor
of E equivales j = j⊲⊳ = E /j⊲ and, hence, i\j = i\E /j⊲ . Moreover, we
have shown that each factor of E is an entry in the matrix, specifically:

U\E/V = U⊲⊳ \V ⊳ . (32)

In addition, let l denote the left factor E⊳ and r denote E (which is a left
factor of E since E=E⊲⊳). Then

E = r = l⊲ = l\r . (33)

In words, E is the left factor r , the right factor corresponding to l , and the
(l, r) th entry in the matrix. Also, for all left factors i of E

i = l\i (34)

and
i⊲ = i\r . (35)

In words, the left factor i is the (l, i) th entry in the matrix and its correspond-
ing right factor i⊲ is the (i, r) th entry in the matrix.

We conclude by showing that —in Conway’s words— any subfactorisation
of E is dominated by a factorisation of E. In particular, we show that:

A·B⊆E ≡ A⊆B⊳ ∧ B ⊆ B⊳⊲ . (36)

More generally, we show that, for all X and Y and all U and V ,

X ·Y ⊆ U⊳ \V ⊳ ≡ 〈∃W :: X ⊆ U⊳\W⊳ ∧ Y ⊆ W⊳ \V ⊳〉 . (37)

The proof of (36) is:

23

A·B⊆E

= { factors, B⊳=E/B ; cancellation }

A⊆B⊳ ∧ B⊳ ·B ⊆ E

= { factors, B⊳⊲ = B⊳ \E }

A⊆B⊳ ∧ B ⊆ B⊳⊲ .

Whence, we prove (37). First, we determine a specific instance for the existen-
tially quantified variable W :

X ·Y ⊆ U⊳ \V ⊳

= { factors, definition of V ⊳ }

U⊳ ·X ·Y ·V ⊆ E

= { (36) with A,B := U⊳ ·X , Y ·V }

U⊳ ·X ⊆ (Y ·V)⊳ ∧ Y ·V ⊆ (Y ·V)⊳⊲

= { factors }

X ⊆ U⊳\ (Y ·V)⊳ ∧ Y ⊆ (Y ·V)⊳⊲ /V

= { (27) }

X ⊆ U⊳\ (Y ·V)⊳ ∧ Y ⊆ (Y ·V)⊳ \V ⊳ .

Then, we have:

X ·Y ⊆ U⊳ \V ⊳

⇒ { above, W :=Y ·V }

〈∃W :: X ⊆ U⊳\W⊳ ∧ Y ⊆ W⊳ \V ⊳〉

⇒ { monotonicity of composition }

〈∃W :: X ·Y ⊆ (U⊳ \W⊳) · (W⊳ \V ⊳)〉

⇒ { cancellation }

X ·Y ⊆ U⊳ \V ⊳ .

This completes the proof of Conway’s theorem. A “matrix” has been exhibited
containing all factors and only the factors of E , indexed by left factors of E ,
that is reflexive and transitive and hence equal to its own star. The import of
(34) and (35) is that the E⊳ “row” of the matrix (the set of entries all having
E⊳ as first index) contains all (and only) the left factors of E , and the E
“column” of the matrix (the set of entries all having E as second index) all
(and only) the right factors of E . In addition, from (31) we see that E is
the matrix entry at the intersection of this row and column. (Note, however,
that factors and left and right factors of E , including E itself, may appear
repeatedly in the matrix. Conway’s wordy theorems and proofs are confusing

24

on this point and there is one unfortunate misprint that claims exactly the
opposite!: “The theorem does prevent E from occurring twice in its factor
matrix” [Con71, p.49].)

3.3. Equivalence Relations on Languages

Our calculations in subsection 3.2 assume only an algebra consisting of a par-
tially ordered monoid that admits factorisation. For languages (sets of words)
and regular languages in particular more can be said about the factors. Let us
recall the basic definitions and properties.

Suppose E is a subset of T ∗ . (That is, E is a language over the alphabet
T .) Then E defines three equivalence relations on T ∗ —El , Er and Ec —
given by, for all x and y in T ∗ :

xEly ≡ 〈∀z : z∈T ∗ : zx ∈E ≡ zy ∈E〉

xEry ≡ 〈∀z : z∈T ∗ : xz ∈E ≡ yz ∈E〉

xEcy ≡ 〈∀u,v : u∈T ∗ ∧ v∈T ∗ : uxv ∈E ≡ uyv ∈E〉

These are the so-called left-invariant equivalence relation, right-invariant
equivalence relation and congruence relation introduced by Rabin and Scott
[RS59]. Being equivalence relations, each partitions T ∗ into equivalence classes.
We call an equivalence class modulo El an r -class of E , an equivalence class
modulo Er an l -class of E , and an equivalence class modulo Ec a c -class
of E . We use Er(x) to denote the l -class that includes word x . Similarly for
El(x) and Ec(x) .

Note the switch: an equivalence class modulo El is an r -class. The reason
for the switch is the following theorem:

Theorem 3. Each left factor of E is a union of l -classes of E , each right
factor of E is a union of r -classes of E , and each factor of E is a union of
c -classes of E .

Proof We show that each left factor of E is a union of l -classes of E as
follows. First, for all Z , Z⊆T ∗ ,

x∈E/Z

= { definition of / }

{x}·Z ⊆E

= { definition of concatenation }

〈∀z : z∈Z : xz∈E〉 .

Hence,

E/Z

= { definition }

25

〈∪x : x∈E/Z : {x}〉

= { xErx , idempotency of set union }

〈∪x : x∈E/Z : 〈∪y : xEry : {x}〉〉

= { above and nesting }

〈∪x,y : 〈∀z : z∈Z : xz∈E〉 ∧ xEry : {x}〉

= { definition of Er and

substitution of equals for equals }

〈∪x,y : 〈∀z : z∈Z : yz∈E〉 ∧ xEry : {x}〉

= { above }

〈∪x,y : y∈E/Z ∧ xEry : {x}〉

= { nesting and definition of Er(y) }

〈∪y : y∈E/Z : Er(y)〉 .

The remaining two properties are proved similarly.
✷

Earlier we showed that a right factor of E is an intersection of derivatives
of E (specifically, L\E= 〈∩w :w∈L :∂wE〉). Similarly, a left factor of E is
the reverse of an intersection of anti-derivatives of E . (The reverse of E is
the set of words obtained by reversing words in E and an anti-derivative of
E is a derivative of the reverse of E .) This is the characterisation given by
Conway. The above characterisation, introduced in [Bac75], is much more useful
when calculating the factors of a language because such calculations use only
representatives of the three types of equivalence class rather than the full class.
We see how this works below.

Now suppose we denote the factor matrix of E by |E| (as did Conway).
It is a function from pairs of left factors of E to languages. It is also reflexive
and transitive. That is

|E| ⊇̇ I ∪̇ |E|×|E| .

(As mentioned in the introduction to this section, the operators ⊇ and ∪ have
here been extended pointwise to functions; the product operator × is defined
as for matrix multiplication. The matrix I is the “identity” matrix: the matrix
with {ε} as entry along the diagonal and the empty set off the diagonal.) Since
the set of square matrices with range a regular algebra form a regular algebra
under such an extension of the operators, we conclude that |E| ⊇̇ |E|∗ and
hence |E|= |E|∗ .

The basic theorem of regular languages [RS59] is that the following state-
ments are all equivalent:

• E is regular (i.e. can be denoted by a regular expression).

• The relation El has finite index.

26

• The relation Er has finite index.

• The relation Ec has finite index.

It follows that E is regular if and only if it has a finite number of factors.
Thus the factor “matrix” exists for all languages E but it is only for regular
languages that the use of the word “matrix” complies with standard conventions:
entries are indexed by pairs of left factors but, precisely when E is a regular
language, the left factors can themselves by indexed by numbers from 1 to n ,
for some (finite) number n .

4. The Factor Graph

Let us summarise what we have achieved so far. We have shown that every
element E of a regular algebra defines a “matrix” indexed by left factors (that
is, a function from pairs of left factors of E to languages), called the factor
matrix, that is reflexive and transitive. Furthermore, the factor matrix |E| is
equal to |E|∗ . We now want to show that, if E is a regular language, |E| has
a unique minimal “starth root”, which we call the factor graph of E .

Section 4.1 defines what we mean by a “starth root” and then outlines the
proof that the factor matrix of a regular language has a starth root — which we
call the factor graph of the matrix. Section 4.2 then shows how to construct the
factor graph of a given regular language. In principle, this construction involves
constructing both the machine and anti-machine of the given language but, in
practice, the full details are not required. This is made clear in section 4.3 where
we show that the factor graph underlies the well-known Knuth-Morris-Pratt
pattern-matching algorithm. This also —at last!— gives us the opportunity
to present a significant non-trivial example of the unity of opposites. Specifi-
cally, the so-called “failure function” used in the KMP algorithm represents the
reflexive-transitive reduction of the subset relation on left factors of a language
defined by the pattern, or, equivalently by the unity-of-opposites theorem, the
superset relation on right factors of the same language.

For brevity, this section provides outlines only of the algorithms presented
and omits proofs.

4.1. Existence Theorem

Suppose U is an element of a regular algebra. A starth root of U is any
element V that satisfies V ∗=U∗ ; it is minimal if no smaller element has this
property.

By definition, U is always a starth root of itself. So starth roots exist for
every element of a regular algebra. In a free regular algebra, it is the case that
every element has a unique, minimal starth root [Brz67] but in general this is
not always the case. Even when minimal starth roots exist, uniqueness is not
guaranteed. For example, a minimal starth root of a relation is called a transitive
reduction of the relation but there may be several different transitive reductions
of a given relation. A specific example is the relation {(0, 1),(1, 2),(2, 0)} on

27

{0,1,2} . It is a minimal starth root of itself but so also is {(1, 0),(2, 1),(0, 2)} .
(Confusingly, the literature sometimes refers to the transitive reduction of a
relation/graph even though in a case like this one an arbitrary choice must be
made.) Unique minimal starth roots (i.e. unique transitive reductions) are guar-
anteed to exist for well-founded relations on a finite set (equivalently, relations
that can be represented by a finite, acyclic graph).

The fact that, nevertheless, the factor matrix of a regular language has
a unique minimal starth root was first proved in [Bac75] and later, using an
improved argument, in [BL77]. For reasons that will be explained shortly, the
name factor graph was given to this matrix. Let us summarise those elements
of the existence proof relevant to the construction of the factor graph.

The first step is due to Conway [Con71]. He defined a matrix of languages
to be a constant matrix if each entry is a subset of {ε} and a linear matrix
if each entry is a subset of T . He then defined the constant matrix Cmax to
be |E| ∩̇K.{ε} (where K.{ε} is a matrix all of whose entries are {ε}) and the
linear matrix Lmax to be |E| ∩̇K.T and he showed, (implicitly) by induction
on the length of words, that |E|=(Cmax ∪̇Lmax)

∗ . Conway calls the matrix
Cmax ∪̇Lmax a constant+linear matrix; we call such a matrix a graph because
it can be represented by a directed graph with a finite number of nodes and
edges labelled by ε or an element of T. (There may be more than one edge for
each pair of nodes.)

The next step is to reduce the graph Cmax ∪̇Lmax by eliminating unneces-
sary edges. Since |E|=(Cmax ∪̇Lmax)

∗ , we also have that |E|=(D ∪̇Lmax)
∗

where D = Cmax ∩̇ ¬I . Now the matrix D corresponds to the proper subset
relation on left factors of E . (There is an edge labelled ε in the graph of D
from the node corresponding to left factor L to the node corresponding to the
left factor L′ exactly when L⊆L′ ∧L 6=L′ .) That is, D is an acyclic graph
and so has a unique minimal starth root Cmin where

Cmin = D ∩̇ ¬(D×D×D∗) .

It then follows that Cmin ∪̇Lmin is the unique minimal starth root of |E|
where,

Lmin = Lmax ∩̇ ¬(D×Lmax) ∩̇ ¬(Lmax×D) .

The matrix Cmin ∪̇Lmin is what we call the factor graph of E . More precisely,
it is a (pointwise) union of constant and linear matrices and thus corresponds
to a graph with nodes indexed by the left factors of E and edges labelled by
the empty word or an element of the alphabet. (There may be multiple edges
from one node to another.) The subgraph Cmin is the transitive reduction of
Cmax . That is, the relation corresponding to Cmin is the transitive reduction
of the proper subset relation on left factors of E . Equivalently, by the unity-
of-opposites theorem it is transitive reduction of the proper superset relation on
right factors of E .

Example 6. Figs. 1(d) and 1(e) display the graphs of Cmax ∪̇Lmax and
Cmin ∪̇Lmin , respectively, for the language T ∗aT ∗ , where T = {a,b} . It is

28

easy to check that

(Cmax ∪̇Lmax)
∗ = (Cmin ∪̇Lmin)

∗ = |T ∗aT ∗| .

Recall that the factor matrix |T ∗aT ∗| is diplayed in fig. 1(c).
After reading the next section, the reader should be able to construct these

graphs themself.
✷

4.2. Construction

Suppose E is a regular language. The construction of the factor graph
involves calculating all the left factors of E whilst simultaneously calculating
Cmin and Lmin . The definition of Cmin and Lmin in terms of Cmax and
Lmax is exploited in this process but calculating the full details of the latter
matrices is avoided as far as possible. In this section, we show how this is done.

We illustrate the construction using the language ((a+b)∗ c a∗ (a+b))∗ with
alphabet {a,b,c} .

Fig. 2 shows the machine and anti-machine for our example language.

l4 l1

l2 l3

a

b

a c
c

b

c

a,b

a,b

r1 r2

r3r4

a,b

c

a

a,b

c

a,b

Figure 2: Machine and Anti-Machine of ((a+b)∗ c a∗ (a+b))∗

The machine and anti-machine as shown are “all-admissible”. This means
that in each a node has been omitted from which there is no path to the final
state. Such nodes are said to be inadmissible.

We recall that each left factor of E is a union of l -classes of E and each
right factor is a union of r -classes of E . Moreover, the l -classes of E are
in one-to-one correspondence with the nodes of the machine of E (the re-
duced, deterministic finite automaton that recognises E) and the r -classes of
E are in one-to-one correspondence with the nodes of the anti-machine of E
(the reduced, deterministic finite automaton that recognises the reverse of E).

29

Specifically, for a given state of the machine, the corresponding l -class is the
set of all words recognised by that state (i.e. the set of all words spelt out by a
path from the start state to the state); for a given state of the anti-machine, the
corresponding r -class is the reverse of the set of all words recognised by that
state.

The table below names each l -class and each r -class for our example lan-
guage. The names are those used in fig. 2 with the addition of the names l5 and
r5 of the inadmissible states of machine and anti-machine, respectively. Next
to each name of an l -class is an element of the class; next to each name of an
r -class is the reverse of an element of the class. We call these representatives

of the class. For example, ca is a representative of class l4 because the word
ca spells out a path from the start state l1 to the state l4 . Similarly, ca is
a representative of r3 because its reverse ac spells out a path from the start
state r1 to the state r3 .

l-class representative r-class representative
l1 ε r1 ε
l2 c r2 a
l3 a r3 ca

l4 ca r4 aca

l5 cc r5 c

After constructing the machine and anti-machine and choosing representa-
tives of the l - and r -classes in this way, the next step is to calculate l⊲ and
r⊳ for each of the classes. Each entry l⊲ is a right factor and thus a union of
r -classes, and each entry r⊳ is a left factor and thus a union of l -classes. The
table below shows the result of the calculation for our example language.

l-class l l⊲ r-class r r⊳
l1 r1∪ r3∪ r4 r1 l1∪ l4
l2 r2∪ r4 r2 l2∪ l4
l3 r3∪ r4 r3 l1∪ l3∪ l4
l4 r1∪ r2∪ r3∪ r4 r4 l1∪ l2∪ l3∪ l4
l5 ∅ r5 ∅

Calculating the entries is made easy by the use of representatives. Specif-
ically, suppose u is the representative of l and v is the representative of r .
Then r⊆ l⊲ exactly when uv∈E (which is easily checked using the machine
of E). In our example, l3⊲= r3∪ r4 because aca and aaca are elements of
E but no other concatenation of a (the chosen representative of l3) and a
representative of an r -class is in E . The same process is used to calculate r⊳
for each r -class r .

30

The next step is to determine all the left factors and all the right factors.
Simultaneously, we calculate the matrix Cmin exploiting the correspondence
between Cmin and the transitive reduction of the subset ordering on left factors.
This is the most laborious process since, for each r -class r , the set r⊳ is
a left factor but there will typically be more left factors. It is necessary to
consider all subsets of the set of l -classes to determine whether or not it is a
left factor. Suppose L is a union of l -classes. Then L is a left factor of E
equivales L = L⊲⊳ . Fortunately this property is straightforward to check using
the information that has already been computed. We have

L⊲ = 〈∪l : l⊆L : l〉 ⊲ = 〈∩l : l⊆L : l⊲〉

and, for any R that is a union of r -classes,

R⊳ = 〈∪r : r⊆R : r〉 ⊳ = 〈∩r : r⊆R : r⊳〉 .

(In these equations, the dummies l and r range over l - and r -classes, respec-
tively.) For example,we can compute from the table above that

(l2∪ l4)⊲ = l2⊲∩ l4⊲ = (r2∪ r4)∩ (r1∪ r2∪ r3∪ r4) = r2∪ r4

and
(r2∪ r4)⊳ = r2⊳∩ r4⊳ = (l2∪ l4)∩ (l1∪ l2∪ l3∪ l4) = l2∪ l4 .

In this way, we have checked that l2∪ l4 is indeed a left factor. However, we
have that

(l1∪ l3)⊲ = l1⊲∩ l3⊲ = (r1∪ r2∪ r3)∩ (r3∪ r4) = r3

and
r3⊳ = l1∪ l3∪ l4 .

So (l1∪ l3)⊲⊳ 6= l1∪ l3 and, hence, l1∪ l3 is not a left factor.
Computing the poset of left factors and simultaneously Cmin involves a

search of the set of subsets of the l -classes in decreasing order of size. In our
example, the sizes of the subsets range from 5 to 0 . So 25 subsets must be
examined. The subsets that are determined to be left factors are accumulated
in a set that we call Γ below.

Beginning with T ∗ (the union of all l -classes) —which is always a left
factor— as the only element of Γ , each subset L is checked for the property
L = L⊲⊳ ; if it does, then the (L,L′) th entry in Cmin is set to ε for all L′

in Γ that satisfy L⊆L′ and there is no L′′ different from L′ in Γ such that
L⊆L′′⊆L′ . On completion, all other entries in Cmin are set to ∅ .

The table below shows for our example language each left factor as a union of
l -classes and each right factor as a union of r -classes. Fig. 3 shows the reflexive-
transitive reduction of the subset relation on left factors. The corresponding
entries in the matrix Cmin are ε where there is an edge and ∅ where there is
no edge.

31

Left factor Right factors
L0 T ∗ R0 ∅
L1 l1∪ l2∪ l3∪ l4 R1 r4
L2 l1∪ l3∪ l4 R2 r3∪ r4
L3 l2∪ l4 R3 r2∪ r4
L4 l1∪ l4 R4 r1∪ r3∪ r4
L5 l4 R5 r1∪ r2∪ r3∪ r4
L6 ∅ R6 T ∗

3

6 5

4 2

01

Figure 3: Poset of left factors, Inverted poset of right factors

It is now that we can see the unity of opposites in action. Not only is
there the one-to-one correspondence between left and right factors observed by
Conway but there is also an isomorphism between the poset of left factors and
the poset of right factors. Fig. 3 also shows the reflexive-transitive reduction of
the superset ordering on right factors. Moreover, infima and suprema of left and
right factors correspond in the way predicted by the unity-of-opposites theorem.
For example, the supremum of L2 and L3 is L5 ; correspondingly, the infimum
of R2 and R3 is R5 .

The process of constructing the factor graph is completed by constructing
the matrices Lmax and Lmin . Suppose L and L′ are left factors; let the
right factor corresponding to L′ be R′ . Then the symbol a is an entry in
the (L,L′) th position in Lmax if L·a·R′⊆E . The representatives of the l -
and r -classes can be used to check this property. We have to check for each
representative u of an l -class in L and each representative v of an r -class
in R′ whether or not uav∈E . The symbol a is an entry in the (L,L′) th
position in Lmin if L and R′ are maximal in L·a·R′⊆E . (That is, if left
factor L′′ is such that L′′·a·R′⊆E then L′′⊆L , and if right factor R′′ is such
that L·a·R′′⊆E then R′′⊆R′ .) The factor graph of our example language is
shown in fig. 4.

32

a,b,c a,b,c

ε

ε

ε

ε

εa

b c

a,b

01

2

3

4

56
ε

ε

Figure 4: Factor Graph

4.3. Knuth-Morris-Pratt Pattern Matching

The fact that it is theoretically necessary to consider all subsets of the l -
classes (2n if the number of l -classes is n) when computing the factor graph
is clearly prohibitive. However, there are circumstances when the computation
is relatively straightforward and efficient. The well-known Knuth-Morris-Pratt
pattern-matching algorithm [KMP77] (henceforth abbreviated to “KMP algo-
rithm”) and its generalisation to a finite set of patterns [AC75] boil down to
constructing the factor graph of a language defined by the given patterns [BL77].

Expressed in terms of language recognition, pattern matching is the follow-
ing: given words u and v in T ∗ , detemine, for each prefix w of u , whether
w ∈ T ∗ v . The word u is called the text and v is called the pattern. Informally,
pattern matching is the task of searching a text u to determine all occurrences
of the pattern v .

In this section, we use an example to illustrate how the unity of opposites
becomes apparent in a practical application like pattern matching. Underlying
our exposition is the fact that the KMP algorithm effectively computes the fac-
tor graph of T ∗ v for a given pattern v . However, our goal is not to reformulate
the KMP algorithm. We do show how to construct the factor graph but we un-
dertake more computation than is necessary in order to increase understanding.
Our main goal is to provide an appealing and possibly inspiring example.

The section begins with a summary of the construction of the factor graph
T ∗ v for an arbitrary pattern v following which we detail the construction for
a specific example. The section ends with a short summary of how the factor
graph encodes the failure function used in the KMP algorithm. The KMP
algorithm is very much standard textbook material and so we take the liberty
of assuming that it needs only a brief explanation.

The key observation is that the construction of a factor graph of a given lan-
guage does not necessitate computing the language’s machine and anti-machine,
it is only necessary to find a representative of each l -class and each r -class and,
in the case of pattern matching, it is easy to identify such representatives.

33

To avoid a case analysis with no practical benefit, we assume that the pattern
v has length greater than zero and the alphabet T has at least two symbols.
The reader may wish to consult fig. 5 whilst reading the following summary.

Given a pattern v of length n (where n is non-zero), the language T ∗ v
has n+2 left factors: n+1 of the form T ∗w where w is a prefix of v and
(annoyingly!) the empty set10. Thus, the factor graph of T ∗ v has n+2 nodes.
One node we call the inadmissible node because there is no edge to this node
from the start node of the graph. Note that there is a one-to-one correspondence
between non-empty left factors and prefixes of v . Let us use the length of the
prefix to index the non-empty left factors. (So left factor 0 is T ∗ and left
factor n is T ∗ v .) The edges of the factor graph comprise four sets: The first
set we call the spine of the factor graph. It has n elements; there is an edge
labelled ai from node i−1 to node i if ai is the i th letter of v . The edges
in the second set are from node 0 to itself and each is labelled by a symbol in
T different from a1 . The edges in the third set are all labelled by the empty
word. These edges represent the (reflexive-)transitive reduction of the subset
relation on the left factors of T ∗ v in the following sense: if L and M are left
factors, there is an edge labelled ε from the node corresponding to L to the
node corresponding to M if L⊆M but L and M are different (the reflexive
reduction) and there is no left factor N different from both L and M such
that L⊆N ⊆M (the transitive reduction). Finally, there are edges labelled
with the symbols in T from the inadmissible node to itself.

The factor graph acts as a recogniser of the language T ∗ v . The start node
is node 0 and the final node is node n . When at a node, a transition is made
along an edge with label that matches the next symbol in the text; if no such
transition is possible the (unique) empty-word edge from the node is followed
and then a transition is chosen again. In this way, the empty-word edges act as
failure transitions; that is, they are followed when it is impossible to follow an
edge labelled by a symbol of the alphabet.

The fact that it is easy to compute the factor graph of T ∗ v is a consequence
of the fact that both the machine and anti-machine have exactly the same spine
and computing the factor graph requires only knowing a representative of each
l -class and each r -class; it is not necessary to know all the details of the machine
and anti-machine. To be precise, each l -class of T ∗ v is represented by a prefix
of v and each admissible r -class is represented by a suffix of v . (The anti-
machine has one inadmissible r -class whenever the alphabet has at least two
symbols.)

The table below names the l - and r -classes for the language {a,b}∗abaab
together with their representatives. (The inadmissible r -class is named “ err ”,
short for “error” in the table. It is this r -class that gives rise to the inadmissible
node in the factor graph.)

10If n=0 or the alphabet has just one element, the empty set is not a left factor. This is
the case analysis we want to avoid.

34

l-class representative r-class representative
l0 ε r0 ε
l1 a r1 b
l2 ab r2 ab

l3 aba r3 aab

l4 abaa r4 baab

l5 abaab r5 abaab

err a

Using the algorithm detailed in section 4.2, the table below shows the left
factor r⊳ for each r -class r and the right factor l⊲ for each l -class l . We
include this table for illustration purposes only since it is not necessary to cal-
culate it when calculating the factor graph.

l-class l l⊲ r-class r r⊳
l0 r5 r0 l5
l1 r4∪ r5 r1 l4
l2 r3∪ r5 r2 l3
l3 r2∪ r4∪ r5 r3 l2∪ l5
l4 r1∪ r4∪ r5 r4 l1∪ l3∪ l4∪ l5
l5 r0∪ r3∪ r5 r5 l0∪ l1∪ l2∪ l3∪ l4∪ l5

err ∅

Since we know that the language has exactly 6 admissible left/right factors
—the first six entries l⊲ and r⊳ in the table above— it is now easy to compute
Cmin , the transitive reduction of the subset ordering on the poset of left factors.
Moreover, Lmin is already known. Its principal component is what we called the
“spine” of the factor graph; other edges in Lmin are the edges from node 0 to
itself and edges from the inadmissible node. The resulting all-admissible factor
graph is shown in fig. 5. (The inadmissible node has been omitted; if included,
there would be a dotted edge from it to each of the rightmost three nodes in
the graph, and there would be edges from it to itself, one for each symbol of
T .) The dotted edges correspond to Cmin ; their labels (not shown) are all the
empty word. Below each node of the graph, we also show the l -classes that
comprise the corresponding left factor. By the unity of opposites, each node
also corresponds to a right factor; the r -classes making up the corresponding
right factor are also listed under each node.

Note once more the properties predicted by the unity-of-opposites theorem.
Not only do the empty-word edges encode the subset ordering on left factors,
they also encode the superset ordering on the right factors. Specifically, from
left to right in fig. 5, the empty-word edges encode the following properties:

l0∪ l1∪ l2∪ l3∪ l4∪ l5 ⊇ l1∪ l3∪ l4∪ l5 and r5 ⊆ r4∪ r5 ,
l0∪ l1∪ l2∪ l3∪ l4∪ l5 ⊇ l2∪ l5 and r5 ⊆ r3∪ r5 ,

35

a b a a b

l1,l3,l4,l5 l3 l4 l5l0,...,l5

r5 r4,r5 r3,r5 r2,r4,r5 r1,r4,r5 r0,r3,r5

l2,l5

b

Figure 5: Factor Graph of T ∗abaab (omitting inadmissible node).

l1∪ l3∪ l4∪ l5 ⊇ l3 and r4∪ r5 ⊆ r2∪ r4∪ r5 ,
l1∪ l3∪ l4∪ l5 ⊇ l4 and r4∪ r5 ⊆ r1∪ r4∪ r5 ,
l2∪ l5 ⊇ l5 and r3∪ r5 ⊆ r0∪ r3∪ r5 .

Not listed are the orderings encoded by the three empty-word edges from
the inadmissible node. These encode that the left factor ∅ is the least element
in the subset ordering on left factors and the right factor T ∗ (the union of all
r -classes) is the greatest element in the subset ordering on right factors.

A fundamental component of the Knuth-Morris-Pratt algorithm is the com-
putation of a function defined on prefixes of the pattern v different from the
empty word [KMP77, p.327]. Specifically, suppose ai is the i th letter of v .
Then, the failure function f of type {1 . . . n}→{0 . . . n−1} is defined by

f(i) = 〈MAX j : j < i : a1 . . . aj = ai−j+1 . . . ai〉 .

To see the correspondence with the factor graph, it suffices to observe the equiv-
alent definition:

f(i) = 〈MAX j : j < i : T ∗ a1 . . . ai ⊆ T ∗ a1 . . . aj〉 .

The equivalence of these two definitions is a straightforward calculation. First,
we establish that

T ∗ a1 . . . ai ⊆ T ∗ a1 . . . aj ≡ a1 . . . ai ∈ T ∗ a1 . . . aj

by an if-and-only-if argument:

T ∗ a1 . . . ai ⊆ T ∗ a1 . . . aj

⇐ { monotonicity of concatenation, T ∗=T ∗ T ∗ }

a1 . . . ai ∈ T ∗ a1 . . . aj

⇐ { a1 . . . ai ∈ T ∗ a1 . . . ai }

T ∗ a1 . . . ai ⊆ T ∗ a1 . . . aj .

36

Then we simplify the right side:

a1 . . . ai ∈ T ∗ a1 . . . aj

= { definition of concatenation }

〈∃u : u∈T ∗ : a1 . . . ai = ua1 . . . aj〉

= { equality of words: u :=a1 . . . ai−j }

j≤ i ∧ ai−j+1 . . . ai = a1 . . . aj .

We conclude that

T ∗ a1 . . . ai ⊆ T ∗ a1 . . . aj ≡ j≤ i ∧ ai−j+1 . . . ai = a1 . . . aj

and hence that the failure function represents the transitive reduction of the
subset relation on the n nonempty left factors of v .

5. Conclusion

In the more than forty years since the publication of Conway’s book, much
has changed in the science of computing. The demands of reliability of software
that affects our livelihoods and our lives on a daily basis has meant that reason-
ing in many (although not all) computing science publications has become much
more formal and calculational. This may mean that the publications are longer
but they become clearer by becoming more explicit. The added benefit is that
we have become much more aware of the algebraic properties that underpin any
computation.

The algebraic properties of Galois connections have now become widely
known but it is always useful to have meaningful examples. Such examples
are lacking (at least to my knowledge) for one of the most important theorems:
the unity of opposites. Because of the decidedly non-trivial nature of factor
theory, using the construction of the factor graph of a regular language to ex-
emplify the theorem is quite demanding. However, by relating it to a practical
application —the Knuth-Morris-Pratt pattern matching algorithm— we hope
that it is both meaningful and worthwhile.

Acknowledgements

Many thanks to the anonymous referees for their thoughtful comments and
suggestions for improvements.

[AC75] Alfred V. Aho and Margaret J. Corasick. Efficient string match-
ing: An aid to bibliographic search. Communications of the ACM,
18(6):333–340, 1975.

[Bac75] R.C. Backhouse. Closure algorithms and the star-height problem of

regular languages. PhD thesis, University of London, 1975. Scanned-
in copy of the chapters on factor theory available from www.cs.nott.

ac.uk/~rcb/MPC/FactorGraphs.pdf.

37

[Bac06] Roland Backhouse. Regular algebra applied to language problems.
Journal of Logic and Algebraic Programming, 66:71–111, 2006.

[BL77] R.C. Backhouse and R.K. Lutz. Factor graphs, failure functions and
bi-trees. In A. Salomaa and M. Steinby, editors, Fourth Colloquium

on Automata, Languages and Programming, pages 61–75. Springer-
Verlag, LNCS 52, July 1977.

[Brz64] J.A. Brzozowski. Derivatives of regular expressions. Journal of the

ACM, 11(4):481–494, October 1964.

[Brz67] J.A. Brzozowski. Roots of star events. Journal of the ACM, 14(3):466–
477, July 1967.

[Con71] J.H. Conway. Regular Algebra and Finite Machines. Chapman and
Hall, London, 1971.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976.

[KMP77] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in
strings. SIAM Journal of Computing, 6:325–350, June 1977.

[Koz94] Dexter Kozen. A completeness theorem for Kleene algebras and the
algebra of regular events. Information and Computation, 110(2):366–
390, 1994.

[LS86] J. Lambek and P.J. Scott. Introduction to Higher Order Categorical

Logic, volume 7 of Studies in Advanced Mathematics. Cambridge
University Press, 1986.

[RS59] M.O. Rabin and D. Scott. Finite automata and their decision prob-
lems. IBM J.Research and Development, 1959.

[Sal66] Arto Salomaa. Two complete axiom systems for the algebra of regular
events. J. Assoc. Comp. Mach., 13(1):158–169, January 1966.

[Sch53] J. Schmidt. Beiträge zur Filtertheorie. II. Math. Nachr., 10:197–232,
1953.

[Wei73] P. Weiner. Linear pattern matching algorithms. In Conf. Record

IEEE 14th Annual Symposium on Switching and Automata, pages
1–11, 1973.

38

