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Abstract

We introdue the general notions of an index and a ore of a relation. We postu-

late a limited form of the axiom of hoie |spei�ally that all partial equivalene

relations have an index| and explore the onsequenes of adding the axiom to stan-

dard axiom systems for point-free reasoning. Examples of the theorems we prove

are that a ore/index of a difuntion is a bijetion, and that the so-alled \all or

nothing" axiom used to failitate pointwise reasoning is derivable from our axiom

of hoie. We reformulate and generalise a number of theorems originally due to

Riguet on polar overings of a relation. We study the properties of the \diagonal"

of a relation (alled the \di��erene" by Riguet who introdued the onept in 1951).

In partiular, we formulate and prove a general theorem relating properties of the

diagonal of a relation to blok-ordered relations; the theorem generalises a property

that Riguet alled an \analogie frappante" between the \di��erene" of a relation and

\relations de Ferrers" (a speial ase of blok-ordered relations).
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1 Introduction

Seventy years ago, in a series of publiations [Rig48, Rig50, Rig51℄, Jaques Riguet in-

trodued the notions of a \relation difontionelle", the \di��erene" of a relation and

\relations de Ferrers". In the ase of �nite relations, he provided an informal mental

piture of a \relation de Ferrers" in the form of a stairase-like struture. But his formal

de�nition of a \relation de Ferrers" bears little or no resemblane to the mental piture

and it is diÆult to see how the formal orresponds to the informal. The name \relation

de Ferrers" also gives little lue as to the pratial relevane of the notion. Riguet's def-

initions, partiularly of the \di��erene" of a relation, use (in our view) over-ompliated

and outdated formulae involving nested omplements that are better formulated using

the fator operators (aka division or residual operators). Riguet also relies heavily on

natural language justi�ations of important properties as well as asserting several prop-

erties without proof. More reent publiations, some of whih do not ite Riguet but

whih opy his de�nitions, introdue errors by failing to reognise the restritions that

Riguet made lear in his aount of the properties of the notions.

The writing of this paper initially began as an exerise in applying modern alu-

lational reasoning to bring Riguet's work up to date and more aessible to a wider

audiene. In view of the extant errors in relatively reent publiations and to try to

avoid introduing yet more errors, we deided to inlude full details of all proofs. In

the proess, we deided that some hanges in terminology were desirable: we all the

\di��erene" of a relation the \diagonal" of the relation and we all \relations de Ferrers"

\stairase" relations. We also realised that ertain generalisations of Riguet's work were

desirable, the primary one being from \stairase" relations to \blok-ordered relations":

the property of being a \stairase" relation demands a ertain total ordering on \bloks"

(\retangles totalement ordonn�ees par inlusion" [Rig51℄), being \blok-ordered" does

not require the ordering to be total.

As this work ontinued, we began to realise that substantial improvements ould be

made by introduing the notion of the \ore" of a relation, drawing inspiration from

Voerman's [Voe99℄ notion of the (left- and right-) per domains of a relation. The results

were doumented by Bakhouse in [Ba21℄.

A signi�ant disadvantage of the general notion is that a \ore" of a relation typially

has a type that is di�erent from the type of the relation itself. (The ompliations this

involves is partiularly evident when one's subjet of interest is homogeneous relations

beause it fores one to introdue type judgements.) Voermans suggested that the notion

of \ore" ould be better replaed by the notion of an \index" of the relation, with the

property that an index of relation R is a subset of R , and thus has the same type as R .

Here is a simple example.
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Example 1 Fig. 1 depits a relation (on the left) and two instanes of ores of the

relation (in the middle and on the right). All are depited as bipartite graphs. The

relation R is a relation on blue and red nodes. The middle �gure depits a ore as

a relation on squares of blue nodes and squares of red nodes, eah square being an

equivalene lass of the left per-domain of R (on the left) or of the right per-domain of

R (on the right). The rightmost �gure depits a ore as a relation on representatives of

the equivalene lasses: the relation depited by the thik green edges. The rightmost

�gure also depits an index of the relation; the middle does not: although the relations

depited in the middle and rightmost �gures are isomorphi, they have di�erent types.

Figure 1: A Relation, a Core and an Index.

✷

Further (joint) work led us to fresh insights on relation algebra, in partiular on

point-free versus pointwise relation algebra, whih we report on in this paper.

The paper is divided into three parts. In the �rst part, we introdue the notions

of a \ore" and an \index" of a relation in the ontext of point-free relation algebra.

We establish a large olletion of properties of these notions whih form a basis for

parts II and III of the paper. (Beause the notions are new, almost all the properties

are new. An example of a property that some readers may reognise, albeit expressed

di�erently, is that a difuntion has an index that is a bijetion.) Part I onludes by the

introdution of a restrited form of the axiom of hoie: we postulate that every partial

equivalene relation has an index. This is the same as saying that it is possible to hoose

a representative element of every equivalene lass of a partial equivalene relation.

Part II examines the onsequenes of adding our axiom of hoie to point-free relation

algebra in order to failitate pointwise reasoning. We show that so doing has surprising

and remarkable onsequenes. One suh onsequene is that we an derive the so-alled

\all-or-nothing" rule; this is a rule introdued by Gl�uk [Gl�u17℄ also as a means of

failitating pointwise reasoning. (See [BDGv22℄ for examples of how the rule is used in

reasoning about graphs.) The main theorem in part II is that, with the addition of our

axiom of hoie, the type A∼B of relations is isomorphi to the powerset 2A×B (the set

of subsets of the artesian produt of A and B ).
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Part III applies the results of part II to revise and generalise Riguet's earlier work. We

show, for example, that any relation is \overed" by a olletion of retangles with very

speial properties. (Riguet [Rig51℄ showed how to onstrut a \\r�eunion" of \retangles"

but only for the ase of \retangles de Ferrers".)

A novel result in part III is a generalisation of Riguet's \analogie frappante" between

difuntions and \relations de Ferrers". We introdue the notion of a \blok-ordered rela-

tion" and formulate and prove a theorem whih allows one to determine whether or not

a given relation is blok-ordered by analysing the relation's \diagonal" (its `di��erene"

in Riguet's terminology). We all the theorem the \analogie frappante" in reognition

of Riguet's pioneering insights. Several other properties of the \diagonal", whih we

believe to be novel, are also presented.
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Part I

Point-free Relation Algebra

2 Axiomatisation

In traditional, pointwise reasoning about relations, it is not the relations themselves that

are the fous of interest. Rather, a relation R of type A∼B is de�ned to be a subset of the

artesian produt A×B and the fous of interest is the boolean membership property

(a, b)∈R where a and b are elements of type A and B , respetively. Equality of

relations R and S is de�ned in terms of membership (typially in terms of \if and

only if"), leading to a lak of onision (and frequently preision). In point-free relation

algebra, the membership relation plays no role, and reasoning is truly about properties

of relations.

In this setion, we give a brief summary of the axioms of point-free relation algebra.

For full details of the axioms, see [BDGv22℄.

2.1 Summary

Point-free relation algebra omprises three layers with interfaes between the layers plus

additional axioms peuliar to relations. (It is useful to separate the layers for use in

other appliation areas.)

The axiom system is typed. For types A and B , A∼B denotes a set; the elements

of the set are alled (heterogeneous) relations of type A∼B . Elements of type A∼A ,

for some type A , are alled homogeneous relations.

The �rst layer axiomatises the properties of a partially ordered set. We postulate

that, for eah pair of types A and B , A∼B forms a omplete, universally distributive

lattie. In antiipation of part II, where we add axioms that require A∼B to be a

powerset, we use the symbol \⊆ " for the ordering relation, and \∪ " and \∩ " for

the supremum and in�mum operators. We assume that this notation is familiar to the

reader, allowing us to skip a more detailed aount of its properties. However, we use ⊥⊥

for the least element of the ordering (rather than the onventional ∅ ) and ⊤⊤ for the

greatest element. In keeping with the onventional pratie of overloading the symbol

\ ∅ ", both these symbols are overloaded. The symbols \⊥⊥ " and \⊤⊤ " are pronouned

\bottom" and \top", respetively. (Stritly we should write something like A⊥⊥B and

A⊤⊤B for the bottom and top elements of type A∼B . Of ourse, are needs to be taken

when overloading operators in this way but it is usually the ase that elementary type

onsiderations allow the appropriate type to be dedued.)

It is important to note that there is no axiom stating that a relation is a set, and there
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is no orresponding notion of membership. (In, for example, [ABH

+
92℄ and [Voe99℄, we

used the symbols \⊑ ", \⊔ " and \⊓ " and the name \spe alulus" rather than \relation

algebra" in order to avoid misunderstanding.) The lak of a notion of membership

distinguishes point-free relation algebra from pointwise algebra.

The seond layer adds a omposition operator. If R is a relation of type A∼B and S

is a relation of type B∼C , the omposition of R and S is a relation of type A∼C whih

we denote by R◦S . Composition is assoiative and, for eah type A , there is an identity

relation whih we denote by IA . We often overload the notation for the identity relation,

writing just I . Oasionally, for greater larity, we do supply the type information.

The interfae between the �rst and seond layers de�nes a relation algebra to be

an instane of a regular algebra [Ba06℄ (also alled a standard Kleene algebra, or

S-algebra [Con71℄). For this paper, the most important aspet of this interfae is the

existene and properties of the fator operators. These are introdued in setion 2.2.

Also, ⊥⊥ is a zero of omposition: for all R , ⊥⊥◦R=⊥⊥=R◦⊥⊥ .

The ompleteness axiom in the �rst layer allows the reexive-transitive losure R∗
of

eah element R of type A∼A , for some type A , to be de�ned. For pratial appliations,

this is possibly the most important aspet of regular algebra but suh appliations are

not onsidered in this paper. For this paper, ompleteness is only relevant when we

add axioms to the algebra that model pointwise reasoning. We do require, however, the

existene of R∪S and R∩S , for all pairs of relations R and S of the same type, and the

usual properties of set union and intersetion.

The third layer is the introdution of a onverse operator. If R is a relation of type

A∼B , the onverse of R , whih we denote by R
∪

(pronouned R \wok") is a relation of

type B∼A . The interfae with the �rst layer is that onverse is a poset isomorphism (in

partiular, ⊥⊥
∪

=⊥⊥ and ⊤⊤
∪

=⊤⊤ ), and the interfae with the seond layer is formed by

the two rules I
∪ = I and, for all relations R and S of appropriate type, (R◦S)∪ = S∪

◦R
∪

.

Additional axioms haraterise properties peuliar to relations. The modularity rule

(aka Dedekind's rule [Rig48℄) is that, for all relations R , S and T ,

R◦S∩T ⊆ R ◦ (S ∩ R
∪

◦ T) .(2)

The dual property, obtained by exploiting properties of the onverse operator, is, for all

relations R , S and T ,

S◦R∩T ⊆ (S ∩ T ◦R
∪

) ◦R .(3)

The modularity rule is neessary to the derivation of some of the properties we state

without proof (for example, the properties of the domain operators given in setion 3.1).

Another rule is the one rule :

〈∀R :: ⊤⊤◦R◦⊤⊤ = ⊤⊤ ≡ R 6=⊥⊥〉 .(4)
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2.2 Factors

If R is a relation of type A∼B and S is a relation of type A∼C , the relation R\S of

type B∼C is de�ned by the Galois onnetion, for all T (of type B∼C ),

T ⊆ R\S ≡ R◦T ⊆ S .(5)

Similarly, if R is a relation of type A∼B and S is a relation of type C∼B , the relation

R/S of type A∼C is de�ned by the Galois onnetion, for all T ,

T ⊆ R/S ≡ T ◦S ⊆ R .(6)

In relation algebra, fators are also known as \residuals". We prefer the term \fator"

beause it emphasises alulational properties whereas \residual" emphasises an opera-

tional understanding (what is left after taking something away). In partiular, fators

have the anellation properties:

T ◦T\U ⊆ U ∧ R/S ◦S ⊆ R .(7)

The fator operators (whih we pronoune \under" and \over" respetively) are mutually

assoiative. That is

R\(S/T) = (R\S)/T .(8)

This means that it is unambiguous to write R\S/T | whih we shall do in order to

promote the assoiativity property by making its use invisible (in the same way that the

use of the assoiativity of omposition is made invisible).

The relations R\R (of type B∼B if R has type A∼B ) and R/R (of type A∼A if

R has type A∼B ) play a entral role in what follows. As is easily veri�ed, both are

preorders. That is, both are transitive :

R\R ◦R\R ⊆ R\R ∧ R/R ◦R/R ⊆ R/R(9)

and both are reexive :

I ⊆ R\R ∧ I ⊆ R/R .(10)

(The notation \ I " is overloaded in the above equation. In the left onjunt, it denotes

the identity relation of type B∼B and, in the right onjunt, it denotes the identity

relation of type A∼A , assuming R has type A∼B . We often overload onstants in this

way. Note, however, that we do not attempt to ombine the two inlusions into one.) In

addition, for all R ,

R ◦R\R = R = R/R ◦R ,(11)
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R/(R\R) = R = (R/R)\R ,(12)

(R\R)/(R\R) = R\R = (R\R)\(R\R) and(13)

(R/R)\(R/R) = R/R = (R/R)/(R/R) .(14)

In fat, we don't use (12) diretly; its relevane is as the initial step in proving the

leftmost equations of (13) and (14). We hoose not to exploit the assoiativity of the

over and under operators in (13) and (14) |by writing, for example, (R\R)/(R\R) as

R\R/(R\R)| in order to emphasise their rôle as properties of the preorders R\R and

R/R .

Properties (11) thru (14) are also alled anellation rules.

3 Domains

In point-free relation algebra, \oreexives" of a given type represent sets of elements of

that type. A oreexive of type A is a relation p suh that p⊆ IA . Frequently used

properties are that, for all oreexives p ,

p = p
∪

= p◦p

and, for all oreexives p and q ,

p◦q = p∩q = q◦p .

(The proof of these properties relies on the modularity rule.) In the literature, oreex-

ives have several di�erent names, usually depending on the appliation area in question.

Examples are \monotype", \pid" (short for \partial identity") and \test".

3.1 The Domain Operators

The \domain operators" (see eg. [BH93℄) play a dominant and unavoidable role. We

exploit their properties frequently in alulations, so muh so that we assume great

familiarity with them.

Definition 15 (Domain Operators) Given relation R of type A∼B , the left do-

main R<
of R is a relation of type A de�ned by the equation

R< = IA ∩ R ◦R
∪

and the right domain R>
of R is a relation of type B is de�ned by the equation

R> = IB ∩ R
∪

◦R .

✷
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The name \domain operator" is hosen beause of the fundamental properties: for

all R and all oreexives p ,

R=R◦p ≡ R> = R> ◦p(16)

and

R=p◦R ≡ R< = p ◦R< .(17)

A simple, often used onsequene of (16) and (17) is the property:

R< ◦R = R = R ◦R> .(18)

In words, R>
is the least oreexive p suh that restriting the \domain" of R on the

right has no e�et on R . It is in this sense that R<
and R>

represent the set of points

on the left and on the right on whih the relation R is \de�ned", i.e. its left and right

\domains".

For readers unfamiliar with the domain operators, we summarise their properties

below. We restrit our attention here to the right-domain operator. The reader is

requested to dualise the results to the left-domain operator.

The intended interpretation of R>
(read R \right") for relation R is {x | 〈∃y ::y[[R]]x〉} .

Two ways we an reformulate this requirement without reourse to points are formulated

in the following theorem.

Theorem 19 (Right Domain) For all relations R and oreexives p ,

R>⊆p ≡ R⊆⊤⊤◦p(20)

and

R>⊆p ≡ R=R◦p .(21)

✷

The haraterisations (20) and (21) predit a number of useful alulational properties

of the right domain operator. Some are immediate, some involve a little bit of work for

their veri�ation. Immediate from (20) |a Galois onnetion| is that the right domain

operator is universally ∪ -juntive, and (⊤⊤◦
) is universally distributive over in�ma of

oreexives. In partiular,

⊤⊤◦(p∩q) = (⊤⊤◦p)∩ (⊤⊤◦q) ,

(R∪S)> = R>∪S> ,

and

⊥⊥>=⊥⊥ .
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The last of these an in fat be strengthened to

R>=⊥⊥ ≡ R=⊥⊥ .(22)

The property is obtained by instantiating p to ⊥⊥ in (16).

From (20) we may also dedue a number of anellation properties. But, in ombina-

tion with the modularity rule, the anellation properties an be strengthened. We leave

their proofs together with a ouple of other interesting appliations of Galois onnetions

as exerises.

Theorem 23 For all relations R , S and T

(a) ⊤⊤ ◦R> = ⊤⊤◦R ,

(b) R ∩ S◦⊤⊤◦T = S< ◦R ◦T> ,

(c) (R∪)> = R< ,

(d) (R∩S◦T)> = (S∪
◦R ∩ T)> ,

(e) (R◦⊤⊤◦S)> = S> ⇐ R 6=⊥⊥ ,

(f) (R◦S)> = (R> ◦S)> ,

(g) (R◦S)< = (R ◦S<)< ,

✷

3.2 Pers and Per Domains

Given relations R of type A∼B and S of type A∼C , the symmetri right-division is

the relation R\\S of type B∼C de�ned in terms of right fators as

R\\S = R\S ∩ (S\R)
∪

.(24)

Dually, given relations R of type B∼A and S of type C∼A , the symmetri left-division

is the relation R//S of type B∼C de�ned in terms of left fators as

R//S = R/S ∩ (S/R)
∪

.(25)

The relation R\\R is an equivalene relation

1

. Voermans [Voe99℄ alls it the \greatest

right domain" of R . Riguet [Rig48℄ alls R\\R the \noyau" of R (but de�nes it using

nested omplements). Others (see [Oli18℄ for referenes) all it the \kernel" of R .

1

This is a well-known fat: the relation R\\R is the symmetri losure of the preorder R\R . The easy

proof is left to the reader.
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As remarked elsewhere [Oli18℄, the symmetri left-division inherits a number of

(left) anellation properties from the properties of fatorisation in terms of whih it

is de�ned. For our purposes, the only anellation property we use is the following

(inherited from the property R ◦R\R = R ). For all R ,

R ◦R\\R = R .(26)

In this setion the fous is on the left and right \per-domains" introdued by Voermans

[Voe99℄.

Definition 27 (Right and Left Per Domains) The right per-domain of relation

R , denoted R≻
, is de�ned by the equation

R≻ = R> ◦R\\R .(28)

Dually, the left per-domain of relation R , denoted R≺
, is de�ned by the equation

R≺ = R//R ◦R< .(29)

✷

The left and right per-domains are \pers" where \per" is an abbreviation of \partial

equivalene relation".

Definition 30 (Partial Equivalence Relation (per)) A relation is a partial equiv-

alene relation i� it is symmetri and transitive. That is, R is a partial equivalene

relation i�

R=R
∪

∧ R◦R⊆R .

Heneforth we abbreviate partial equivalene relation to per.

✷

That R≺
and R≻

are indeed pers is a diret onsequene of the symmetry and tran-

sitivity of R\\R .

The left and right per-domains are alled \domains" beause, like the oreexive

domains, we have the properties: for all pers P ,

R=R◦P ≡ R≻ = R≻ ◦P(31)

and

R=P◦R ≡ R≺ = P ◦R≺ .(32)

As with the oreexive domains, we also have:

R≺ ◦R = R = R ◦R≻ .(33)
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(The seond of these equalities is an immediate onsequene of (26) and the properties

of (oreexive-) domains; the �rst is symmetri.)

Indeed, R≺
and R≻

are the \least" pers that satisfy the equalities (33). (See [Voe99℄

for details of the ordering relation on pers.)

In order to prove additional properties, it is useful to reord the left and right domains

of the relation R\\R ◦R>
.

Lemma 34 For all R ,

(R\\R ◦R>)> = R> = (R> ◦R\\R)< ,

(R\\R ◦R>)< = R> = (R> ◦R\\R)> ,

R\\R ◦R> = R> ◦R\\R ◦R> = R> ◦R\\R .

✷

Lemma 34 has the onsequene that R≻
an be de�ned equivalently by the equation

R≻ = R\\R ◦R>
(35)

and, moreover,

(R≻)< = R> = (R≻)> .(36)

Symmetrial properties hold of R≺
.

A property that we need later is

Lemma 37 For all relations R ,

R> ◦R\R = R≻ ◦R\R .

Proof By anti-symmetry of the subset relation:

R\R ◦R≻

⊆ { by (24), (35) and monotoniity, R≻ ⊆ R\R ◦R> }

R\R ◦R\R ◦R>

⊆ { by anellation, R\R ◦R\R ⊆ R\R }

R\R ◦R>

⊆ { I⊆R\\R , so by (35) and montoniity, R>⊆R≻ }

R\R ◦R≻ .
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✷

The following lemma extends [Rig48, Corollaire, p.134℄ from equivalene relations to

pers.

Lemma 38 For all relations R , the following statements are all equivalent.

(i) R is a per (i.e. R=R∪

∧ R◦R⊆R ) ,

(ii) R = R∪
◦R ,

(iii) R=R≺
,

(iv) R=R≻
.

✷

For further properties of pers and per-domains, see [Voe99℄.

3.3 Functionality

In this setion, we present a number of lesser-known properties of \funtional" relations.

A relation R of type A∼B is said to be left -funtional i� R ◦R
∪ = R<

. Equivalently,

R is left-funtional i� R ◦R
∪ ⊆ IA . It is said to be right-funtional i� R

∪
◦R = R>

(equivalently, R
∪
◦R ⊆ IB ). A relation R is said to be a bijetion i� it is both left- and

right-funtional.

Rather than left- and right-funtional, the more ommon terminology is \funtional"

and \injetive" but publiations di�er on whih of left- or right-funtional is \funtional"

or \injetive". We hoose to abbreviate \left-funtional" to funtional and to use the

term injetive instead of right-funtional. Typially, we use f and g to denote fun-

tional relations, and Greek letters to denote bijetions (although the latter is not always

the ase). Other authors make the opposite hoie.

The properties we present here stem from the observation that funtionality an be

de�ned via a Galois onnetion. Spei�ally, the relation f is (left-)funtional i�, for all

relations R and S (of appropriate type),

f◦R ⊆ S ≡ f> ◦R ⊆ f
∪

◦S .(39)

It is a simple exerise to show that (39) is equivalent to the property f ◦ f
∪ ⊆ I . (Although

(39) doesn't immediately �t the standard de�nition of a Galois onnetion, it an be

turned into standard form by restriting the range of the dummy R to relations that

satisfy f> ◦R = R , i.e. relations R suh that R<⊆ f> .)
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The onverse-dual of (39) is also used frequently: g is funtional i�, for all R and

S ,

R ◦g
∪

⊆ S ≡ R ◦g> ⊆ S◦g .(40)

Comparing the Galois onnetions de�ning the over and under operators with the Ga-

lois onnetion de�ning funtionality (see (39)) suggests a formal relationship between

\division" by a funtional relation and omposition with the relation's onverse. The

preise form of this relationship is given by the following lemma.

Lemma 41 For all R and all funtional relations f ,

f> ◦ f\R = f
∪
◦R .

Proof We use the anti-symmetry of the subset relation. First,

f
∪
◦R ⊆ f> ◦ f\R

= { domains }

f> ◦ f
∪
◦R ⊆ f> ◦ f\R

⇐ { monotoniity }

f
∪
◦R ⊆ f\R

= { fators }

f ◦ f
∪
◦R ⊆ R

⇐ { de�nition and monotoniity }

f is funtional .

Seond,

f> ◦ f\R ⊆ f
∪
◦R

⇐ { f> ⊆ f
∪
◦ f ; monotoniity and transitivity }

f
∪
◦ f ◦ f\R ⊆ f

∪
◦R

⇐ { monotoniity }

f ◦ f\R ⊆ R

= { anellation }

true .
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✷

Two lemmas that will be needed later now follow. Lemma 42 allows the onverse of a

funtional relation (i.e. an injetive relation) to be anelled, whilst lemma 43 expresses

a distributivity property.

Lemma 42 For all R and all funtional relations f ,

f< ◦ f
∪

\ (f
∪

◦R) = f< ◦R .

Proof

f< ◦ f
∪

\ (f∪ ◦R)

= { assumption: f is funtional }

f ◦ f
∪

◦ f
∪

\ (f∪ ◦R)

⊆ { anellation }

f ◦ f
∪
◦R

= { assumption: f is funtional }

f< ◦R .

Also,

f< ◦R ⊆ f< ◦ f
∪

\ (f∪ ◦R)

⇐ { monotoniity }

R ⊆ f
∪

\ (f∪ ◦R)

= { fators }

true .

The lemma follows by anti-symmetry of the subset relation.

✷

Lemma 43 For all R and S and all funtional relations f ,

R\(S◦f) ◦ f> = R\S ◦ f .

Proof
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R\(S◦f) ◦ f> ⊆ R\S ◦ f

⇐ { f> ⊆ f
∪
◦ f , monotoniity }

R\(S◦f) ◦ f∪ ⊆ R\S

= { fators }

R ◦R\(S◦f) ◦ f∪ ⊆ S

⇐ { anellation }

S ◦ f ◦ f
∪ ⊆ S

= { assumption: f is funtional }

true .

Also,

R\S ◦ f ⊆ R\(S◦f) ◦ f>

⇐ { monotoniity, f = f ◦ f> }

R\S ◦ f ⊆ R\(S◦f)

= { fators and anellation }

true .

The lemma follows by anti-symmetry of the subset relation.

✷

The following lemma is ruial to fully understanding Riguet's \analogie frappante";

see lemma 221. (The lemma is ompliated by the fat that it has �ve free variables.

Simpler, possibly better known, instanes an be obtained by instantiating one or more

of f , g , U and W to the identity relation.)

Lemma 44 Suppose f and g are funtional. Then, for all U , V and W ,

f
∪
◦ (g< ◦U)\V/(W ◦ f<) ◦g

= f> ◦ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f) ◦g> .

Proof Guided by the assumed funtionality of f and g , we use the rule of indiret

equality. Spei�ally, we have, for all R , U , V and W ,

f> ◦R ◦g> ⊆ f
∪
◦ (g< ◦U)\V/(W ◦ f<) ◦g

= { assumption: f and g are funtional, (39) and (40) }

f ◦R ◦g
∪ ⊆ (g< ◦U)\V/(W ◦ f<)
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= { fators }

g< ◦U ◦ f ◦R ◦g
∪
◦W ◦ f< ⊆ V

= { assumption: f and g are funtional

i.e. f ◦ f
∪ = f< ∧ g ◦g

∪ = g< }

g ◦g
∪
◦U ◦ f ◦R ◦g

∪
◦W ◦ f ◦ f

∪ ⊆ V

= { assumption: f and g are funtional, (39) and (40) }

g> ◦g
∪
◦U ◦ f ◦R ◦g

∪
◦W ◦ f ◦ f> ⊆ g

∪
◦V ◦ f

= { domains (four times) }

g
∪
◦U ◦ f ◦ f> ◦R ◦g> ◦g

∪
◦W ◦ f ⊆ g

∪
◦V ◦ f

= { fators }

f> ◦R ◦g> ⊆ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f)

= { f> and g>
are oreexives }

f> ◦R ◦g> ⊆ f> ◦ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f) ◦g>

The lemma follows by instantiating R to the left and right sides of the laimed equation,

simplifying using domain alulus, and then applying the reexivity and anti-symmetry

of the subset relation.

✷

The �nal lemma in this setion antiipates the disussion of per domains in setion

5.

Lemma 45 Suppose relations R , f and g are suh that

f ◦ f
∪

= f< = R< ∧ g< = g ◦g
∪

.

Then, for all S ,

g> ◦ (f
∪

◦R ◦g)\(f
∪

◦S) = g
∪

◦R\S .(46)

It follows that

g> ◦ (f
∪

◦R ◦g)\(f
∪

◦R ◦g) ◦g> = g
∪

◦R\R ◦g .(47)

Proof The proof of (46) is as follows.

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦S)

= { fators: }

g> ◦g\((f∪ ◦R)\(f∪ ◦S))
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= { lemma 41 with f,R := g , (f∪ ◦R)\(f∪ ◦S) }

g
∪
◦ (f∪ ◦R)\(f∪ ◦S)

= { fators }

g
∪
◦R\(f∪ \ (f∪ ◦S))

= { [ R\S=R\(R< ◦S) ] with R,S := R , f
∪

\ (f∪ ◦S)

assumption: f<=R< }

g
∪
◦R\(f< ◦ f

∪

\ (f∪ ◦S))

= { lemma 42 with f,R := f,S }

g
∪
◦R\(f< ◦S)

= { assumption: f<=R<
, [ R\S=R\(R< ◦S) ] }

g
∪
◦R\S .

Now we prove (47).

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦R ◦g) ◦g>

= { (46) with S :=R◦g }

g
∪
◦R\(R◦g) ◦g>

= { lemma 43 }

g
∪
◦R\R ◦g .

✷

3.4 Difunctions

Formally, relation R is difuntional equivales

R ◦R
∪

◦R ⊆ R .(48)

As for pers, there are several equivalent de�nitions of \difuntional". We begin with the

point-free de�nitions:

Theorem 49 For all R , the following statements are all equivalent.

(i) R is difuntional (i.e. R ◦R
∪
◦R ⊆ R ) ,

(ii) R = R ◦R
∪
◦R ,

(iii) R> ◦R\R = R
∪
◦R ,
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(iv) R≻ = R
∪
◦R ,

(v) R/R ◦R< = R ◦R
∪

,

(vi) R≺ = R ◦R
∪

,

(vii) R = R∩ (R\R/R)∪ .

Proof For the equivalene of (i) and (ii), we �rst observe that, for all R ,

R ⊆ R ◦R
∪

◦R

sine

R ⊆ R ◦R
∪
◦R

⇐ { R> ⊆ R
∪
◦R and monotoniity }

R = R ◦R>

= { domains }

true .

That (i) and (ii) are equivalent thus follows from the anti-symmetry of the subset relation.

Next we establish the equivalene of (i) and (iii). Again, we begin by observing a

property that holds for all R , namely

R
∪

◦R ⊇ R> ◦R\R .(50)

The proof is as follows:

R
∪
◦R ⊇ R> ◦R\R

= { anellation }

R
∪
◦R ◦R\R ⊇ R> ◦R\R

⇐ { monotoniity }

R
∪
◦R ⊇ R>

⇐ { de�nition 15 }

true .

We now prove that the opposite inlusion follows from (i).
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R
∪
◦R ⊆ R> ◦R\R

⇐ { R> ◦R
∪ = R∪

and monotoniity }

R
∪
◦R ⊆ R\R

⇐ { fators }

R ◦R
∪
◦R ⊆ R .

Thus, by anti-symmetry, (iii) follows from (i). But

R> ◦R\R = R
∪
◦R

⇒ { Leibniz }

R ◦R> ◦R\R = R ◦R
∪
◦R

= { domains }

R ◦R\R = R ◦R
∪
◦R

= { anellation }

R = R ◦R
∪
◦R .

That is, (iii) implies (ii) whih, as we have already shown, is equivalent to (i). We

onlude, by mutual impliation, that (iii) and (i) are equivalent.

A similar proof establishes the equivalene of (i) and (iv). One again we begin by

observing a property that holds for all R , namely

R
∪

◦R ⊇ R≻ .(51)

We have:

R
∪
◦R

⊇ { (50) }

R> ◦R\R

⊇ { R\\R = R\R∩ (R\R)∪ }

R> ◦R\\R

= { de�nition: (28) }

R≻ .

We now prove that the opposite inlusion follows from (i).

R
∪
◦R ⊆ R≻
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= { de�nition: (28) }

R
∪
◦R ⊆ R> ◦R\\R

⇐ { R> ◦R
∪ = R∪

and monotoniity }

R
∪
◦R ⊆ R\\R

= { R
∪
◦R is symmetri, R\\R = R\R∩ (R\R)∪ }

R
∪
◦R ⊆ R\R

⇐ { fators }

R ◦R
∪
◦R ⊆ R .

Thus, by anti-symmetry, (iv) follows from (i). But

R≻ = R
∪
◦R

⇒ { Leibniz }

R ◦R≻ = R ◦R
∪
◦R

= { per domains }

R = R ◦R
∪
◦R .

The equivalene of (i), (v) and (vi) is symmetrial.

The proof that (v) is equivalent to (48) is straightforward:

R = R∩ (R\R/R)∪

= { de�nition of in�mum }

R ⊆ (R\R/R)∪

= { onverse and fators }

R ◦R
∪
◦R ⊆ R .

✷

The equivalene of 49(i) and 49(ii) is well-known and due to Riguet [Rig48℄; the

equivalene of 49(i), (iv) and (vi) is due to Voermans [Voe99℄. The equivalene of 49(i),

(iii) and (v) is formally stronger: a onsequene is that, if R is difuntional,

R≻ = R> ◦R\R ∧ R≺ = R/R ◦R< .(52)

(Cf. (28).) These formulae are exploited in setion 12.4. De�nition (48) is the most

useful when it is required to establish that a partiular relation is difuntional, whereas

properties 49(ii)-(vii) are more useful when it is required to exploit the fat that a

partiular relation is difuntional.
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The ombination of theorem 49 (in partiular 49(ii) and 49(iv) with lemma 38 allows

one to prove that a per is a symmetri difuntion. (We leave the easy alulation to

the reader.) This property is sometimes used to speialise properties of difuntions to

properties of pers.

3.5 Provisional Orderings

There are various well-known notions of ordering: preorder, partial and linear (aka total)

ordering. For our purposes all of these are too strit. So, in this setion, we introdue the

notion of a \provisional ordering". The adjetive \provisional" has been hosen beause

the notion \provides" just what we need.

The standard de�nition of an ordering is an anti-symmetri preorder whereby a pre-

order is required to be reexive and transitive. It is the reexivity requirement that is

too strit for our purposes. So, with the intention of weakening the standard de�nition

of a preorder to requiring reexivity of a relation over some superset of its left and right

domains, we propose the following de�nition.

Definition 53 Suppose T is a homogeneous relation. Then T is said to be a provi-

sional preorder if

T< ⊆ T ∧ T> ⊆ T ∧ T ◦T ⊆T .

✷

Fig. 2 depits a provisional preorder on a set of eight elements as a direted graph.

The blue squares should be ignored for the moment. (See the disussion following lemma

59.) Note that the relation depited is not a preorder beause it is not reexive: the

top-right node depits an element that is not in the left or right domain of the relation.

An immediate onsequene of the de�nition is that the left and right domains of a

provisional preorder must be equal:

Lemma 54 If T is a provisional preorder then

T< = T> .

Proof Suppose T is a provisional preorder. Then

T> ⊆ T<

= { domains }

(T>)< ⊆ T<

⇐ { monotoniity }
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Figure 2: A Provisional Preorder

T> ⊆ T

= { assumption: T> ⊆ T }

true .

That is, T> ⊆ T<
. Dually, T< ⊆ T>

. Thus, by anti-symmetry, T< = T>
.

✷

A trivial property that is nevertheless used frequently:

Lemma 55 T is a provisional preorder equivales T
∪

is a provisional preorder.

Proof Immediate from the de�nition and properties of onverse.

✷

A preorder is a provisional preorder with left (equally right) domain equal to the

identity relation. In other words, a preorder is a total provisional preorder. It is easy

to show that, for any relation R , the relations R\R and R/R are preorders. It is also

easy to show that R is a preorder if and only if R=R\R (or equivalently if and only if

R=R/R ). These properties generalise to provisional preorders.

Lemma 56 For all relations R , the relations R> ◦R\R and R/R ◦R<
are provisional

preorders.

Proof The proof is very straightforward. First,

(R> ◦R\R)<
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= { I⊆R\R , so (R\R)<= I ; domains }

(R>)<

= { R>
is a oreexive }

R>

⊆ { I⊆R\R , monotoniity }

R> ◦R\R .

Seond,

(R> ◦R\R)>

= { domains }

(R ◦R\R)>

= { anellation }

R>

⊆ { I⊆R\R , monotoniity }

R> ◦R\R .

Third,

R> ◦R\R ◦R> ◦R\R

⊆ { R>⊆ I , monotoniity }

R> ◦R\R ◦R\R

⊆ { R\R ◦R\R ⊆ R\R

(easy use of de�nition of fators and anellation) }

R> ◦R\R .

Comparing the above properties with de�nition 53, we have shown that R> ◦R\R is a

provisional preorder. The dual property, R/R ◦R<
is a provisional preorder, is obtained

by the instantiation R :=R∪

and appliation of distributivity properties of onverse.

✷

Lemma 57 T is a provisional preorder equivales

T = T< ◦T\T = T/T ◦T> = T< ◦T\T/T ◦T> .
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Proof Follows-from is a straightforward onsequene of the fat that T\T is a preorder

for arbitrary T .

Impliation is also straightforward. Assume that T is a provisional preorder. The

proof of the leftmost equality is by mutual inlusion. First

T ⊆ T< ◦T\T

⇐ { T = T< ◦T and monotoniity }

T ⊆ T\T

= { fators }

T ◦T ⊆ T

= { assumption: T is transitive }

true .

For the opposite inlusion we have

T< ◦ T\T ⊆ T

⇐ { assumption: T<⊆ T , monotoniity }

T ◦T\T ⊆ T

= { anellation }

true .

Thus T = T< ◦T\T by anti-symmetry. That T = T/T ◦T>
follows from lemma 55 and the

properties of onverse. Finally,

T

= { T = T ◦T>
and T = T< ◦T\T (proved above) }

T< ◦ T\T ◦T>

= { T = T/T ◦T>
(proved above) }

T< ◦ T\(T/T ◦ T>) ◦ T>

= { [ R\(S ◦R>) ◦R> = R\S ◦R> ] with R,S :=T,T }

T< ◦ T\T/T ◦ T> .

✷

Lemma 57 is sometimes used in a form where the domains are replaed by per do-

mains.
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Lemma 58 Suppose T is a provisional preorder. Then

T = T≺ ◦T\T = T/T ◦T≻ = T≺ ◦T\T/T ◦T≻ .

Proof Immediate from lemma 57 and the per domain equations, for all R ,

R = R≺ ◦R = R≺ ◦R< ◦R = R ◦R≻ = R ◦R> ◦R≻ .

For example,

T

= { [ R = R≺ ◦R ] with R :=T }

T≺ ◦T

= { lemma 57 }

T≺ ◦T< ◦T\T

= { [ R≺ ◦R< = R≺ ] with R :=T }

T≺ ◦T\T .

✷

Lemma 59 Suppose T is a provisional preorder. Then

T≺ = T ∩ T
∪

= T≻ .

Hene T ∩ T∪

is a per.

Proof We exploit lemma 57:

T≻

= { de�nition: (28) and (24), lemma 34 }

T> ◦ (T\T ∩ (T\T)∪) ◦ T>

= { distributivity ( T>
is oreexive) }

T> ◦ T\T ◦T> ∩ (T∪)< ◦ T
∪

/ T
∪

◦ (T∪)<

= { lemma 54

(twie, one with T :=T∪

using lemma 55) }

T< ◦ T\T ◦T> ∩ (T∪)< ◦ T
∪

/ T
∪

◦ (T∪)>

= { lemma 57 }

T ◦T> ∩ (T∪)< ◦T
∪

= { domains }

T ∩T∪

.
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The dual property T≺ = T ∩T∪

is immediate from the properties of onverse.

✷

Referring bak to �g. 2, the blue squares depit the equivalene lasses of the sym-

metri losure of a provisional preorder. As remarked earlier, the depited relation is not

a preorder; orrespondingly, the blue squares depit a truly partial equivalene relation.

We assume the reader is familiar with the notions of an ordering and a linear (or total)

ordering. We now extend these notions to provisional orderings. (The at-most relation

on the integers is both anti-symmetri and linear. The at-most relation restrited to some

arbitrary subset of the integers is an example of a linear provisional ordering aording

to the de�nition below.)

Definition 60 Suppose T is a homogeneous relation of type A∼A , for some A .

Then T is said to be provisionally anti-symmetri if

T ∩T
∪

⊆ IA .

Also, T is said to be a provisional ordering if T is provisionally anti-symmetri and T

is a provisional preorder. Finally, T is said to be a linear provisional ordering if T is

a provisional ordering and

T ∪T
∪

= (T ∩ T
∪

)◦⊤⊤◦(T ∩T
∪

) .

✷

De�nition 60 weakens the equality in the standard notion of anti-symmetry to an

inlusion. The standard de�nition of a partial ordering |an anti-symmetri preorder|

is weakened aordingly (as mentioned earlier, in order to \provide" for our needs).

The following lemma antiipates the use of provisional preorders/orderings in exam-

ples presented later.

Lemma 61 Suppose T is a provisional ordering. Then

T< = T ∩T
∪

= T> .

Proof For the �rst equality, we have

T ∩T∪ ⊆ T<

= { I is unit of omposition, de�nition of T< }

(T ∩T∪)◦I ⊆ I∩ T ◦⊤⊤

= { assumption: T ∩T∪ ⊆ I ; in�mum and monotoniity }

true .

Also,
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T< ⊆ T ∩T∪

= { in�mum }

T< ⊆ T ∧ T< ⊆ T
∪

= { T is a provisional preorder, so T<⊆ T ; (T<)∪= T< }

true .

The seond equality is obtained by instantiating T to T
∪

.

✷

4 Squares and Rectangles

We now introdue the notions of a \retangle" and a \square"; retangles are typi-

ally heterogeneous whilst squares are, by de�nition, homogeneous relations. Squares

are retangles; properties of squares are typially obtained by speialising properties of

retangles. (For example, lemma 66 shows that the intersetion of two retangles is a

retangle by giving an expliit onstrution; the same onstrution applies to squares

from whih it is easily shown that the intersetion of two squares is a square.)

Definition 62 (Rectangle and Square) A relation R is a retangle i� R=R◦⊤⊤◦R .

A relation R is a square i� R is a symmetri retangle.

✷

More generally, we have:

Lemma 63 For all relations R and S , R◦⊤⊤◦S is a retangle. It follows that R◦T ◦S

is a retangle if T is a retangle.

Proof Beause the proof is based on the one rule, a ase analysis is neessary. In the

ase that either R or S is the empty relation, the lemma learly holds (beause R◦⊤⊤◦S

is the empty relation, and the empty relation is a retangle). Suppose now that both R

and S are non-empty. Then

R◦⊤⊤◦S◦⊤⊤◦R◦⊤⊤◦S

= { one rule: (4) (applied twie), assumption: R 6=⊥⊥ and S 6=⊥⊥ }

R◦⊤⊤◦S .

If T is a retangle, R◦T ◦S=R◦T ◦⊤⊤◦T ◦S ; thus R◦T ◦S is a retangle.

✷

Lemma 64 A retangle is a difuntion and a square is a per.
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Proof Suppose R is a retangle. Then

R ◦R
∪
◦R

= { de�nition 62 (applied to outer terms) }

R ◦⊤⊤ ◦R ◦R
∪
◦R ◦⊤⊤ ◦R

⊆ { ⊤⊤ is greatest relation, monotoniity }

R◦⊤⊤◦R

= { de�nition 62 }

R .

That is, R ◦R∪
◦R ⊆ R . Thus, by de�nition, R is a difuntion.

A similar alulation shows that a square is a per.

✷

4.1 Inclusion and Intersection

Using olloquial terminology, the left and right domain of a retangle are the \sides" of

the retangle. In general, a retangle is de�ned by its two sides. More preisely:

Lemma 65 Suppose R and S are retangles of the same type. Then

R⊆S ≡ R< ⊆ S< ∧ R> ⊆ S> .

It follows that

R=S ≡ R< = S< ∧ R> = S> .

Proof By mutual impliation:

R⊆S

⇒ { monotoniity }

R< ⊆ S< ∧ R> ⊆ S>

⇒ { monotoniity }

R< ◦⊤⊤ ◦R> ⊆ S< ◦⊤⊤ ◦S>

= { domains }

R◦⊤⊤◦R ⊆ S◦⊤⊤◦S

= { assumption: R and S are retangles, de�nition 62 }

R⊆S .
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The seond property follows straightforwardly from the anti-symmetry of the subset

relation.

✷

Lemma 66 The intersetion of two retangles is a retangle. Spei�ally, for all

retangles R and S ,

R∩S = (R<∩S<)◦⊤⊤◦(R>∩S>) .

Proof We have, for all R , S , T and U ,

R◦⊤⊤◦S ∩ T ◦⊤⊤◦U

= { property of onditionals }

R◦⊤⊤ ∩ ⊤⊤◦S ∩ T ◦⊤⊤ ∩ ⊤⊤◦U

= { property of onditionals }

(R∩T)◦⊤⊤ ∩ ⊤⊤◦(S∩U)

= { property of onditionals }

(R∩T)◦⊤⊤◦(S∩U) .

(The properties of onditionals used above are not shown in this paper but easily proven.

Hint: use the modularity rule (2).) Also, for all R and S , R◦⊤⊤◦S = R< ◦⊤⊤ ◦S>
. So

R∩S

= { assumption: R and S are retangles }

R◦⊤⊤◦R ∩ S◦⊤⊤◦S

= { [ R◦⊤⊤◦S = R< ◦⊤⊤ ◦S> ] with R,S :=R,R and R,S :=S,S }

R< ◦⊤⊤ ◦R> ∩ S< ◦⊤⊤ ◦S>

= { above with R,S,T ,U := R< , R> , S< , S> }

(R<∩S<)◦⊤⊤◦(R>∩S>) .

✷

5 Isomorphic Relations

Definition 67 Suppose R and S are two relations (not neessarily of the same type).

Then we say that R and S are isomorphi and write R∼=S i�
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〈∃φ,ψ

: φ ◦φ
∪ = R< ∧ φ

∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S>

: R = φ ◦S ◦ψ
∪

〉 .

✷

The relation between R and S in de�nition 67 an be strengthened to the onjuntion

R = φ ◦S ◦ψ
∪

∧ φ
∪

◦R ◦ψ = S .(68)

Alternatively, the leftmost onjunt an be replaed by the rightmost onjunt. This is

a onsequene of the following lemma.

Lemma 69 For all φ , ψ , R and S ,

(R = φ ◦S ◦ψ
∪ ≡ φ

∪
◦R ◦ψ = S)

⇐ φ ◦φ
∪ = R< ∧ φ

∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S> .

Proof The proof is by mutual impliation.

R = φ ◦S ◦ψ
∪

⇒ { Leibniz }

φ
∪
◦R ◦ψ = φ

∪
◦φ ◦S ◦ψ

∪
◦ψ

= { assume: φ
∪
◦φ = S<

and ψ
∪
◦ψ = S>

, domains }

φ
∪
◦R ◦ψ = S

⇒ { Leibniz }

φ ◦φ
∪
◦R ◦ψ ◦ψ

∪ = φ ◦S ◦ψ
∪

= { ssume: φ ◦φ
∪ = R<

and ψ ◦ψ
∪ = R>

, domains }

R = φ ◦S ◦ψ
∪

.

✷

We often hoose one or other of the onjunts in (68), whihever being most onve-

nient at the time.

Lemma 70 The relation

∼= is reexive, transitive and symmetri. That is,

∼= is an

equivalene relation.
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Proof This is very straightforward. The details are left to the reader.

✷

The task of proving that two relations are isomorphi involves onstruting φ and

ψ that satisfy the onditions of the existential quanti�ation in de�nition 67; we all the

onstruted values witnesses to the isomorphism.

Note that the requirement on φ in de�nition 67 is that it is both funtional and

injetive; thus it is required to \witness" a (1{1) orrespondene between the points in

the left domain of R and the points in the left domain of S . Similarly, the requirement on

ψ is that it \witnesses" a (1{1) orrespondene between the points in the right domain

of R and the points in the right domain of S . Formally, R<
and S<

are isomorphi as

\witnessed" by φ and R>
and S>

are isomorphi as \witnessed" by ψ :

Lemma 71 Suppose R and S are relations suh that R∼=S . Then R<∼=S<
and

R>∼=S>
. Spei�ally, if φ and ψ witness the isomorphism R∼=S ,

R< = φ ◦S< ◦φ
∪

∧ R> = ψ ◦S> ◦ψ
∪

.

Proof Suppose φ and ψ are suh that

φ ◦φ
∪

= R< ∧ φ
∪

◦φ = S< ∧ ψ ◦ψ
∪

= R> ∧ ψ
∪

◦ψ = S> .

Then

R<

= { R<
is a oreexive }

R< ◦R<

= { assumption }

φ ◦φ
∪
◦φ ◦φ

∪

= { assumption }

φ ◦S< ◦φ
∪

.

That is R< = φ ◦S< ◦φ
∪

. Similarly, R> = ψ ◦S> ◦ψ
∪

. But also (beause the domain

operators are losure operators),

φ ◦φ
∪

= (R<)< ∧ φ
∪

◦φ = (S<)< ∧ ψ ◦ψ
∪

= (R>)> ∧ ψ
∪

◦ψ = (S>)> .

Applying de�nition 67 with R,S,φ,ψ := R< , S< ,φ ,φ and R,S,φ,ψ := R> , S> ,ψ ,ψ , the

lemma is proved.

✷

The property of the left and right domains stated in lemma 71 is also valid for the

left and right per domains:
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Lemma 72 Suppose R and S are relations suh that R∼=S . Then R≺∼=S≺
and

R≻∼=S≻
. Spei�ally, if φ and ψ witness the isomorphism R∼=S ,

R≺ = φ ◦S≺ ◦φ
∪

∧ R≻ = ψ ◦S≻ ◦ψ
∪

.

Proof Suppose φ and ψ witness the isomorphism R∼=S . Then

R> ◦R\R ◦R>

= { assumption: ψ ◦ψ
∪ = R> }

ψ ◦ψ
∪
◦R\R ◦ψ ◦ψ

∪

= { (47) with f,g :=φ,ψ }

ψ ◦ψ> ◦ (φ∪
◦R ◦ψ)\(φ∪

◦R ◦ψ) ◦ψ> ◦ψ
∪

= { domains, assumption S = φ∪
◦R ◦ψ }

ψ ◦S\S ◦ψ
∪

.

So

R≻

= { de�nition: (28) }

R> ◦R\R ◦R> ∩ (R> ◦R\R ◦R>)∪

= { above }

ψ ◦S\S ◦ψ
∪ ∩ (ψ ◦S\S ◦ψ

∪)∪

= { assumption: ψ>=S>
, domains }

ψ ◦S> ◦S\S ◦S> ◦ψ
∪ ∩ (ψ ◦S> ◦S\S ◦S> ◦ψ

∪)∪

= { distributivity (ψ is a bijetion) }

ψ ◦ (S> ◦S\S ◦S> ∩ (S> ◦S\S ◦S>)∪) ◦ψ∪

= { de�nition }

ψ ◦S≻ ◦ψ
∪

.

We have thus alulated that the the pair (ψ,ψ) is a andidate witness of the iso-

morphism R≻∼=S≻
. It remains to hek the domain requirements in de�nition 67.

By assumption, ψ ◦ψ
∪ = R>

and ψ
∪
◦ψ = S>

. Moreover, for arbitrary relation R ,

(R≻)> = (R≻)< = R>
; so ψ ◦ψ

∪ = (R≻)> and ψ
∪
◦ψ = (S≻)> . Applying de�nition 67 with

R,S,φ,ψ := R≻ , S≻ ,ψ ,ψ , we have proved that R≻∼=S≻
.

The proof that R≺∼=S≺
is symmetrial.
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A quite di�erent proof of lemma 72 is as follows. (It is always reasssuring to have

di�erent proofs.)

Alternative proof

**** Ed. Ik ben niet overtuigd dat dit bewijs beter is want er zitten twee konijntjes

in: eerst (ψ,ψ) als witness kiezen en tweede de transitivity stap (zie beneden). Het

nadeel van mijn bewijs is dat we eigenshappen zoals (47) moeten opnemen in het stuk.

Voorlopig laat ik allebei blijven staan. ****

Suppose φ and ψ witness the isomorphism R∼=S . We show that the pair (ψ,ψ) wit-

nesses the isomorphism R≻∼=S≻
. As above, ψ ◦ψ∪ = R>

, ψ∪
◦ψ = S>

, ψ ◦ψ∪ = (R≻)>

and ψ
∪
◦ψ = (S≻)> . So it remains to show that R≻ = ψ ◦S≻ ◦ψ

∪

. Now

R≻ = ψ ◦S≻ ◦ψ
∪

⇐ { transitivity }

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

.

The alulation thus splits into two steps: the proof of the leftmost equality and the

proof of the rightmost equality. The leftmost equality proeeds as follows.

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪

= { (31), ψ ◦S≻ ◦ψ
∪

is a per (see below) }

R = R ◦ψ ◦S≻ ◦ψ
∪

.

Continuing with the right hand side:

R ◦ψ ◦S≻ ◦ψ
∪

= { R = φ ◦S ◦ψ
∪

}

φ ◦S ◦ψ
∪
◦ψ ◦S≻ ◦ψ

∪

= { ψ
∪
◦ψ = S>

, domains: (18) and (33) }

φ ◦S ◦ψ
∪

= { see lemma 70 }

R .

Combining the two alulations, we have established that

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪

.

Now, for the rightmost equality, we have:
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R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

= { (R≻)< = R>
, domains }

R> ◦R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

= { R> = ψ ◦ψ
∪

}

ψ ◦ψ
∪
◦R≻ ◦ψ ◦S≻ ◦ψ

∪ = ψ ◦S≻ ◦ψ
∪

⇐ { Leibniz }

ψ
∪
◦R≻ ◦ψ ◦S≻ = S≻

= { onverse (noting that R≻
and S≻

are symmetri) }

S≻ ◦ψ
∪
◦R≻ ◦ψ = S≻

= { (31), ψ
∪
◦R≻ ◦ψ is a per (see below) }

S ◦ψ
∪
◦R≻ ◦ψ = S

= { as above, with R,S,ψ := S ,R ,ψ∪

}

true .

Note that the usage of (31) relies on the fat that both ψ ◦S≻ ◦ψ
∪

and ψ
∪
◦R≻ ◦ψ are

pers. The straightforward proof is omitted.

✷

Lemma 73 A relation R is isomorphi to a oreexive i� R is a bijetion.

Proof The proof is by mutual impliation. Suppose �rst that R is a bijetion. That

is,

R ◦R
∪

= R< ∧ R
∪

◦R = R> .

We prove that R is isomorphi to R<
. (Symmetrially, R is isomorphi to R>

.) For the

witnesses we take R<
and R . Instantiating de�nition 67, we have to verify that

R< ◦ (R<)
∪

= R< ∧ (R<)
∪

◦R< = R< ∧ R ◦R
∪

= (R<)> ∧ R
∪

◦R = R>

and

R< = R< ◦R ◦R
∪

.

The veri�ation is a straightforward appliation of properties of the left domain operator.

Now suppose that oreexive p is isomorphi to R . Suppose the witnesses are φ

and ψ . That is,

φ ◦φ
∪

= p ∧ φ
∪

◦φ = R< ∧ ψ
∪

◦ψ = R>
(74)
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and

p = φ ◦R ◦ψ
∪

.(75)

Then

R<

= { φ∪
◦φ = R< = R< ◦R< }

φ
∪
◦φ ◦φ

∪
◦φ

= { φ ◦φ
∪ = p = p ◦p

∪

}

φ
∪
◦p ◦p

∪
◦φ

= { (75) }

φ
∪
◦φ ◦R ◦ψ

∪
◦ (φ ◦R ◦ψ

∪)∪ ◦φ

= { onverse }

φ
∪
◦φ ◦R ◦ψ

∪
◦ψ ◦R

∪
◦φ

∪
◦φ

= { (74) }

R< ◦R ◦R> ◦R
∪
◦R<

= { domains }

R ◦R
∪

.

We onlude that R< = R ◦R
∪

. Symmetrially, R> = R∪
◦R . That is, R is a bijetion.

✷

Theorem 76 Suppose P is a per. Then,

P< = P ⇐ P< ∼= P .

In partiular, for all R ,

R< = R≺ ⇐ R< ∼= R≺ .

Symmetrially, for all R ,

R> = R≻ ⇐ R> ∼= R≻ .

Proof This is an instane of lemma 73. Spei�ally, assuming that P< ∼= P , we may

apply the instantiation p,R := P< , P in lemma 73 to dedue that P is a bijetion. That

is, P ◦P
∪ = P<

. But P is a per (i.e. P = P ◦P
∪

). So we onlude that

P=P< .
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That, for all R , R<=R≺
if R< ∼= R≺

now follows by making the instantiation P :=R≺
and

using the fat that (R≺)<=R<
. The symmetri property of the right domain operators

follows by making the instantiation P :=R≻
and using the fat that (R≻)<=R>

.

✷

6 Indexes and Core Relations

This setion introdues the notions of \index" and \ore" of a relation. An \index" is a

speial ase of a \ore" of a relation but, in general, it is more useful. The properties of

both notions are explored in depth.

6.1 Indexes

Reall �g. 1. We said that the middle and rightmost �gures depit \ore relations". The

property that is ommon to both is aptured by the following de�nition.

Definition 77 (Core Relation) A relation R is a ore relation i� R<=R≺
and

R>=R≻
.

✷

The rightmost �gure of �g. 1 is what we all an \index" of the relation depited by

the leftmost �gure. The de�nition of an \index" of a relation is as follows.

Definition 78 (Index) An index of a relation R is a relation J that has the following

properties:

(a) J⊆R ,

(b) R≺ ◦ J ◦R≻ = R ,

(c) J< ◦R≺ ◦ J< = J< ,

(d) J> ◦R≻ ◦ J> = J> .

✷

Note partiularly requirement 78(a). A onsequene of this requirement is that an

index of a relation has the same type as the relation. This means that the relation

depited by the middle �gure of �g. 1 is not an index of the relation depited by the

leftmost �gure beause the relations have di�erent types.

An obvious property is that a ore relation is an index of itself:

Theorem 79 Suppose R is a ore relation. Then R is an index of R .
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Proof Straightforward appliation of de�nitions 77 and 78 together with the properties

of (oreexive and per) domains.

✷

In general, the existene of an index of an arbitrary relation is not derivable in

systems that axiomatise point-free relation algebra. In setion 7.2 we add a limited form

of the axiom of hoie that guarantees the existene of indexes of arbitrary pers; we

also show that this then guarantees the existene of indexes for arbitrary relations. For

the moment, we establish a number of properties of indexes assuming they exist. For

example, we show that all indexes of a given relation are isomorphi: see theorem 89.

Lemma 80 If J is an index of the relation R then

J≺ ⊆ R≺ ∧ J≻ ⊆ R≻ .

It follows that

J< = J≺ ∧ J> = J≻ .

That is, an index is a ore relation.

Proof We �rst prove that J≺ ⊆ R≺
.

R≺

= { de�nition }

R//R ◦ R<

⊇ { 78(a) and monotoniity }

R//R ◦ J<

⊇ { see below }

J≺ .

The last step in the above alulation proeeds as follows.

J≺ ⊆ R//R ◦ J<

⇐ { (J≺)> = J< (so J≺ = J≺ ◦ J< ) and J< ◦ J< = J<

monotoniity }

J≺ ⊆ R//R

= { de�nition of R//R }

J≺ ⊆ R/R ∩ (R/R)∪
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= { J≺ = (J≺)∪ }

J≺ ⊆ R/R

= { shunting }

J≺ ◦R ⊆ R .

We ontinue with the lefthand side of the above inlusion.

J≺ ◦R

= { 78(b) }

J≺ ◦R≺ ◦ J ◦R≻

= { (J≺)>= J< and domains }

J≺ ◦ J< ◦R≺ ◦ J< ◦ J ◦R≻

= { 78() }

J≺ ◦ J< ◦ J ◦R≻

= { (orefexive and per) domains }

J ◦R≻

⊆ { 78(a) }

R ◦R≻

= { per domains }

R .

We onlude that J≺ ⊆ R≺
. The equation J≺= J< uses anti-symmetry.

J≺

⊇ { per domains }

J<

= { 78() }

J< ◦R≺ ◦ J<

⊇ { J≺ ⊆ R≺
(see above), omposition of oreexives is idempotent }

J< .

The other two properties are symmetrial.

✷

An immediate orollary of lemma 80 is the following theorem.



42

Theorem 81 If J is an index (of some relation) then J is an index of J .

Proof Suppose J is an index of R . Then we have to prove the properties 78(a), (b),

() and (d) with R := J. These are the properties:

(e) J⊆ J ,

(f) J≺ ◦ J ◦ J≻ = J ,

(g) J< ◦ J≺ ◦ J< = J< ,

(h) J> ◦ J≻ ◦ J> = J> .

Properties (e) and (f) are true of all relations J . Properties (g) and (h) follow from

lemma 80 and the fat that omposition of oreexives is idempotent.

✷

The indexes of a relation are uniquely de�ned by their left and right domains. See

orollary 83, whih is an immediate onsequene of the following lemma.

Lemma 82 Suppose J is an index of the relation R . Then

J = J< ◦R ◦ J> .

Proof

J

= { domains }

J< ◦ J ◦ J>

= { 78() and (d) }

J< ◦R≺ ◦ J< ◦ J ◦ J> ◦R≻ ◦ J>

= { domains }

J< ◦R≺ ◦ J ◦R≻ ◦ J>

= { 78(b) }

J< ◦R ◦ J> .

✷

Corollary 83 Suppose J and K are both indexes of the relation R . Then

J=K ≡ J<=K< ∧ J>=K> .
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Proof Impliation is an immediate onsequene of Leibniz's rule. For the \if" part, we

assume that J<=K<
and J>=K>

. Then

J

= { J is an index of R , lemma 82 }

J< ◦R ◦ J>

= { assumption: J<=K< ∧ J>=K> }

K< ◦R ◦K>

= { K is an index of R , lemma 82 with J :=K }

K .

✷

The following lemma beomes relevant when we study indexes of difuntions. (See

setion 7.1.)

Lemma 84 Suppose J is an index of R . Then

R ◦ J
∪

◦R = R ◦R
∪

◦R .

Proof

R ◦ J
∪
◦R

= { per domains }

R ◦R≻ ◦ J
∪
◦R≺ ◦R

= { 78(b) and onverse }

R ◦R
∪
◦R .

✷

We now formulate a ouple of lemmas that lead to lemma 87 whih, in turn, leads to

theorem 88.

Lemma 85 Suppose J is an index of R . Then R≺ ◦ J< ◦R≺
and R≻ ◦ J> ◦R≻

are pers.

Proof We prove that

R≺ ◦ J< ◦R≺ = R≺ ◦ J< ◦R≺ ◦ (R≺ ◦ J< ◦R≺)
∪

.

We have:
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R≺ ◦ J< ◦R≺ ◦ (R≺ ◦ J< ◦R≺)∪

= { R≺
is a per, J< is a oreexive, onverse }

R≺ ◦ J< ◦R≺ ◦ J< ◦R≺

= { 78() }

R≺ ◦ J< ◦R≺ .

✷

Lemma 86 Suppose J is an index of R . Then

(R≺ ◦ J< ◦R≺)< = R< .

Symmetrially,

(R≻ ◦ J> ◦R≻)> = R> .

Proof

(R≺ ◦ J< ◦R≺)<

= { domains, (R≺)< = R< }

(R≺ ◦ J< ◦R<)<

= { by 78(a), J<⊆R<
, domains }

(R≺ ◦ J)<

= { by 78(a), J>⊆R>
, domains }

(R≺ ◦ J ◦R>)<

= { domains, (R≻)< = R> }

(R≺ ◦ J ◦R≻)<

= { 78(b) }

R< .

✷

Lemma 87 Suppose J is an index of R . Then

(a) R≺ ◦ J< ◦R≺ = R≺ ,

(b) R≻ ◦ J> ◦R≻ = R≻ .

Proof



45

R≺

= { R≺
is a per }

R≺ ◦R≺ ◦R≺

⊇ { R≺⊇R< }

R≺ ◦R< ◦R≺

⊇ { J is an index of R ; de�nition 78(a) and monotoniity }

R≺ ◦ J< ◦R≺

= { R≺
is a per }

R≺ ◦ J< ◦R≺ ◦R≺

⊇ { lemma 85: R≺ ◦ J< ◦R≺
is a per }

(R≺ ◦ J< ◦R≺)< ◦ R≺

= { lemma 86 }

R< ◦ R≺

= { (R≺)< = R< }

R≺ .

By anti-symmetry of the subset relation we have proved (a). Property (b) is symmetrial.

✷

Theorem 88 Suppose J is an index of R . Then J< is an index of R≺
and J> is an

index of R≻
.

Proof We prove that J< is an index of R≺
. That J> is an index of R≻

is symmetrial.

Instantiating de�nition 78 with R,J := R≺ , J< , our task is to prove the four properties:

(a) J< ⊆ R≺ ,

(b) (R≺)≺ ◦ (J<)< ◦ (R≻)≺ = R≺ ,

(c) (J<)< ◦ (R≺)≺ ◦ (J<)< = (J<)< ,

(d) (J<)> ◦ (R≺)≻ ◦ (J<)> = (J<)> .

The proof of property (a) is straightforward:
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J< ⊆ R≺

⇐ { R<⊆R≺
, transitivity }

J< ⊆ R<

⇐ { monotoniity }

J⊆R

= { J is an index of R , 78(a) }

true .

Property (b) simpli�es using the fat that (R≺)≺=R≺
, (R≻)≺=R≻

and J<=(J<)< to:

(b’) R≺ ◦ J< ◦R≻ = R≺ ,

This is the �rst of the two properties proved in lemma 87. Using the fat that (R≺)≺=R≺

and J<=(J<)< , property () is the same as property () of de�nition 78; similarly, using

the fat that R≺=(R≺)≻ , and J<=(J<)> , property (d) is also the same as property ()

of de�nition 78.

✷

We show later that the onverse of theorem 88 is a presription for onstruting an

index of an arbitrary relation. See theorem 107.

Theorem 89 If R and S are isomorphi relations then indexes of R and S are also

isomorphi. In partiular, indexes of a relation R are isomorphi.

Proof Suppose φ and ψ witness the isomorphism R∼=S and J is an index of R and

K is an index of S . We verify that λ and ρ de�ned by

λ = J< ◦R≺ ◦φ ◦S≺ ◦K< ∧ ρ = J> ◦R≻ ◦ψ ◦S≻ ◦K>

witness the isomorphism J∼=K .

The task is to verify that

J< = λ ◦λ
∪

∧ λ
∪

◦λ = K< ∧ ρ ◦ρ
∪

= J> ∧ ρ
∪

◦ρ = K>

and

J = λ ◦K ◦ρ
∪

.

The four domain properties are all essentially the same so we only verify the �rst on-

junt:
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λ ◦λ
∪

= { de�nition, onverse }

J< ◦R≺ ◦φ ◦S≺ ◦K< ◦S≺ ◦φ
∪
◦R≺ ◦ J<

= { K is an index of S , lemma 85 with J,R :=K,S }

J< ◦R≺ ◦φ ◦S≺ ◦φ
∪
◦R≺ ◦ J<

= { theorem 89 }

J< ◦R≺ ◦R≺ ◦R≺ ◦ J<

= { R≺
is a per, J is an index of R , de�nition 78() }

J< .

Finally,

λ ◦K ◦ρ
∪

= { de�nition, onverse }

J< ◦R≺ ◦φ ◦S≺ ◦K< ◦K ◦K> ◦S≻ ◦ψ
∪
◦R≻ ◦ J>

= { domains }

J< ◦R≺ ◦φ ◦S≺ ◦K ◦S≻ ◦ψ∪
◦R≻ ◦ J>

= { K is an index of S , de�nition 78(b) }

J< ◦R≺ ◦φ ◦S ◦ψ
∪
◦R≻ ◦ J>

= { R = φ ◦S ◦ψ
∪

}

J< ◦R≺ ◦R ◦R≻ ◦ J>

= { per domains }

J< ◦R ◦ J>

= { J is an index of R , de�nition 78(b) }

J .

That the indexes of a relation R are isomorphi follows beause R is isomorphi to itself

(with witnesses R<
and R>

), i.e. the isomorphism relation is reexive.

✷

The onstrution of the witnesses λ and ρ looks very muh like the proverbial

rabbit out of a hat! In fat, they were alulated using the type judgements formulated

in Voermans' thesis [Voe99℄. We hope at a later date to exploit Voermans' alulus in

order to make the proess of onstruting witnesses muh more methodial.
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6.2 Core Relations

Indexes are a speial ase of what we all \ore" relations. (Reall de�nition 77.) This

setion is about the properties of a \ore" of a given relation R .

Definition 90 (Core) Suppose R is an arbitrary relation and suppose C is a relation

suh that

C = λ ◦R ◦ρ
∪

for some relations λ and ρ satisfying

R≺ = λ
∪

◦λ ∧ λ< = λ ◦λ
∪

∧ R≻ = ρ
∪

◦ρ ∧ ρ< = ρ ◦ρ
∪

.

Then C is said to be a ore of R as witnessed by λ and ρ .

✷

The existene of a ore of a given relation R has a onstrutive element: it is neessary

to onstrut the \witnesses" λ and ρ . In general, given a per P , a funtional relation f

with the property that P equals f
∪
◦ f is alled a \splitting" of P . Construting a ore of

relation R thus involves \splitting " the pers R≺
and R≻

into funtional relations λ and

ρ . As with indexes, the existene of ores is not derivable in point-free relation algebra.

However, just as for indexes, all ores of a given relation are isomorphi in the sense of

de�nition 67: see theorem 93. See setion 8 for further disussion of the onstrution of

ores of pers.

Immediately obvious is that an index of a relation is a ore of the relation:

Theorem 91 Suppose R is an arbitrary relation and suppose J is an index of R .

Then J is a ore of R as witnessed by J< ◦R≺
and J> ◦R≻

.

Proof First,

J

= { lemma 82 }

J< ◦R ◦ J>

= { per domains }

J< ◦R≺ ◦R ◦R≻ ◦ J>

= { onverse, domains }

(J< ◦R≺) ◦R ◦ (J> ◦R≻)∪ .

This establishes the required property of C in de�nition 90, with C := J . (The paren-

theses in the last line of the alulation indiate the de�nitions of the splittings λ and

ρ .) Seond,
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(J< ◦R≺)∪ ◦ J< ◦R≺

= { onverse, (R≺)∪ =R≺
and (J<)∪ ◦ J< = J< }

R≺ ◦ J< ◦R≻

= { lemma 87 }

R≺ .

Third,

J< ◦R≺ ◦ (J< ◦R≺)∪

= { onverse, (J<)∪ = J< and R≺ ◦ (R≺)∪ = R≺ }

J< ◦R≺ ◦ J<

= { J is an index of R , de�nition 78() }

J<

= { theorem 88; in partiular, J<⊆R< }

(J< ◦R<)<

= { (R≺)<=R<
, domains }

(J< ◦R≺)< .

This establishes the required properties of λ in de�nition 90 (with λ := J< ◦R≺
). The

properties of ρ in de�nition 90 (with ρ := J> ◦R≻
) are established similarly.

✷

Fig. 3 illustrates theorem 91 applied to the relation introdued in �g. 1. The index

J is depited by the green edges in the lower bipartite graph. The deomposition of the

relation in the de�nition of a ore is illustrated by the row of bipartite graphs at the

top; the relations depited are, in order, λ
∪

, λ , R , ρ and ρ
∪

. The omposition of the

middle three �gures is the index J .

A number of properties of indexes are derived from the fat that indexes are ores.

The remainder of this setion atalogues suh properties.

The name \ore" in de�nition 90 antiipates theorem 96 where we show that the

relation C is a ore relation as de�ned by de�nition 77. Some preliminary lemmas are

needed �rst.

Lemma 92 Suppose R , C , λ and ρ are as in de�nition 90. Then

R = λ
∪

◦C ◦ρ .

Proof
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Figure 3: Deomposition of a Relation into a Core and Witnesses

R

= { per domains: (33) }

R≺ ◦R ◦R≻

= { R≺ = λ∪
◦λ and R≻ = ρ∪

◦ρ }

λ
∪
◦λ ◦R ◦ρ

∪
◦ρ

= { de�nition 90 }

λ
∪
◦C ◦ρ .

✷

Lemma 92 has the orollary that ores of a given relation are isomorphi:

Theorem 93 Suppose S0 and S1 are both ores of R . Then S0∼=S1 .

Proof Suppose, for i= 0 and i=1 , Si = λi ◦R ◦ρ
∪

i where R≺ = λ
∪

i
◦λi and R≻ = ρ

∪

i
◦ρi .

(That is, S0 and S1 are both ores of R .) Then

S0

= { assumption }

λ0 ◦R ◦ρ
∪

0

= { lemma 92 }

λ0 ◦λ
∪

1
◦S1 ◦ρ1 ◦ρ

∪

0 .
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Applying de�nition 67 with f,g := λ0 ◦λ
∪

1 , ρ1 ◦ρ
∪

0 in ombination with theorem 116, we

onlude that S0∼=S1 .

✷

For later use, we alulate the left and right domains of the ore of a relation.

Lemma 94 Suppose R , λ , ρ and C are as in de�nition 90. Then

R< = λ> ∧ C< = λ< ∧ R> = ρ> ∧ C> = ρ< .

Proof We prove the middle two equations. First,

R>

= { (36) }

(R≻)<

= { de�nition 90 }

(ρ∪
◦ρ)<

= { domains }

ρ> .

The dual equation, R< = λ>
, is proved similarly. Seond,

C<

= { de�nition 90 }

(λ ◦R ◦ρ
∪)<

= { R> = ρ>
(just proved) }

(λ ◦R ◦R>)<

= { domains }

(λ ◦R<)<

= { R< = λ>
(see above) }

λ< .

The �nal equation is also proved similarly.

✷

Lemma 95 Suppose R , λ , ρ and C are as in de�nition 90. Suppose also that J is

an index of R . Then C∼= J as witnessed by λ ◦ J< and ρ ◦ J> .

Proof We onstrut the witnesses as follows.
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C

= { de�nition 90 }

λ ◦R ◦ρ
∪

= { J is an index of R , de�nition 78(b) }

λ ◦R≺ ◦ J ◦R≻ ◦ρ
∪

= { de�nition 90 }

λ ◦λ
∪
◦λ ◦ J ◦ρ

∪
◦ρ ◦ρ

∪

= { λ and ρ are funtional,

so λ< = λ ◦λ
∪

and ρ< = ρ ◦ρ
∪

}

λ ◦ J ◦ρ
∪

= { domains }

λ ◦ J< ◦ J ◦ (ρ ◦ J>)∪ .

Comparing the last line with the de�nition of an isomorphism of relations (de�nition 67

with the instantiation R,S,φ,ψ := C , J , λ ◦ J< , ρ ◦ J> ), we postulate λ ◦ J< and ρ ◦ J> as

witnesses to the isomorphism.

It remains to show that λ ◦ J< and ρ ◦ J> are bijetions on the appropriate domains.

First,

(ρ ◦ J>)∪ ◦ρ ◦ J>

= { onverse }

J> ◦ρ
∪
◦ρ ◦ J>

= { de�nition 90 }

J> ◦R≻ ◦ J>

= { J is an index of R , de�nition 78(d) }

J> .

Symmetrially,

(λ ◦ J<)
∪

◦λ ◦ J< = J< .

Finally,

(ρ ◦ J>)<

= { ρ is funtional, and ρ
∪
◦ρ = R≻

,
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i.e. ρ = ρ ◦ρ
∪
◦ρ = ρ ◦R≻ }

(ρ ◦R≻ ◦ J>)<

= { J>⊆R>
and R>=(R≻)> }

(ρ ◦R≻ ◦ J> ◦ (R≻)>)<

= { domains, R≻=(R≻)∪ }

(ρ ◦ R≻ ◦ J> ◦R≻)<

= { domains }

(ρ ◦ (R≻ ◦ J> ◦R≻)<)<

= { lemmas 85 and 86(b) }

(ρ ◦ R>)<

= { (36) and domains }

(ρ ◦ R≻)<

= { ρ = ρ ◦R≻
(see �rst step) }

ρ<

= { lemma 94 }

C> .

Symmetrially, (λ ◦ J<)<=C<
.

Putting all the alulations together, we onlude that λ ◦ J< and ρ ◦ J> are bijetions;

the left domain of λ ◦ J< is C<
and its right domain is J< ; the left domain of ρ ◦ J> is

C>
and its right domain is J> .

✷

We now prove the theorem alluded to by the nomenlature of de�nition 90, namely

any ore of a given relation R is a ore relation in the sense of de�nition 77.

Theorem 96 Suppose C is a ore of R . Then, if R has an index,

C≻ = C>
, and(97)

C≺ = C< .(98)

That is, if R has an index, any ore C of R is a ore relation. (See de�nition 77.)

Proof Assume that J is an index of R . The proof is a ombination of several preeding

lemmas and theorems.
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C≺ = C<

⇐ { theorem 76 }

C≺ ∼= C<

⇐ { Leibniz }

J≺= J< ∧ C≺ ∼= J≺ ∧ J< ∼= C<

⇐ { index J is a ore relation (lemma 80) }

C≺ ∼= J≺ ∧ J< ∼= C<

⇐ { lemmas 72 and 71 }

C ∼= J

= { lemma 95 }

true .

✷

Note Theorem 96 assumes that relation R has an index J . Likewise, a orollary

of lemma 95 is that, assuming relation R has an index, all ores of R are isomorphi.

As mentioned earlier, it an be proven that all ores of R are isomorphi without the

assumption that R has an index. Similarly, theorem 96 an be proved without this

assumption but the proof is quite long and omplex. See [Ba21℄ for full details.

We argue later that this assumption has no pratial signi�ane: in setion 7.3 we

show that every relation R has an index if both its per domains have an index. This

means that, for a given R , it is neessary to alulate indies of R≺
and R≻

; however,

in pratie, this is not an issue. End of Note

7 Indexes of Difunctions and Pers

7.1 Indexes of Difunctions

We now speialise the notion of index to difuntions.

Lemma 99 Suppose J is an index of relation R and J is difuntional. Then R is

difuntional.

Proof

R ◦R
∪
◦R

= { J is an index of R , lemma 84 }

R ◦ J
∪
◦R
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= { J is an index of R , 78(b) }

R≺ ◦ J ◦R≻ ◦ J
∪
◦R≺ ◦ J ◦R≻

= { domains }

R≺ ◦ J ◦ J> ◦R≻ ◦ J> ◦ J
∪
◦ J< ◦R≺ ◦ J< ◦ J ◦R≻

= { J is an index of R , 78(d) and () }

R≺ ◦ J ◦ J> ◦ J
∪
◦ J< ◦ J ◦R≻

= { domains and J is difuntional (i.e. J = J ◦ J∪ ◦ J ) }

R≺ ◦ J ◦R≻

= { 78(b) }

R .

✷

The property that R is a difuntion is equivalent to R≺ = R ◦R
∪

(and symmetrially

to R≻ = R∪
◦R ). Also, sine R = R ◦R

∪
◦R , the right side of lemma 84 simpli�es to R .

In this way, the de�nition of an index of a difuntion an be restated as follows.

Definition 100 (Difunction Index) An index of a difuntion R is a relation J that

has the following properties:

(a) J⊆R ,

(b) R ◦ J
∪
◦R = R .

(c) J< ◦R ◦R
∪
◦ J< = J< ,

(d) J> ◦R∪
◦R ◦ J> = J> .

✷

Lemma 101 An index J of a difuntion R is a bijetion between J< and J> .

Proof

J<

= { 100() }

J< ◦R
∪
◦R ◦ J<

⊇ { 100(a) }

J< ◦ J
∪
◦ J ◦ J<
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= { domains }

J
∪
◦ J

⊇ { domains }

J< .

Thus, by anti-symmetry,

J< = J
∪

◦ J .

Symmetrially, J> = J ◦ J
∪

. That is, J is a bijetion.

✷

Corollary 102 formulates a method to determine whether a relation is a difuntion:

ompute an index of the relation and then determine whether it is a difuntion. By 78(a),

the seond step in this proess will be no less eÆient than determining difuntionality

diretly and, in many ases, may be substantially more eÆient. (There is, however, no

guarantee of improved eÆieny sine the inequality in 78(a) may be an equality.)

Corollary 102 Suppose J is an index of relation R . Then R is a difuntion i� J is

a difuntion.

Proof Lemma 99 establishes \if". Lemma 101 establishes \only if" (sine a bijetion

is a difuntion).

✷

7.2 Indexes of Pers

That every difuntion has an index is a desirable property but it is not provable in

standard axiomati formulations of relation algebra. Rather than postulate its truth, we

shall postulate that all pers have an index, and then show that a onsequene of the

postulate is that all difuntions have an index.

A relation R is a per i� R=R≺=R≻
. Using this property, the de�nition of index an

be simpli�ed for pers. Spei�ally, an index J of per R has the following properties.

(Cf. de�nition 78.)

(a) J⊆R ,

(b) R◦J◦R = R ,

(c) J< ◦R ◦ J< = J< ,

(d) J> ◦R ◦ J> = J> ,
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Lemmas 103 and 104 prepare the way for de�nition 105.

Lemma 103 If a per has an index, then it has an index that is a oreexive.

Proof Suppose R is a per and J is an index of R . The lemma is proved if we show

that J< is an index of R . We thus have to prove that

(e) J<⊆R ,

(f) R ◦ J< ◦R = R ,

(g) (J<)< ◦R ◦ (J<)< = (J<)< ,

(h) (J>)> ◦R ◦ (J>)> = (J>)> ,

assuming the properties (a), (b), () and (d) above.

Of the four properties, only (f) is non-trivial. (Properties (g) and (h) follow beause

J<=(J<)< and J>=(J>)> . Property (e) follows beause, sine R is a per, R<⊆R .)

Property (f) is proved as follows.

R ◦ J< ◦R

= { by lemma 101, J ◦ J
∪ = J< }

R ◦ J ◦ J
∪
◦R

= { domains }

R ◦ J ◦ J> ◦ J
∪
◦R

= { (d) }

R ◦ J ◦ J> ◦R ◦ J> ◦ J∪ ◦R

= { domains }

R ◦ J ◦R ◦ J
∪
◦R

= { (b) }

R ◦ J
∪
◦R

= { R is a per, so R=R∪

; onverse }

(R◦J◦R)∪

= { R is a per, so R=R∪

; (b) and onverse }

R .

✷
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Lemma 104 For all pers R , if R has an index then there is a relation J suh that

(a) J⊆R< ,

(b) J◦R◦J = J ,

(c) R◦J◦R = R .

Conversely, for all pers R , if relation J satis�es the properties (a), (b) and () above,

then J is an index of R .

Proof First, suppose R is a per that has an index. By lemma 103, R has a oreexive

index. Let J be suh a oreexive index of R . We must show that properties (a), (b)

and () hold. We have

J⊆R<

⇐ { 78(a) and monotoniity }

J= J<

= { J is a oreexive }

true .

This proves (a). Now for (b):

J◦R◦J

= { J is a oreexive, so J= J< ,

R is a per, so R=R≺ }

J< ◦R≺ ◦ J<

= { 78() }

J<

= { J is a oreexive, so J= J< }

J .

Finally, ():

R◦J◦R

= { R is a per, so R=R≺ }

R≺ ◦ J ◦R≺

= { 78(b) }

R .
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For the onverse, assume R is a per and J satisi�es the properties (a), (b) and () above.

We have to hek the four properties listed in de�nition 78. First, 78(a):

J

⊆ { assumption: (a) above }

R<

⊆ { R is per }

R .

The properties 78(b), () and (d) follow beause J= J<= J> and R=R≺=R≻
.

✷

As a onsequene of lemma 104, we postulate the following de�nition of an index of

a per.

Definition 105 (Index of a Per) Suppose P is a per. Then a (oreexive) index

of P is a relation J suh that

(a) J⊆P< ,

(b) J◦P◦J = J ,

(c) P◦J◦P = P .

✷

We also postulate that every per has a oreexive index. We all this the axiom of

hoie.

Axiom 106 (Axiom of Choice) Every per has a oreexive index.

✷

7.3 From Pers To Relations

It is a desirable property that every relation has an index. However, as mentioned earlier,

this an't be proved in standard relation algebra. It an be proved if we assume that

every per has an index. The onstrution is suggested by theorem 88.

Theorem 107 Suppose J and K are (oreexive) indies of R≺
and R≻

, respetively.

Then J◦R◦K is an index of R .

Proof For onveniene, we list the properties of J and K. These are obtained by

instantiating de�nition 105 with J,R := J , R≺
and J,R := K ,R≻

. (Domain properties

have been used to simplify (a) and (d).)
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(a) J⊆R< ,

(b) J ◦R≺ ◦ J = J ,

(c) R≺◦ J ◦R≺ = R≺ ,

(d) K⊆R> ,

(e) K ◦R≻ ◦K = K ,

(f) R≻◦K ◦R≻ = R≻ .

We have to prove the four properties 78(a)-(d) with the instantiation J,R := J◦R◦K ,R .

By (a), J= J∪ = J<= J> . Similarly for K . The proof obligations are thus:

(g) J◦R◦K ⊆ R ,

(h) R≺ ◦ J ◦R ◦K ◦R≻ = R .

(i) (J◦R◦K)< ◦R≺ ◦ (J◦R◦K)< = (J◦R◦K)< ,

(j) (J◦R◦K)> ◦R≻ ◦ (J◦R◦K)> = (J◦R◦K)> ,

Property (g) is an easy ombination of (a) and (d). For (h) we have:

R≺ ◦ J ◦R ◦K ◦R≻

= { per domains }

R≺ ◦ J ◦R≺ ◦R ◦R≻ ◦K ◦R≻

= { (b) and (f) }

R≺ ◦R ◦R≻

= { per domains }

R .

For (i), we have

(J◦R◦K)> ◦R≻ ◦ (J◦R◦K)>

= { (J◦R◦K)> ⊆ K> = K ,

omposition of oreexives is intersetion }

(J◦R◦K)> ◦K ◦R≻ ◦K ◦ (J◦R◦K)>

= { (e) }
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(J◦R◦K)> ◦K ◦ (J◦R◦K)>

= { (J◦R◦K)> ⊆ K> = K

omposition of oreexives is intersetion }

(J◦R◦K)> .

The proof is (j) is symmetrial.

✷

Theorem 107 shows how to onstrut an index of a relation R from indexes J and

K of its left and right per domains. In ombination with lemma 82 and orollary 83, the

onstrution is unique. Spei�ally, the steps are, �rst to hoose from eah equivalene

lass of R≺
and eah equivalene lass of R≻

a single representative. The olletion of

suh representatives de�nes the oreexives J and K . Then the index is de�ned to be

J◦R◦K .

8 Characterisations of Pers and Difunctions

This setion is about haraterising pers and difuntions in terms of funtional relations.

Although the haraterisations are well known, they are not derivable in point-free rela-

tion algebra. We show that they are derivable using our axiom of hoie.

8.1 Characterisation of Pers

A well-known property is that a relation R is a per i�

〈

∃f : f ◦ f
∪

= f< : R = f
∪

◦ f
〉

.(108)

This property is said to be a harateristi property of pers. Perhaps surprisingly, it is

not derivable in systems that axiomatise point-free relation algebra. Freyd and

�

S�edrov

[Fv90, 1.281℄ all the funtional f witnessing the existential quanti�ation a \splitting

2

"

of R. Typially, the existene of \splittings" is either postulated as an axiom (eg. Winter

[Win04℄) or by adding axioms formulating relations as a so-alled \power allegory" [Fv90,

2.422℄, or by adding the so-alled \all-or-nothing" axiom [Ba21℄. (See setion 9.6 for

disussion of \all or nothing".) The existene of \splittings" is a onsequene of our

axiom of hoie:

Theorem 109 If per P has a oreexive index J , then

P = (J◦P)
∪

◦ (J◦P) ∧ J = (J◦P) ◦ (J◦P)
∪

.

2

Freyd and

�

S�edrov de�ne a \splitting" in the more general ontext of a ategory rather than an

allegory; the notion is appliable to \idempotents" whih are also more general than pers.
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Thus, assuming the axiom of hoie, for all relations R ,

per.R ≡
〈

∃f : f ◦ f
∪

= f< : R = f
∪

◦ f
〉

.

Proof The proof is very straightforward. We have

(J◦P)∪ ◦ (J◦P)

= { distributivity }

P
∪
◦ J ◦ J ◦P

= { J is oreexive, so J◦J= J ; P=P∪

}

P◦J◦P

= { J is an index of P , de�nition 105() }

P

and

(J◦P) ◦ (J◦P)∪

= { distributivity }

J ◦P ◦P
∪
◦ J

= { P is a per, so by lemma 38(ii), P = P∪
◦P }

J◦P◦J

= { J is an index of P , de�nition 105(b) }

J .

This proves the �rst property. It also establishes that (assuming the axiom of hoie),

for all R ,

per.R ⇒
〈

∃f : f ◦ f
∪

= f< : R = f
∪

◦ f
〉

.

(The witness is J◦R .) The onverse is obvious beause, for all f suh that f ◦ f
∪ = f< ,

f
∪
◦ f ◦ (f∪ ◦ f)∪

= { onverse }

f
∪
◦ f ◦ f

∪
◦ f

= { assumption: f ◦ f
∪ = f< }

f
∪
◦ f< ◦ f
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= { domains }

f
∪
◦ f .

That is, by lemma 38(ii),

〈

∀f : f ◦ f
∪

= f< : per.(f
∪

◦ f)
〉

and hene

per.R ⇐
〈

∃f : f ◦ f
∪

= f< : R = f
∪

◦ f
〉

.

The equivalene follows by mutual impliation.

✷

8.2 Characterisation of Difunctions

A seond so-alled \harateristi" property is that a relation R is a difuntional i�

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.

Like the harateristi property of pers, it is not derivable in systems that axiomatise

point-free relation algebra. However, it is a orollary of theorem 109 as we now show.

The basis for the onstrution is the onstrution of a per from a difuntional relation:

Lemma 110 For all relations R , R ◦R
∪

is a per if R is difuntional.

Proof Suppose R is difuntional. We exploit lemma 38 :

R ◦R
∪

is a per

= { lemma 38(ii) with R := R ◦R
∪

and onverse }

R ◦R
∪ = R ◦R

∪
◦R ◦R

∪

⇐ { Leibniz }

R = R ◦R
∪
◦R

= { theorem 49 }

R is difuntional.

✷

Theorem 111 Assuming the axiom of hoie (axiom 106), for all relations R ,

difunction.R ≡
〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.
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Proof The proof is by mutual impliation. First assume that R = f∪ ◦g where

f ◦ f
∪

= f< = g ◦g
∪

= g< .

Then

R ◦R
∪
◦R

= { assumption: R = f∪ ◦g and onverse }

f
∪
◦g ◦g

∪
◦ f ◦ f

∪
◦g

= { f ◦ f
∪ = f< = g ◦g

∪ = g< }

f∪ ◦g< ◦g< ◦g

= { domains }

f
∪
◦g

= { assumption: R = f∪ ◦g }

R .

Applying lemma 38, we onlude that R is difuntional.

Suppose now that R is difuntional. (We owe the following onstrution to Winter

[Win04℄.) Exploiting lemma 110 ombined with theorem 109,

〈

∃f : f ◦ f
∪

= f< : R ◦R
∪

= f
∪

◦ f
〉

.(112)

Suppose therefore that f ◦ f
∪ = f< and R ◦R

∪ = f∪ ◦ f . De�ne the relation g by

g = f◦R .(113)

Then

g ◦g
∪

= { (113) and onverse }

f ◦R ◦R
∪
◦ f

∪

= { (112) }

f ◦ f
∪
◦ f ◦ f

∪

= { (112) }

f< ◦ f<

= { f< is a oreexive }

f< .
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It follows that g< = g ◦g
∪

. Thus

f ◦ f
∪

= f< = g< = g ◦g
∪

.(114)

Moreover,

f
∪
◦g

= { (113) }

f
∪
◦ f ◦R

= { R ◦R
∪ = f∪ ◦ f }

R ◦R
∪
◦R

= { R is difuntional: theorem 49 }

R .

Combined with (114), we have thus shown that

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.(115)

✷

8.3 Unicity of Characterisations

The haraterisation of a per in the form f
∪
◦ f where f is a funtional relation is not

unique. (There are typially many representatives one an hoose for eah equivalene

lass; so there are very many distint indexes of a per.) The haraterisation is sometimes

desribed as being \essentially" unique or sometimes as unique \up to isomorphism".

This is made preise by theorem 116:

Theorem 116 Suppose R is a per and suppose f and g are funtional relations suh

that R = f
∪
◦ f = g

∪
◦g . Then f∼=g .

Proof We have

f ◦g
∪
◦ (f ◦g∪)∪

= { onverse }

f ◦g
∪
◦g ◦ f

∪

= { assumption: f
∪
◦ f = g

∪
◦g }

f ◦ f
∪
◦ f ◦ f

∪

= { assumption: f is funtional, i.e. f ◦ f
∪ = f< }

f< .
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That is,

f ◦g
∪

◦ (f ◦g
∪

)
∪

= f< .(117)

Similarly,

(f ◦g
∪

)
∪

◦ f ◦g
∪

= g< .(118)

Also,

g>

= { domains }

(g∪
◦g)>

= { assumption: f
∪
◦ f = g

∪
◦g }

(f∪ ◦ f)>

= { domains }

f> .

That is,

f> = g> .(119)

Hene,

f

= { domains }

f< ◦ f

= { (117) }

f ◦g
∪
◦ (f ◦g∪)∪ ◦ f

= { properties of onverse }

f ◦g∪
◦g ◦ f∪ ◦ f

= { assumption: f
∪
◦ f = g

∪
◦g }

f ◦g
∪
◦g ◦g

∪
◦g

= { assumption: g is funtional, i.e. g ◦g
∪ = g< }

f ◦g
∪
◦g .
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Applying de�nition 67 with R,S,φ,ψ := f , g , f ◦g
∪

, g>
, we onlude that f ∼= g . (Prop-

erties (117) and (118) are the required properties of φ ; property (119) together with

straightforward properties of the right-domain operator establish the required properties

of ψ .)

✷

It is important to note that theorem 116 assumes that there is at least one harater-

isation of per R by a funtional relation; it thus establishes that there is at most one

suh haraterisation (\up to isomorphism").

Uniqueness \up to isomorphism" is a ommon phenomenon. The haraterisation of

difuntional relations is another example:

Theorem 120 Suppose f and g are relations suh that

f ◦ f
∪

= f< = g ◦g
∪

= g< .

Suppose also that h and k are relations suh that

h ◦h
∪

= h< = k ◦k
∪

= k< .

Suppose further that

f
∪

◦g = h
∪

◦k .

Then

f∼=h ∧ g∼=k .

Proof Our task is to onstrut witnesses φ and ψ satisfying de�nition 67 (with

R,S := f,h and R,S :=g,k ). De�ne φ by φ = f ◦h∪

. We prove that

φ ◦φ
∪

= f< ∧ φ
∪

◦φ = h< .(121)

(In words, φ is a bijetion with left domain the ommon left domain of f and g , and

right domain the ommon left domain of h and k .) The proof is as follows.

φ ◦φ
∪

= { de�nition, onverse }

f ◦h
∪
◦h ◦ f

∪

= { assumption: h< = k ◦k
∪

}

f ◦h
∪
◦k ◦k

∪
◦h ◦ f

∪

= { assumption: f
∪
◦g = h

∪
◦k }

f ◦ f
∪
◦g ◦g

∪
◦ f ◦ f

∪

= { assumption: f ◦ f
∪ = f< = g ◦g

∪

}

f<
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and

φ
∪
◦φ

= { de�nition, onverse }

h ◦ f
∪
◦ f ◦h

∪

= { assumption: f< = g ◦g
∪

}

h ◦ f
∪
◦g ◦g

∪
◦ f ◦h

∪

= { assumption: f
∪
◦g = h

∪
◦k (used twie) }

h ◦h
∪
◦k ◦k

∪
◦h ◦h

∪

= { assumption: h ◦h
∪ = h< = k ◦k

∪

}

h< .

We now prove that f=φ◦h .

φ◦h

= { de�nition }

f ◦h
∪
◦h

= { assumption: h< = k ◦k
∪

}

f ◦h
∪
◦k ◦k

∪
◦h

= { assumption: f
∪
◦g = h

∪
◦k (used twie) }

f ◦ f∪ ◦g ◦g∪
◦ f

= { assumption: f ◦ f
∪ = f< = g ◦g

∪

}

f .

It follows that

f = φ ◦h ◦h> ∧ h> = f> .(122)

The ombination of (121) and (122) (together with straightforward properties of h>
)

establishes that φ and h>
witness the isomorphism f∼=h . The property g∼=k is

proved similarly.

✷
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Part II

Pointwise Reasoning

9 Enabling Pointwise Reasoning

In this setion, our goal is to apture the notion that a relation is a set with elements

pairs of points.

In traditional pointwise reasoning about relations, a basi assumption is that a type

is a set that forms a omplete, universally distributive lattie under the subset ordering;

the type of a (binary) relation is a set of pairs. The set of relations of a given type thus

forms a powerset of a set of pairs.

In setion 9.1, we reall a general theorem on the struture of powersets. Briey,

theorem 125 states that a set is isomorphi to the powerset of its \atoms" i� it is \satu-

rated". The setion de�nes these onepts; the onepts then form the bakbone of later

setions where we speialise the theorem to relations.

One (of several) mehanisms for introduing pointwise reasoning within the frame-

work of point-free relation algebra involves the introdution of the so-alled \all-or-

nothing rule" whih was postulated as an axiom by Gl�uk [Gl�u17℄. This rule is ombined

with ompleteness and \extensionality" axioms whih state that, for eah type A , the

oreexives of type A form a omplete, saturated lattie. This was the approah taken in

[BDGv22, Ba22℄ where pointwise reasoning was used to formulate and prove properties

of graphs. Theorem 148 establishes that the all-or-nothing rule is a onsequene of our

axiom of hoie (axiom 106: every per has an index). Together with the \extensionality"

axiom, this enables the appliation of theorem 125 to establish that the type A∼B is

isomorphi to the powerset 2A×B (the set of subsets of the artesian produt A×B ). See

theorems 148 and 149 in setion 9.6.

Setion 9.2 introdues \points" and states the extensionality axiom that we assume.

A number of setions are then neessary in order to establish theorem 149. Setion

9.3 introdues \partiles" and \pairs"; it is then shown that partiles are points whilst

setion 9.4 shows that |assuming the axiom of hoie| points are partiles. (For this

reason, the terminology \partile" is temporary.) Setion 9.5 shows that proper atoms

(of a given type) are \pairs". These are the ingredients for deriving the \all-or-nothing"

rule in setion 9.6. Setion 9.6 also shows that the point-free de�nition of a \pair" in

setion 9.3 does orrespond to what one normally understand to be a pair of points. The

setion onludes with theorem 149.
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9.1 Powersets

As mentioned above, this setion de�nes \atoms" and \saturated" in the ontext of a

partially ordered set. We then state a fundamental theorem relating these onepts to

powersets.

The de�nition of an atom is the following.

Definition 123 (Atom and Atomicity) Suppose A is a set partially ordered by the

relation ⊑ . Then, the element p is an atom i�

〈∀q :: q⊑p ≡ q=p ∨ q=⊥⊥〉 .

Note that ⊥⊥ is an atom aording to this de�nition. If p is an atom that is di�erent

from ⊥⊥ we say that it is a proper atom. A lattie is said to be atomi if

〈∀q :: q 6=⊥⊥ ≡ 〈∃a : atom.a∧a 6=⊥⊥ : a⊑q〉〉 .

In words, a lattie is atomi if every proper element inludes a proper atom.

✷

The de�nition of saturated is as follows.

Definition 124 (Saturated) A omplete lattie (ordered by ⊑ ) is saturated i�

〈∀p :: p = 〈⊔a : atom.a ∧ a⊑p : a〉〉 .
✷

The set of subsets of a type is a powerset i� the lattie is saturated, as formulated in

the following theorem.

Theorem 125 Suppose A is a omplete, universally distributive lattie. Then the

following statements are equivalent.

(a) A is saturated,

(b) A is atomi and omplemented,

(c) A is isomorphi to the powerset of its atoms.

✷

(See [ABH

+
92, theorem 6.43℄ for the proof of theorem 125.)

We use theorem 125 in two ways. Firstly, for all types A , we simply postulate that

the set of oreexives of type A is isomorphi to a powerset under the ⊆ ordering:

the atoms are the \points" introdued in setion 9.2. Seond, we use this postulate

together with our axiom of hoie to show that, for all types A and B , the type A∼B

of (heterogeneous) relations is also isomorphi to a powerset under the ⊆ ordering: the

atoms are \pairs" introdued in setion 9.3. The proof that \pairs" are indeed atoms is

the subjet of setion 9.5. A prelude to this is theorem 139, proved in setions 9.3 and

9.4, is that \points" are a speial ase of \pairs".
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9.2 Points

We begin by postulating that eah type A is a set of \points". We also postulate that

the set of oreexives of type A forms a omplete, universally distributive lattie under

the subset ordering. Finally, we postulate that the lattie is saturated. With theorem

125 in mind, we de�ne \points" to be the proper atoms of the lattie:

Definition 126 (Point) A homogeneous relation a of type A is a point i� it has

the following three properties.

(a) a 6=⊥⊥ ,

(b) a⊆ I , and

(c) 〈∀b : b 6=⊥⊥ ∧ b⊆a : b=a〉 .

In words, a point is proper, oreexive and an atom.

✷

If A is a type, we use a , a ′
et. to denote \points" of type A . Similarly for

\points" of type B . \Points" represent elements of the appropriate type.

For points a and a ′
of the same type,

a=a ′ ∨ a◦a ′=⊥⊥ .(127)

The proof is straightforward. Suppose a and a ′
are points. Then

a=a◦a ′

⇐ { a is an atom, de�nition 123 }

a◦a ′ 6=⊥⊥ ∧ a◦a ′⊆a

⇐ { a ′⊆ I }

a◦a ′ 6=⊥⊥ .

Interhanging a and a ′
,

a ′=a◦a ′
⇐ a ′

◦a 6=⊥⊥ .

But, sine omposition of oreexives is symmetri, a◦a ′=a ′
◦a . We onlude that

a=a◦a ′=a ′
⇐ a◦a ′ 6=⊥⊥ .

This is equivalent to (127).

In point-free relation algebra, subsets of a type are modelled by oreexives of that

type. In order to model the property that the oreexives of a given type form a lattie

that is isomorphi to the set of subsets of the type we need to add to our axiom system

a saturation property, viz.:
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Definition 128 (Saturation) Suppose A is a type. The lattie of oreexives of

type A is said to be saturated i�

〈∀p :: p⊆ IA ≡ p = 〈∪a : point.a ∧ a⊆p : a〉〉 .(129)

✷

The axiom that we all \extensionality" is then:

Axiom 130 (Extensionality) For eah type A , the points of type A form a om-

plete, universally distributive, saturated lattie under the subset ordering.

✷

Applying theorem 125, a onsequene of axiom 130 is that the oreexives of type A

form a lattie that is isomorphi to the powerset 2A . In this sense, the oreexives in

point-free relation algebra represent sets of points in traditional pointwise formulations

of relation algebra.

We now want to show how to formulate the property that the set of relations of type

A∼B is isomorphi to the powerset 2A×B , i.e. relations in point-free relation algebra

represent pairs (a, b) of points a and b of type A and B , respetively.

9.3 Pairs and Particles

We now turn our attention to the lattie of relations of a given type. We begin with

a point-free de�nition of a \pair". In subsetion 9.6, we show that de�nition 131 does

indeed apture the notion of a \pair of points" whereby the points are the \partiles"

also introdued in the de�nition.

Definition 131 (Pair) A relation Z is a pair i� it has the following properties:

(a) Z 6=⊥⊥ ,

(b) Z = Z◦⊤⊤◦Z ,

(c) Z< = Z ◦Z
∪

,

(d) Z> = Z
∪
◦Z .

We all a relation a partile if it is a pair and it is symmetri.

✷

In words, a pair Z is a non-empty \retangle" (properties 131(a) and 131(b)) that is

a \bijetion" on its left domain and right domains (properties 131() and 131(d)).

(De�nition 131 was introdued in [Voe99℄ but using the terminology \singleton" in-

stead of \pair", and \singleton square" instead of \partile".)
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Our goal is to prove that the points are exatly the partiles. This setion is about

showing that a partile is a point. See orollary 136.

One task is to show that partiles are atoms. The more general property, whih we

need in later setions, is that pairs are atoms.

Lemma 132 A pair is an atom.

Proof Suppose Z is a pair and suppose Y is suh that Y⊆Z . By the de�nition

of atom, de�nition 123, we must show that Y=⊥⊥ ∨ Y=Z . Equivalently, assuming

Y 6=⊥⊥ , we must show that Y=Z . This is done as follows.

Y

= { assumption: Y⊆Z . So, by monotoniity, Y<⊆Z<
and Y>⊆Z>

;

domains }

Z< ◦Y ◦Z>

= { Z is a pair, so Z< = Z ◦Z
∪ = (Z◦⊤⊤◦Z) ◦Z∪

similarly for Z> }

Z ◦⊤⊤ ◦Z ◦Z
∪
◦Y ◦Z

∪
◦Z ◦⊤⊤ ◦Z

= { domains }

Z ◦⊤⊤ ◦Z< ◦Y ◦Z> ◦⊤⊤ ◦Z

= { Z< ◦Y ◦Z> = Y (see �rst step above) }

Z◦⊤⊤◦Y◦⊤⊤◦Z

= { assumption: Y 6=⊥⊥ , one rule: (4) }

Z◦⊤⊤◦Z

= { Z is a pair }

Z .

✷

Sine a partile is, by de�nition, a pair, we have:

Corollary 133 A partile is an atom.

✷

Lemma 134 A partile is oreexive.

Proof Suppose Z is square and a pair. Then



74

Z

= { assumption: Z is a pair, so Z=Z◦⊤⊤◦Z ;

[ ⊤⊤◦Z = ⊤⊤ ◦Z< ◦Z = ⊤⊤ ◦Z
∪
◦Z ] }

Z ◦⊤⊤ ◦Z
∪
◦Z

= { assumption: Z is a square, so Z = Z ◦⊤⊤ ◦Z
∪ = Z∪

}

Z
∪
◦Z

= { assumption: Z is a pair, so Z> = Z∪
◦Z }

Z> .

That is, Z equals Z>
whih is oreexive.

✷

Corollary 135 (Particle) A relation Z is a partile i� it has the following three

properties.

(a) Z 6=⊥⊥ ,

(b) Z⊆ I , and

(c) Z = Z◦⊤⊤◦Z .

In words, a partile is a proper, oreexive retangle.

Proof \Only-if" is the ombination of the de�nition of a partile and lemma 134. \If"

is a straightforward onsequene of the properties of domains and oreexives.

✷

Corollary 136 A partile is proper, oreexive and an atom. That is, a partile is a

point.

Proof This is a ombination of lemmas 132 and 134.

✷

9.4 Points are Particles

We now prove the onverse of orollary 136. We use the assumption that every per has

a oreexive index: the axiom of hoie (axiom 106).

Lemma 137 Assuming axiom 106, a point is a partile.
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Proof Suppose that a is a point. Comparing the de�nition of a point, de�nition

126, with the de�ning properties of a partile, orollary 136, it suÆes to prove that

a=a◦⊤⊤◦a . Clearly a◦⊤⊤◦a is a per. (The simple proof uses the fat that a=a∪

,

beause a is oreexive, and ⊤⊤◦a◦⊤⊤=⊤⊤ beause a 6=⊥⊥ .) So, by the axiom of

hoie, a◦⊤⊤◦a has an index J , say. We show that J is a partile and J=a .

To show that J is a partile, we must establish the three properties listed in orollary

135 with the instantiation Z := J . Part (a) is proved as follows.

J=⊥⊥

⇒ { ⊥⊥ is zero of omposition }

a◦⊤⊤◦a◦J◦a◦⊤⊤◦a = ⊥⊥

= { J is an index of per a◦⊤⊤◦a , de�nition 105() }

a◦⊤⊤◦a = ⊥⊥

⇒ { a◦a◦a⊆a◦⊤⊤◦a and a◦a◦a=a (beause a⊆ I ) }

a⊆⊥⊥

= { [ R⊆⊥⊥ ≡ R=⊥⊥ ] with R :=a }

a=⊥⊥

= { assumption: a is proper, i.e. a 6=⊥⊥ }

false .

We onlude that J 6=⊥⊥ . The next step is to show that J=a .

J=a

⇐ { assumption: a is an atom }

J=⊥⊥ ∨ J⊆a

= { J 6=⊥⊥ (see above) }

J⊆a

= { assumption: a⊆ I , so a=(a◦⊤⊤◦a)< }

J ⊆ (a◦⊤⊤◦a)<

= { assumption: J is an index of a◦⊤⊤◦a

de�nition 105(a) }

true .

Property (b) of orollary 135 immediately follows beause a is oreexive. We now show

that J= J◦⊤⊤◦J .
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J◦⊤⊤◦J

= { J=a (proved above) and a⊆ I }

J◦a◦⊤⊤◦a◦J

= { assumption: J is an index of a◦⊤⊤◦a

de�nition 105() with P :=a◦⊤⊤◦a }

J .

We onlude that J=a= J◦⊤⊤◦J . Thus a=a◦⊤⊤◦a as required.

✷

Relations of the form R◦b◦S , where b is a point, play an important role later when

we onsider \polar overings". Suh relations are always retangles:

Lemma 138 If R has type A∼B , S has type B∼C , and b is a point of type B , the

relation R◦b◦S is a retangle.

Proof Immediate onsequene of lemma 63 sine, by lemma 137, b is a retangle if b

is a point.

✷

Combining orollary 136 with lemma 137, we onlude:

Theorem 139 A relation is a point i� it is a partile.

✷

9.5 Proper Atoms are Pairs

The goal of this setion is to show that a proper atom is a pair. Aiming to exploit the

equivalene of points and partiles, we begin with lemmas on the left and right domains

of a proper atom.

Lemma 140 Suppose R is a proper atom. Then R<
and R>

are proper atoms

3

.

Proof First, that R<
and R>

are both proper is immediate from (22).

To show that R<
is an atom we have to show that, for all p ,

p⊆R< ∧ p 6=⊥⊥ ≡ p=R< .

We do this by mutual impliation. First, the follows-from:

3

Note: stritly we should detail the lattie under onsideration here. However, it is easy to show that

a oreexive being an atom in the lattie of oreexives is equivalent to its being an atom in the lattie of

relations. This justi�es the omission.
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p⊆R< ∧ p 6=⊥⊥ ⇐ p=R<

= { prediate alulus }

(p⊆R< ⇐ p=R<) ∧ (p 6=⊥⊥ ⇐ p=R<)

⇐ { left onjunt: anti-symmetry, right onjunt: Leibniz }

true ∧ R< 6= ⊥⊥

⇐ { R<
is proper (see above) }

true .

Now we prove the onverse. Assume p⊆R<
and p 6=⊥⊥ . Then

p=R<

= { anti-symmetry and assumption: p⊆R< }

R< ⊆ p

⇐ { assumption: p⊆R<
and R<⊆ I , so p=p<

; (p◦R)<⊆p< }

R< = (p◦R)<

⇐ { Leibniz }

R = p◦R

= { p◦R 6= ⊥⊥ (see below for proof)

R is an atom, de�nition 123 (appropriately instantiated) }

p◦R ⊆ R

= { assumption: p⊆R<
and R<⊆ I , monotoniity }

true .

In order to verify the penultimate step in the above alulation, we show that p◦R=⊥⊥ ⇒ false

under the assumption that p⊆R<
and p 6=⊥⊥ .

p◦R=⊥⊥

= { one rule: (4) }

⊤⊤◦p◦R◦⊤⊤ = ⊥⊥

= { domains: (dual of) theorem 23(a) }

⊤⊤ ◦p ◦R< ◦⊤⊤ = ⊥⊥

⇒ { assumption: p⊆R<
, omposition of oreexives is intersetion }

⊤⊤◦p◦⊤⊤ = ⊥⊥
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= { assumption: p 6=⊥⊥ , one rule: (4) }

false .

✷

Corollary 141 If R is a proper atom, R<
and R>

are partiles.

Proof By lemma 140 and de�nition 126 of a point, if R is a proper atom, R<
and R>

are points. Thus, by lemma 137, R<
and R>

are partiles.

✷

We now aim to verify properties 131(b), () and (d) of a pair, with Z instantiated

to proper atom R . Property 131(b) is the following lemma.

Lemma 142 A proper atom is a retangle.

Proof Suppose R is a proper atom. Then

R ◦⊤⊤ ◦R

= { domains }

R< ◦ ⊤⊤ ◦ R>

= { R 6=⊥⊥ , one rule: (4) }

R< ◦ ⊤⊤ ◦ R ◦ ⊤⊤ ◦ R>

= { domains }

R< ◦ ⊤⊤ ◦ R< ◦ R ◦ R> ◦ ⊤⊤ ◦ R>

= { by orollary 141, R<
and R>

are partiles

orollary 135() with Z :=R<
and Z :=R> }

R< ◦ R ◦ R>

= { domains }

R .

That is, R ◦⊤⊤ ◦R = R . Thus, by de�nition, R is a retangle.

✷

Properties 131() and (d) require a proper atom to be a bijetion. Aiming to apply

lemma 101, we introdue an obvious property of retangles.

Lemma 143 A retangle is a difuntion.

Proof Suppose R is a retangle. Then
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R ◦R
∪
◦R ⊆ R

= { R is a retangle, so R=R◦⊤⊤◦R }

R ◦R
∪
◦R ⊆ R ◦⊤⊤ ◦R

⇐ { monotoniity }

R
∪ ⊆ ⊤⊤

= { [R⊆⊤⊤ ] with R :=R∪

}

true .

✷

Now we have all the ingredients for our goal.

Lemma 144 Suppose R is a proper atom. Then, assuming axiom 106, R is a pair.

Proof Suppose R is a proper atom. We have to verify properties 131(b), () and (d)

(with Z :=R ) of a pair.

Property 131(b) is lemma 142. Properties 131() and (d) assert that R is a bijetion.

To prove this, let J be an index of R . (This is where axiom 106 is assumed.) Then

J=R

= { R is an atom }

J 6=⊥⊥ ∧ J⊆R

= { J is an index of R , de�nition 78 }

true .

That is, J=R . But R is a retangle and thus a difuntion. So, applying lemma 101, J

|and thus R| is a bijetion, as required.

✷

To onlude this setion and setions 9.3 and 9.4, we have:

Theorem 145 Assuming axiom 106, for all types A and B , and all relations R of

type A∼B , R is a proper atom i� R is a pair.

Proof This is a ombination of lemmas 132 and 144.

✷

9.6 Pairs of Points and the All-or-Nothing Rule

The �nal step is to show that we an derive the \all-or-nothing" rule.
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Lemma 146 If Z is a pair then Z<
and Z>

are partiles.

Proof Suppose Z is a pair. We begin by showing that its left and right domains are

also pairs.

Properties 131(a), () and (d) |with Z :=Z<
and Z :=Z>

| are properties of the

domain operators . This leaves 131(b). For the instane Z :=Z<
, we have:

Z< ◦⊤⊤ ◦Z<

= { domains (spei�ally

[ Z< ◦⊤⊤ = Z◦⊤⊤ ] and [ ⊤⊤ ◦Z
∪ = ⊤⊤ ◦Z< = ⊤⊤ ◦Z ◦Z

∪

] ) }

Z ◦⊤⊤ ◦Z ◦Z
∪

= { assumption: Z is a pair, so Z◦⊤⊤◦Z=Z }

Z ◦Z
∪

= { assumption: Z is a pair, so Z ◦Z
∪ = Z< }

Z< .

The proof that Z>
is a pair is symmetrial.

It now follows immediately that Z<
and Z>

are squares: a square is a symmetri

retangle, and both are retangles (see above); also, both are oreexives, and oreexives

are symmetri.

✷

The following theorem is [Voe99, lemma 4.41(d)℄.

Theorem 147 For all Z ,

pair.Z ≡ 〈∃a,b : point.a∧point.b : Z=a◦⊤⊤◦b〉 .

Proof By mutual impliation. First,

pair.Z

⇒ { lemma 146;

de�nition 131(b) and [ Z◦⊤⊤◦Z = Z< ◦⊤⊤ ◦Z> ] }

particle . Z< ∧ particle . Z> ∧ Z = Z< ◦⊤⊤ ◦Z>

⇒ { orollary 136 }

point . Z< ∧ point . Z> ∧ Z = Z< ◦⊤⊤ ◦Z>

⇒ { a,b := Z< , Z> }

〈∃a,b : point.a∧point.b : Z=a◦⊤⊤◦b〉 .
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For the onverse, assume that a and b are points. We have to prove that a◦⊤⊤◦b is a

pair. Applying de�nition 131, this means heking four properties:

(a) a◦⊤⊤◦b 6= ⊥⊥ ,

(b) a◦⊤⊤◦b = a◦⊤⊤◦b◦⊤⊤◦a◦⊤⊤◦b ,

(c) (a◦⊤⊤◦b)< = (a◦⊤⊤◦b) ◦ (a◦⊤⊤◦b)∪ ,

(d) (a◦⊤⊤◦b)> = (a◦⊤⊤◦b)∪ ◦ (a◦⊤⊤◦b) .

Properties (a) and (b) are instanes of the one rule together with the assumption that

a and b are proper. We prove () as follows.

(a◦⊤⊤◦b) ◦ (a◦⊤⊤◦b)∪

= { onverse }

a ◦⊤⊤ ◦b ◦b
∪
◦⊤⊤ ◦a

= { assumption: b is a point, one rule: (4) }

a◦⊤⊤◦a

= { assumption: a is a point;

so, by orollary 137, a is a pair;

de�nition 131(b) with Z :=a }

a

= { a◦⊤⊤◦b is a non-empty retangle }

(a◦⊤⊤◦b)< .

Property (d) is proved symmetrially.

✷

We onlude with the theorem that Gl�uk's \all-or-nothing" axiom [Gl�u17℄ is a on-

sequene of our axiom of hoie.

Theorem 148 (All or Nothing)

〈∀a,b,R : point.a∧point.b : a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 .

Proof Suppose a and b are points. By theorem 147, a◦⊤⊤◦b is a pair. So, by lemma

132, a◦⊤⊤◦b is an atom. Applying the de�nition of an atom, we have, for all R ,
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true

= { monotoniity, R⊆⊤⊤ }

a◦R◦b ⊆ a◦⊤⊤◦b

= { a◦⊤⊤◦b is an atom, de�nition 123 }

a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b .

✷

The signi�ane of the all-or-nothing rule is that, together with theorem 125, it follows

that the lattie of relations of type A∼B is isomorphi to the powerset 2A×B .

Theorem 149 Suppose, for types A and B , the latties of oreexives of types A

and B are both omplete, universally distributive and extensional. Then the lattie of

relations of type A∼B is saturated; the atoms are elements of the form a◦⊤⊤◦b where a

and b are atoms of the poset of oreexives (of types A and B , respetively). It follows

that, if the lattie of relations of type A∼B is omplete and universally distributive, it

is isomorphi to the powerset of the set of elements of the form a◦⊤⊤◦b where a and b

are points of types A and B , respetively.

Proof By theorems 147 and 145, a◦⊤⊤◦b is an atom . It suÆes to prove that the

lattie of relations of type A∼B is saturated. This is easy: for all R of type A∼B ,

R

= { I is unit of omposition,

latties of oreexives of types A and B are extensional }

〈∪a :point.a :a〉 ◦R ◦ 〈∪b :point.b :b〉

= { distributivity of omposition over ∪ }

〈∪a,b : point.a∧point.b : a◦R◦b〉

= { all-or-nothing rule: theorem 148, ⊥⊥ is zero of supremum }

〈∪a,b : point.a ∧ point.b ∧ a◦R◦b 6=⊥⊥ : a◦⊤⊤◦b〉 .

That the lattie of relations is a powerset follows from theorem 125. By theorem 147,

every pair is a relation of the form a◦⊤⊤◦b ; also, by lemma 132, a◦⊤⊤◦b is an atom.

✷

Heneforth, we assume that, for eah type A , the lattie of oreexives of type A

is omplete, universally distributive and saturated (in other words, we postulate axiom

130). That is, realling theorem 125, we assume that the oreexives of a given type form

a powerset. We also assume that, for eah pair of types A and B , the lattie of relations
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of type A∼B is omplete and universally distributive. Theorem 149 then states that

|with the additional postulate of our axiom of hoie (axiom 106)| , for eah pair of

types A and B , the lattie of relations of type A∼B is a powerset with atoms of the form

a◦⊤⊤◦b where a and b are points of type A and B , respetively. Standard properties

of powersets |the properties of set union, intersetion and omplementation| will be

assumed, sometimes without spei� mention and sometimes with the hint \set theory".

Summarising theorem 149, the saturation property is that

〈∀R :: R = 〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉〉 .(150)

Combining theorem 149 with theorem 125, we get the irreduibility property: if R is a

funtion with range relations of type A∼B and soure K , then, for all points a and b

of appropriate type,

a◦⊤⊤◦b ⊆ ∪R ≡ 〈∃k : k∈K : a◦⊤⊤◦b⊆R.k〉 .(151)

Theorem 149 assumes that the latties of oreexives (of appropriate type) are exten-

sional. Conversely, if we assume that, for all types A and B , the lattie of relations of

type A∼B is extensional then so is the lattie of oreexives of type A , for all A . This

is theorem 154. First, we need a lemma.

Lemma 152 The identity relation IA of type A satis�es, for all points a and a ′
of

type A ,

a◦⊤⊤◦a ′ ⊆ IA ≡ a=a ′ .(153)

Proof The proof is by mutual impliation. First,

a=a ′

⇒ { Leibniz }

a◦⊤⊤◦a ′ = a◦⊤⊤◦a

⇒ { a point is a partile (lemma 137)

131(b) (with Z :=a ) }

a◦⊤⊤◦a ′ = a

⇒ { de�nition a point (de�nition 126) }

a◦⊤⊤◦a ′ ⊆ IA .

For the onverse, we �rst prove that, for arbitrary points a and a ′
, a◦⊤⊤◦a ′ 6=⊥⊥ .
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a◦⊤⊤◦a ′ 6=⊥⊥

= { one rule: (4) with R :=a◦⊤⊤◦a ′ }

⊤⊤◦a◦⊤⊤◦a ′
◦⊤⊤ = ⊤⊤

= { one rule: (4) (with R :=a and R :=a ′
), a 6=⊥⊥ and a ′ 6=⊥⊥ }

true .

So

a◦⊤⊤◦a ′ ⊆ IA

⇒ { monotoniity }

a◦a ◦⊤⊤ ◦a ′
◦a ′ ⊆ a◦IA◦a ′

= { a◦a=a , a ′
◦a ′=a ′

, IA is identity of omposition }

a◦⊤⊤◦a ′ ⊆ a◦a ′

= { omposition of oreexives is intersetion }

a◦⊤⊤◦a ′ ⊆ a ∧ a◦⊤⊤◦a ′ ⊆ a ′

= { a◦⊤⊤◦a ′ 6=⊥⊥ (proved above), a and a ′
are atoms }

a◦⊤⊤◦a ′ = a ∧ a◦⊤⊤◦a ′ = a ′

⇒ { transitivity }

a=a ′ .

✷

Theorem 154 Suppose, for all types A and B , the lattie of relations of type A∼B

is extensional, whereby the atoms are elements of the form a◦⊤⊤◦b where a and b are

atoms of the poset of oreexives (of types A and B , respetively). Then, for all A ,

the lattie of oreexives of type A is extensional.

Proof By assumption, for all A , the lattie of relations of type A∼A is omplete and

universally distributive. It follows straightforwardly that the lattie of relations of type

A∼A bounded above by any �xed relation is also omplete and universally distributive.

In partiular, the oreexives (whih are bounded above by IA ) form a omplete and

universally distributive lattie. It suÆes thus to prove that the lattie of oreexives of

type A is saturated. That is, we have to prove that, for all oreexives p of type A ,

p = 〈∪a : a⊆p : a〉

where dummy a ranges over points of type A . This we do as follows.
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〈∪a : a⊆p : a〉

= { (153) with a,a ′ :=a,a }

〈∪a : a◦⊤⊤◦a⊆p : a◦⊤⊤◦a〉

= { one-point rule }

〈∪a,b : a=b ∧ a◦⊤⊤◦b⊆p : a◦⊤⊤◦b〉

= { p is oreexive, i.e. p⊆ IA

a◦⊤⊤◦b⊆ IA ⇒ { (153) with a,a ′ :=a,b} a=b }

〈∪a,b : a◦⊤⊤◦b⊆p : a◦⊤⊤◦b〉

= { assumption: lattie A∼A is saturated }

p .

✷

Combining theorems 149 and 154, we get:

Corollary 155 Suppose, for all types A and B , the lattie of relations of type A∼B

is omplete and universally distributive. Then for all types A and B , the lattie of

relations of type A∼B is extensional i� for all types A , the lattie of oreexives of

type A is extensional.

✷

Although the saturation property allows us to identify atoms of the form a◦⊤⊤◦b

with elements (a, b) of the set A×B , it does not establish that the operators of relation

algebra (onverse, omposition et.) orrespond to their standard set-theoreti interpre-

tations. This is straightforward. For example, for omposition we have, for all R and

S ,

R◦S

= { saturation: (150) }

〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉 ◦ 〈∪b ′,c : b ′
◦⊤⊤◦c⊆S : b ′

◦⊤⊤◦c〉

= { distributivity }

〈∪a,b,b ′,c : a◦⊤⊤◦b⊆R ∧ b ′
◦⊤⊤◦c⊆S : a◦⊤⊤◦b◦b ′

◦⊤⊤◦c〉

= { b and b ′
are points, so b◦b ′ 6=⊥⊥ ≡ b ′=b

ase analysis on b ′=b ∨ b ′ 6=b , one-point rule }

〈∪a,b,c : a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c ⊆ S : a◦⊤⊤◦b◦b◦⊤⊤◦c〉

= { b ranges over points, so b◦b=b 6=⊥⊥ , one rule: (4) }
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〈∪a,b,c : a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c ⊆ S : a◦⊤⊤◦c〉

= { range disjuntion }

〈∪a,c : 〈∃b :: a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c⊆S〉 : a◦⊤⊤◦c〉 .

Comparing the �rst and last lines of this alulation (and interpreting a◦⊤⊤◦b⊆R as

(a, b)∈R and b◦⊤⊤◦c⊆S as (b, c)∈S ) we reognise the standard set-theoreti de�nition

of R◦S .

The important step to note in the above alulation is the use of the distributivity

of omposition over union. The validity of suh universal distributivity | both from

the left and from the right| is a onsequene of the Galois onnetions (5) and (6)

de�ning fators. A similar step needed in the alulation for onverse relies on the fat

that onverse is the upper and lower adjoint of itself.

We onlude this setion with a brief omparison of extensionality as formulated here

with the notion of extensionality formulated by Voermans [Voe99℄.

Voermans [Voe99, setion 4.5℄ postulated that the lattie of binary relations of a

given type is saturated by relations of the form X◦⊤⊤◦Y where X and Y are partiles.

Relations of this form are then shown to model pairs (x, y) in standard set-theoreti pre-

sentations of relation algebra. Here, we have postulated that eah type A forms a lattie

that is saturated by points : see axiom 130; this postulate is ombined with our axiom

of hoie: all pers have an index. Then pairs in standard set-theoreti presentations

of relation algebra are modelled by relations of the form a◦⊤⊤◦b , where a and b are

points. Beause partiles are points (orollary 136), the saturation property postulated

by Voermans is formally stronger than axiom 130. As a onsequene, it beomes slightly

harder to establish that, for example, the omposition of two relations does indeed orre-

spond to the set-theoreti notion of omposition. (See [Voe99, setion 4.5℄ for details of

what is involved.) More importantly, the ombination of axioms 106 and 130 failitates

a better separation of onerns: axiom 106 provides a powerful extension of point-free

reasoning, whilst axiom 130 �lls the gap where pointwise reasoning is unavoidable.

10 Pointwise Interpretations

We have now shown that, with the addition of axioms on the ompleteness and universal

distributivity of the relations of a given type together with the axiom of hoie, axiom

106, the type A∼B (for eah type A and B ) is isomorphi to the powerset 2A×B .

The proper atoms are events of the form a◦⊤⊤◦b where a and b are points; suh an

event models the pair (a, b) in onventional pointwise formulations of relation algebra.

Spe�ally, the property

a◦⊤⊤◦b ⊆ R
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models the property (a, b)∈R in onventional formulations, whilst

a◦R◦b=⊥⊥

models the onverse property (a, b) 6∈R .

A major bene�t of enabling pointwise reasoning in this way is that we an derive

pointwise interpretations of the operators in the alulus in a preise and onise fashion.

This setion is about the pointwise interpretations of some of the less familiar operators.

The properties presented are needed in later setions.

Lemma 156 gives pointwise interpretations of the fator operators.

Lemma 156 For all relations R of type A∼C and S of type B∼C (for some A , B

and C ) and all points a and b ,

a◦⊤⊤◦b ⊆ R/S ≡ (b◦S)> ⊆ (a◦R)> .

Dually, for all relations R of type C∼A and S of type C∼B , and all points a and b ,

a◦⊤⊤◦b ⊆ R\S ≡ (R◦a)< ⊆ (S◦b)< .

Proof By mutual impliation:

a◦⊤⊤◦b ⊆ R/S

= { de�nition of fator }

a◦⊤⊤◦b◦S ⊆ R

⇒ { a and b are points, monotoniity and domains }

(b◦S)> ⊆ (a◦R)>

⇒ { monotoniity }

a ◦⊤⊤ ◦ (b◦S)> ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains }

a◦⊤⊤◦b◦S ⊆ a◦⊤⊤◦a◦R

= { a is a point (so a◦⊤⊤◦a=a ) }

a◦⊤⊤◦b◦S ⊆ a◦R

⇒ { a is a oreexive }

a◦⊤⊤◦b◦S ⊆ R

= { de�nition of fator }

a◦⊤⊤◦b ⊆ R/S .
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The seond equivalene is proved similarly.

a◦⊤⊤◦b ⊆ R\S

= { de�nition of fator }

R◦a◦⊤⊤◦b ⊆ S

⇒ { monotoniity and oreexives }

(R◦a)< ⊆ (S◦b)<

⇒ { (as in above alulation) }

a◦⊤⊤◦b ⊆ R\S .

✷

For relations R and S with the same soure, the relation R/S∩ (S/R)∪ is the \sym-

metri left division" of R and S . Dually, for relations R and S with the same target,

the relation R\S∩ (S\R)∪ is their \symmetri right division". The following orollary of

lemma 156 gives a pointwise interpretation of these \division" operators.

Corollary 157 For all relations R and S with the same soure, and all points a and

b (of appropriate type),

a◦⊤⊤◦b ⊆ R/S∩ (S/R)
∪

≡ (a◦R)> = (b◦S)> .

Dually, for all relations R and S with the same target, and all points a and b (of

appropriate type),

a◦⊤⊤◦b ⊆ R\S∩ (S\R)
∪

≡ (R◦a)< = (S◦b)< .

Proof Straightforward appliation of lemma 156 and anti-symmetry:

a◦⊤⊤◦b ⊆ R/S∩ (S/R)∪

= { in�ma and onverse }

a◦⊤⊤◦b ⊆ R/S ∧ b◦⊤⊤◦a ⊆ S/R

= { lemma 156 }

(b◦S)> ⊆ (a◦R)> ∧ (a◦R)> ⊆ (b◦S)>

= { anti-symmetry }

(a◦R)> = (b◦S)> .

✷

The pointwise interpretations of the left and right per domains are given by the

following lemma.
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Lemma 158 For all relations R of type A∼B and all points a and a ′
of type A ,

a◦⊤⊤◦a ′ ⊆ R≺ ≡ a⊆R< ∧ (a◦R)> = (a ′
◦R)> ∧ a ′⊆R< .

Dually, for all relations R of type A∼B and all points b and b ′
of type B ,

b◦⊤⊤◦b ′ ⊆ R≻ ≡ b⊆R> ∧ (R◦b)< = (R◦b ′)< ∧ b ′⊆R> .

Proof Assume that b and b ′
are points. Then

b◦⊤⊤◦b ′ ⊆ R≻

= { de�nition (28) and lemma 34 }

b◦⊤⊤◦b ′ ⊆ R> ◦R\\R ◦R>

= { domains (using mutual impliation) }

b⊆R> ∧ b◦⊤⊤◦b ′ ⊆ R\\R ∧ b ′⊆R>

= { orollary 157, with R,S :=R,R }

b⊆R> ∧ (R◦b)< = (R◦b ′)< ∧ b ′⊆R> .

The dual property follows from the distributivity properties of onverse.

✷
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Part III

Applications

11 Coverings

This setion is motivated by Riguet's study of so-alled \relations de Ferrers" [Rig51℄

(whih we all \stairase relations" [Ba21℄). A entral element in Riguet's study was a

theorem haraterising suh relations as the \r�eunion" of \retangles" that have a very

speial property. We abstrat the notion of a \polar overing" of a relation and we prove

the theorem that every relation has a polar overing. See de�nition 163 and theorem

166. In antiipation of setion 12, we also de�ne the notion of a \non-redundant" polar

overing. For �nite relations, it is straightforward to show that a non-redundant polar

overing an always be onstruted from a given polar overing of the relation. The

algorithm may, however, not be pratial; moreover, there are in�nite relations that do

not have a non-redundant polar overing. (The less-than relation on real numbers is an

example.)

11.1 Completely Disjoint Rectangles

Definition 159 (Indexed Bag/Set) Suppose R is a funtion with soure K . Then

R is said to be a bag indexed by K . The values R.k , where k ranges over K , are said

to be the elements of R . In the ase that R is injetive, it is said to be an indexed

set.

✷

The distintion between \bag" and \set" in de�nition 159 emphasises the fat that

the same element may our repeatedly in an indexed bag whereas eah element ours

exatly one in an indexed set. That is, an indexed set R has the property that, for all

j and k in K ,

R.j = R.k ≡ j=k .

We normally apply de�nition 159 to bags/sets of retangles. Spei�ally, suppose A , B

and K are types and R is a funtion with soure K and target retangles of type A∼B .

Then R is said to be an indexed bag of retangles ; it is an indexed set of retangles

if it is injetive.

Two relations R and S are disjoint if R∩S=⊥⊥ . One an show that, for all retan-

gles R and S ,

R∩S=⊥⊥ ≡ R<∩S< = ⊥⊥ ∨ R>∩S> = ⊥⊥ .
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(This is a onsequene of lemma 66.) The de�nition of \ompletely" disjoint strengthens

the disjuntion to a onjuntion. Note that we don't use ontinued equality beause the

symbol \⊥⊥ " is overloaded.

Definition 160 (Completely Disjoint) Two retangles R and S are said to be

ompletely disjoint i�

R<∩S< = ⊥⊥ ∧ R>∩S> = ⊥⊥ .

Suppose R is an indexed bag of retangles. Then R is said to be a ompletely disjoint

bag of retangles i�, for all j and k in the index set of R ,

R.j 6=R.k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

R is said to be a ompletely disjoint set of retangles i� in addition it is injetive. That

is, R is a ompletely disjoint set of retangles i�, for all j and k in the index set of

R ,

j 6=k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

✷

We give several onstrutions of bags/sets of retangles. When we do so, the ver-

i�ation that the bags/sets are ompletely disjoint is ahieved by mutual impliation.

The \if" part is established by proving its ontrapositive. That is, the proof obligation

beomes to show that, for all indies j and k ,

R.j=R.k ⇒ (R.j)<∩ (R.k)< 6= ⊥⊥ ∧ (R.j)>∩ (R.k)> 6= ⊥⊥

whih simpli�es to, for all j ,

R.j 6=⊥⊥ .

(The same simpli�ation is valid whether the onstrution yields a bag or a set.) Thus

the �rst step is to show that the onstrution yields non-empty elements. The \only-if"

part is to show that, for all indies j and k ,

R.j 6=R.k ⇒ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

For this part, the following lemma is exploited.

Lemma 161 For all relations R and S ,

R<∩S< = ⊥⊥ ≡ R
∪

◦S = ⊥⊥ .

Symmetrially,

R>∩S> = ⊥⊥ ≡ R ◦S
∪

= ⊥⊥ .
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Proof First note that

R<∩S< = ⊥⊥ ≡ R< ◦S< = ⊥⊥

sine the intersetion of oreexives is the same as their omposition. Then

R< ◦S< = ⊥⊥

⇒ { ⊥⊥ is zero of omposition }

R
∪
◦R< ◦S< ◦S = ⊥⊥

= { domains: (18) }

R
∪
◦S = ⊥⊥

⇒ { ⊥⊥ is zero of omposition }

R ◦R
∪
◦S ◦S

∪ = ⊥⊥

⇒ { monotoniity, [ R=⊥⊥≡R⊆⊥⊥ ] (applied twie) }

(I ∩ R ◦R
∪) ◦ (I ∩ S ◦S

∪) = ⊥⊥

= { domains: de�nition 15 }

R< ◦S< = ⊥⊥ .

The lemma follows by mutual impliation.

✷

The foregoing disussion is formalised in the following lemma.

Lemma 162 Suppose R is an indexed bag of retangles. Then R is ompletely

disjoint i�

〈∀j :: R.j 6=⊥⊥〉

∧ 〈∀ j,k :: R.j 6=R.k ⇒ (R.j)∪ ◦R.k = ⊥⊥ ∧ R.j ◦ (R.k)∪ = ⊥⊥〉 .

Also, R is ompletely disjoint and injetive |i.e. an indexed set| i�

〈∀j :: R.j 6=⊥⊥〉

∧ 〈∀ j,k :: j 6=k ⇒ (R.j)∪ ◦R.k = ⊥⊥ ∧ R.j ◦ (R.k)∪ = ⊥⊥〉 .

Proof

R is ompletely disjoint

= { de�nition 160 }

〈∀ j,k :: R.j 6=R.k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉
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= { mutual impliation }

〈∀ j,k :: R.j 6=R.k ⇐ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉

∧ 〈∀ j,k :: R.j 6=R.k ⇒ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉

= { ontrapositive; lemma 161 }

〈∀ j,k :: R.j=R.k ⇒ (R.j)<∩ (R.k)< 6= ⊥⊥ ∨ (R.j)>∩ (R.k)> 6= ⊥⊥〉

∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉

= { Leibniz, reexivity of equality, idempotene of intersetion }

〈∀j :: (R.j)< 6=⊥⊥ ∨ (R.j)> 6=⊥⊥〉

∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉

= { domains

( [ (R<=⊥⊥)= (R=⊥⊥)= (R>=⊥⊥) ] with R :=R.j )) }

〈∀j :: R.j 6=⊥⊥〉

∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉 .

Injetivity of R is the property that 〈∀ j,k :: R.j=R.k ≡ j=k〉 . The haraterisation

of ompletely disjoint and injetive thus follows by the use of Leibniz's rule.

✷

11.2 Polar Coverings

Definition 163 (Polar Covering) Suppose R is an indexed bag of retangles. (See

de�nition 159.) Then R is said to be polar if, for all elements U and V of R ,

U< ⊆ V< ≡ U> ⊇ V> .

Also, R is said to be linear if, for all elements U and V of R ,

U< ⊆ V< ∨ V< ⊆ U< .

(Equivalently,

U> ⊆ V> ∨ V> ⊆ U>
.)

A relation R is overed by R if R=∪R . The overing R is non-redundant if there

is a total funtion D from indies of R to a set of ompletely disjoint subretangles of

∪R that \de�nes" the elements of R . To be preise, the overing R is non-redundant

if there is a funtion D with the same soure as R suh that
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〈∀k :: rectangle.(D.k) ∧ D.k⊆R.k〉

∧ 〈∀ j,k :: D.j 6=D.k ≡ (D.j)<∩ (D.k)< = ⊥⊥ ∧ (D.j)>∩ (D.k)> = ⊥⊥〉

∧ 〈∀ j,k :: D.j=D.k ≡ R.j=R.k〉 .

In suh a ase, we all the indexed bag D a de�niens of R .

✷

Lemma 164 Suppose R is an indexed bag of retangles and suppose R is polar.

Then, for all elements U and V of R ,

U=V ≡ U<=V< .

Proof

U=V

= { U and V are retangles: lemma 65 }

U<=V< ∧ U>=V>

= { anti-symmetry }

U<⊆V< ∧ U<⊇V< ∧ U>⊆V> ∧ U>⊇V>

= { R is polar: de�nition 163 }

U<⊆V< ∧ U>⊆V>

= { anti-symmetry }

U<=V< .

✷

Definition 165 Suppose R is a polar overing of relation R . The polar ordering of

the elements of R , denoted heneforth by the symbol ⊑ , is de�ned by, for all indies j

and k of R ,

R.j ⊑ R.k ≡ (R.j)< ⊆ (R.k)< .

Equivalently,

R.j ⊑ R.k ≡ (R.k)> ⊆ (R.j)> .

✷
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As suggested by the notation, the relation ⊑ is a provisional ordering on the elements

of any indexed bag of relations; it is anti-symmetri whenever R is an indexed bag of

polar retangles by virtue of lemma 65 and de�nition 163 of \polar".

De�nition 163 de�nes a bag of retangles rather than a set of retangles. (Reall that

a set is an injetive bag: see de�nition 159.) Generally it is easier to onstrut a bag

rather than a set of polar retangles that over a given relation. Nevertheless, sets are

more desirable than bags. Our theory of indexes of a relation provides the mehanism

to onstrut sets rather than bags. See theorem 166. Note that a de�niens D of an

indexed set R is also a set (beause R.j=R.k equivales j=k ).

The adjetive \polar" alludes to the property that the left and right domains of a

overing are \polar" opposites: the larger the one, the smaller the other. The notion was

introdued by Riguet [Rig51℄ in the ontext of a theorem on \relations de Ferrers". More

preisely, Riguet introdued the notion of a linear polar overing. For further details of

Riguet's theorem see the setion on stairase relations in [Ba21℄.

In the ase of the empty relation, ⊥⊥ , there are two distint polar overings aording

to our de�nition. One is the empty funtion (the unique funtion with soure the empty

set) and the seond is the onstant funtion with soure the unit type that returns

⊥⊥ . The former is the preferred overing beause it means that, for all relations R , all

elements of a polar overing of R are proper (di�erent from ⊥⊥ ). We all suh polar

overings proper overings and, from now on, make the assumption that all overings

are proper.

Theorem 166 Suppose R is a relation of type A∼B and suppose J is a (oreexive)

index of R≻
. De�ne the funtion R by

R = 〈b : b⊆ J : R ◦b ◦R\R〉 .

Then R is an injetive, polar overing of R . (Note: the soure of the funtion R is the

subset of B orresponding to the points given by the range restrition on the dummy

b .)

Proof The elements of R are obviously retangles beause its index set is a set of

points. (See lemma 138.) The \polar" property is established as follows. For all b , b ′

suh that b⊆R>
and b ′⊆R>

,

(R ◦b ′
◦R\R)> ⊆ (R ◦b ◦R\R)>

= { assumption: b⊆R>
and b ′⊆R>

, domains }

(b ′
◦R\R)> ⊆ (b ◦R\R)>

= { lemma 156 with R,a,a ′ := R\R ,b , b ′ }

b◦⊤⊤◦b ′ ⊆ (R\R)/(R\R)
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= { (13) }

b◦⊤⊤◦b ′ ⊆ R\R

= { lemma 156 }

(R◦b)< ⊆ (R◦b ′)<

= { I⊆R\R , domains }

(R ◦b ◦R\R)< ⊆ (R ◦b ′
◦R\R)< .

The property R=∪R is established as follows.

∪R

= { de�nition of R and saturation axiom (129) }

R ◦ J ◦R\R

= { R = R ◦R≻
and J = J ◦R>

(sine J is a oreexive index R ) }

R ◦R≻ ◦ J ◦R> ◦R\R

= { lemma 37 }

R ◦R≻ ◦ J ◦R≻ ◦R\R

= { J is an index R , de�nition 78(d) }

R ◦R≻ ◦R\R

= { R = R ◦R≻ }

R ◦R\R

= { anellation: (11) }

R .

This ompletes the proof that R=∪R . The �nal task is to show that the funtion R

is injetive. To this end, suppose b and b ′
are points suh that b⊆ J and b ′⊆ J . We

have to show that

b=b ′
⇐ R ◦b ◦R\R = R ◦b ′

◦R\R .

We have

R ◦b ◦R\R = R ◦b ′
◦R\R

= { R is a polar overing (proved above), lemma 164 }

(R ◦b ◦R\R)< = (R ◦b ′
◦R\R)<
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= { (R\R)< = I , domains }

(R◦b)< = (R◦b ′)<

= { b⊆ J⊆R≻
and b ′⊆ J⊆R≻

, lemma 158 }

b◦⊤⊤◦b ′ ⊆ J◦⊤⊤◦J ∩ R≻

= { theorem 23(b), J is a oreexive, so J<= J= J> }

b◦⊤⊤◦b ′ ⊆ J ◦R≻ ◦ J

= { J is a (oreexive) index of R≻
, de�nition 105(b) with P :=R≻ }

b◦⊤⊤◦b ′ ⊆ J

= { b and b ′
are points, J is a oreexive, (153) with a,a ′ :=b,b ′ }

b=b ′ .

✷

Example 167 The less-than relation on real numbers has a polar overing. Speif-

ially, suppose x is a real number. Let lt.x denote (the oreexive representing)

{y :y∈IR :y<x} and al.x denote (the oreexive representing) {y :y∈IR :x≤y} . The-

orem 166 predits that

〈x : x∈IR : lt.x ◦⊤⊤ ◦al.x〉

is a polar overing of the less-than relation. (The only non-trivial part is to hek that

the at-most relation ≤ equals <\< .)

This overing is, of ourse, not unique. More signi�antly, it is not non-redundant

sine

〈

∀u,v : u<x≤ v : x 6= 1
2
(u+x) ∧ u< 1

2
(u+x)≤ v

〉

.

For any real number x , it is possible to remove the retangle de�ned by x without

a�eting the supremum.

✷

Given the straightforwardness of theorem 166, it is inevitable that our fous is not on

the polarity of overings but on the existene of non-redundant overings. The adjetive

\non-redundant" is meant to express the property that removal of any element from a

overing R will have the e�et of stritly reduing ∪R . Example 167 demonstrates

that the less-than relation on real numbers has a polar overing but, as we shall see,

the less-than relation on real numbers is an example of a relation for whih there is no

non-redundant overing.
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The notation \D " in de�nition 163 is hosen primarily to express the property that

D.k uniquely \de�nes" (or \identi�es") R.k . Conveniently, it also expresses the prop-

erty that the relation overed by a de�niens (the relation ∪D ) is always difuntional:

see lemma 169.

A polar overing is not obviously redundant in the sense that, for all elements U

and V of R ,

U⊆V ≡ U=V .

(The easy proof is left to the reader.) That is, it is not possible to identify two elements

U and V suh that U is a proper subset of V and, thus, U an be removed from R

without a�eting ∪R . Example 167 shows that the less-than relation on real numbers

has a polar overing that has non-obvious redundanies. Example 168 is an example of a

�nite relation for whih the polar overing onstruted by theorem 166 has a non-obvious

redundany.

Example 168 Fig. 4 shows a relation R of type {A,B,C}∼{α,β,γ,δ} . The four re-

lations depited in �g. 5 are retangles of type {A,B,C}∼{α,β,γ,δ} (as indiated by the

surrounding retangular boxes); for greater larity only edges onneting nodes in their

left and right domains have been displayed.

A B C

α β γ

δ

Figure 4: A Relation of Type {A,B,C}∼{α,β,γ,δ}

These four retangles are the elements of the polar overing onstruted by theorem

166. The (reexive-transitive redution of the) ordering on the elements of the overing

is depited by arrowed brown lines. Take are to note how the depited edges orrespond

to the ordering of the left domains of the retangles:

{B}⊆ {A,B} ∧ {B}⊆ {B,C} ∧ {A,B}⊆ {A,B,C} ∧ {B,C}⊆ {A,B,C} ,

and to the \polar" ordering of their right domains:

{α,β,γ,δ}⊇ {α,δ} ∧ {α,β,γ,δ}⊇ {β,δ} ∧ {α,δ}⊇ {δ} ∧ {β,δ}⊇ {δ} .

The top retangle is redundant (but not \obviously" so). By removing this retangle,

one obtains a non-redundant polar overing: this is the polar overing that is the dual of
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A B C

δ

B

δ

α

A

γ

B C

δ

B

β

δ

γα

Figure 5: Polar Covering
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the overing detailed in theorem 166 (thus indexed by {A,B,C} rather than {α,β,γ,δ} ).

The de�niens of this overing is depited by the bold green edges in �g. 5.

The red and blue squares surrounding instanes of the elements of {A,B,C} and

{α,β,γ,δ} should be ignored for the moment. We return to this example later;

✷

11.3 A Definiens is a Difunction

Cruial to establishing non-redundany of a overing is the onstrution of a de�niens.

Those familiar with the theory of difuntions will immediately reognise that a de�niens

of a overing is neessarily a difuntion (beause a relation is a difuntion i� it is the

union of a set of ompletely disjoint retangles). Beause we don't need the full theory

here, we present just the relevant property and its proof:

Lemma 169 Suppose D is a funtion suh that

〈∀k :: rectangle.(D.k)〉

∧ 〈∀ j,k :: D.j 6=D.k ≡ (D.j)<∩ (D.k)< = ⊥⊥ ∧ (D.j)>∩ (D.k)> = ⊥⊥〉 .

Then ∪D is a difuntion.

Proof Realling lemma 64 (every retangle is a difuntion), we know that

〈

∀k :: D.k ◦ (D.k)
∪

◦D.k ⊆ D.k
〉

.(170)

Aiming to exploit this property, we alulate:

(∪D)∪ ◦∪D

= { distributivity }

〈∪ j,k :: (D.j)∪ ◦D.k〉

= { range disjuntion: D.j=D.k ∨ D.j 6=D.k }

〈∪ j,k : D.j=D.k : (D.j)∪ ◦D.k〉 ∪ 〈∪ j,k : D.j 6=D.k : (D.j)∪ ◦D.k〉

= { D is, by de�nition, a ompletely disjoint bag retangles

lemma 162 }

〈∪ j,k : D.j=D.k : (D.j)∪ ◦D.k〉

= { Leibniz, nesting }

〈∪k :: 〈∪j : D.j=D.k : (D.k)∪ ◦D.k〉〉

⊆ { by reexivity of the subset relation,
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〈∀j : D.j=D.k : (D.k)∪ ◦D.k ⊆ (D.k)∪ ◦D.k〉

monotoniity, de�nition of supremum }

〈∪k :: (D.k)∪ ◦D.k〉 .

Thus,

∪D ◦ (∪D)∪ ◦∪D

⊆ { above, monotoniity, distributivity }

〈∪ j,k :: D.j ◦ (D.k)∪ ◦D.k〉

⊆ { similar alulation to that above }

〈∪k :: D.k ◦ (D.k)∪ ◦D.k〉

⊆ { (170) }

〈∪k ::D.k〉

= { de�nition }

∪D .

It follows, by de�nition of a difuntion, that ∪D is a difuntion.

✷

12 The Diagonal

This setion antiipates the study of blok-ordered relations in setion 13. We introdue

the notion of the \diagonal" of a relation in setion 12.1 and formulate some basi

properties in setion 12.2.

In setion 11.2, we introdued the notion of a polar overing of a relation. Theorem

166 shows how to onstrut a polar overing for any given relation but example 167

demonstrates that the onstrution does not always produe a non-redundant overing.

In setion 12.4, we explore onditions under whih the diagonal of the relation guarantees

the non-redundany of the overing.

12.1 Definition and Examples

Straightforwardly from the de�nition of fators, properties of onverse and set interse-

tion,

R is difuntional ≡ R = R∩ (R\R/R)
∪

.(171)

More generally, we have:
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Lemma 172 For all R , R∩ (R\R/R)∪ is difuntional.

Proof Let S denote R∩ (R\R/R)∪ . We have to prove that S is difuntional. That is,

by de�nition,

S ◦S
∪

◦S ⊆ S .

Sine the right side is an intersetion, this is equivalent to

S ◦S
∪

◦S ⊆ R ∧ S ◦S
∪

◦S ⊆ (R\R/R)
∪

.

The �rst is (almost) trivial:

S ◦S
∪
◦S

⊆ { S⊆R , S⊆ (R\R/R)∪ ,

onverse, monotoniity }

R ◦R\R/R ◦R

⊆ { anellation }

R .

In the above alulation, the trik was to replae the outer ourrenes of S on the

left side by R and the middle ourrene by (R\R/R)∪ . The replaement is done the

opposite way around in the seond alulation.

S ◦S
∪
◦S ⊆ (R\R/R)∪

⇐ { S⊆ (R\R/R)∪ , S⊆R , monotoniity and transitivity }

(R\R/R)∪ ◦R
∪
◦ (R\R/R)∪ ⊆ (R\R/R)∪

= { onverse }

R\R/R ◦R ◦R\R/R ⊆ R\R/R

= { Galois onnetion }

R ◦R\R/R ◦R ◦R\R/R ◦R ⊆ R

= { anellation, monotoniity and transitivity }

true .

✷

We all the relation R∩ (R\R/R)∪ the diagonal of R ; Riguet [Rig51℄ alls it the

\di��erene" of the relation. (Riguet's de�nition does not use fators but is equivalent.)
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Definition 173 (Diagonal) The diagonal of relation R is the relation R∩ (R\R/R)∪ .

For brevity, R∩ (R\R/R)∪ will be denoted by ∆R .

✷

Many readers will be familiar with the deomposition of a preorder into a partial

ordering on a set of equivalene lasses. The diagonal of a preorder T is the equivalene

relation T ∩T∪

. More generally:

Example 174 The diagonal of a provisional preorder T is T ∩ T∪

. This is beause,

for an arbitrary relation T ,

T ∩ (T\T/T)
∪

= T ∩ T< ◦ (T\T/T)
∪

◦T> .

But, if T is a provisional preorder,

T< ◦ (T\T/T)
∪

◦T> = T
∪

.

(See lemmas 54 and 57.)

✷

Example 175 A partiular instane of example 174 is if G is the edge relation of a

�nite graph. Then ∆(G∗) is G∗∩ (G∪)∗ , the relation that holds between nodes a and b

if there is a path from a to b and a path from b to a in the graph. Thus ∆(G∗) is the

equivalene relation that holds between nodes that are in the same strongly onneted

omponent of G.

✷

Example 176 In this example, we onsider three versions of the less-than relation: the

homogeneous less-than relation on integers, whih we denote by <ZZ , the homogeneous

less-than relation on real numbers, whih we denote by <IR , and the heterogeneous less-

than relation on integers and real numbers, whih we denote by ZZ<IR . Spei�ally, the

relation ZZ<IR relates integer m to real number x when m<x (using the onventional

over-loaded notation). We also subsript the at-most symbol ≤ in the same way in order

to indiate the type of the relation in question.

The diagonal of the less-than relation on integers is the predeessor relation (i.e. it

relates integer m to integer n exatly when n=m+1 ). This is beause <ZZ\<ZZ = ≤ZZ ,

and ≤ZZ/<ZZ relates integer m to integer n exatly when m≤ZZn+1 (where the sub-

sript ZZ indiates the type of the ordering). The diagonal is thus funtional and inje-

tive.

The diagonal of the less-than relation on real numbers is the empty relation. This

is beause <IR\<IR = ≤IR , ≤IR/<IR = ≤IR and <IR∩≥IR=⊥⊥IR . (Again, the subsript

indiates the type of the ordering.)
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The diagonal of the heterogeneous less-than relation ZZ<IR relates integer m to real

number x when m<x≤m+1 . This is equivalent to ⌈x⌉=m+1 . The diagonal is thus a

difuntional relation haraterised by |in the sense of theorem 111| the eiling funtion

〈x :: ⌈x⌉〉 and the suessor funtion 〈m :: m+1〉 .

We leave the reader to hek the details of this example. See also examples 167 and

217.

✷

The following example introdues a general mehanism for onstruting illustrative

examples of the onepts introdued later. The example exploits the observation that

∆R is injetive if the preorder R\R is anti-symmetri; that is, ∆R is injetive if R\R

is a partial ordering. (Equivalently, ∆R is funtional if R/R is a partial ordering.) We

leave the straightforward proof to the reader.

Example 177 Suppose X is a �nite type. We use dummy x to range over elements

of type X . Let S denote a subset of 2X . Let in denote the membership relation of

type X∼S . That is, if S is a subset of S , x◦⊤⊤◦S⊆ in exatly when x is an element

of the set S . The relation in\in is the subset relation of type S∼S .

(Conventionally, in is denoted by the symbol \∈ " and one writes x∈S instead of

x◦⊤⊤◦S⊆ in . Also, the relation in\in is onventionally denoted by the symbol \⊆ ". That

is, if S and S ′
are both elements of S , S◦⊤⊤◦S ′⊆ in\in exatly when S⊆S ′

. Were we

to adopt onventional pratie, the overloading of the notation that ours is likely to

ause onfusion, so we hoose to avoid it.)

The relation in\in is anti-symmetri. As a onsequene, ∆in is injetive. (Equiva-

lently, (∆in)∪ is funtional.) Spei�ally, for all x of type X and S of type S ,

x◦⊤⊤◦S ⊆ ∆in ≡ x◦⊤⊤◦S⊆ in ∧ 〈∀S ′ : x◦⊤⊤◦S ′⊆ in : S◦⊤⊤◦S ′⊆ in\in〉 ,

where dummy S ′
ranges over elements of S . Using onventional notation, the right side

of this equation is reognised as the de�nition of a minimum, and one might write

x [[∆in]] S ≡ S 〈MINS ′ :x∈S ′ :S ′〉

where the venturi tube \ " indiates an equality assuming the well-de�nedness of the

expression on its right side.

Fig. 6 shows a partiular instane. The set X is the set of numbers from 0 to 3 .

The set S is a subset of 2{0,1,2,3} ; the hosen subset and the relation in\in for this hoie

are depited by the direted graph forming the entral portion of �g. 6. The relation ∆in

of type X ∼S is depited by the undireted graph whereby the atoms of the relation

are depited as retangles. Note that the numbers 0 and 3 are not related by ∆in to

any of the elements of S .

✷
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1 2{0,1} {0,2}

{0,1,3} {0,2,3}

Figure 6: Diagonal of an Instane of the Membership Relation

12.2 Basic Properties

Primarily for notational onveniene, we note a simple property of the diagonal:

Lemma 178

(∆R)
∪

= ∆(R
∪

) .

Proof

(∆R)∪

= { de�nition and distributivity }

R
∪∩R\R/R

= { fators }

R
∪∩ (R∪

\R
∪

/R
∪)∪

= { de�nition }

∆(R∪) .

✷

A onsequene of lemma 178 is that we an write ∆R
∪

without ambiguity. This we

do from now on.

Very straightforwardly, the relation R ◦R
∪

is a per if R is difuntional. For a difun-

tional relation R , the relation R ◦R
∪

is the left per domain of R . (Symmetrially, R
∪
◦R

is the right per domain of R . See theorem 49, parts (iv) and (vi).) Thus ∆R ◦ (∆R)∪

is the left per domain of the diagonal of R . The following lemma is the basis of the

onstrution, in ertain ases, of an eonomi representation of the diagonal of R and,

hene, of R itself.
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Lemma 179 For all relations R ,

(∆R)≺ = (∆R)< ◦R≺ = R≺ ◦ (∆R)< .

Dually,

(∆R)≻ = R≻ ◦ (∆R)> = (∆R)> ◦R≻ .

Proof We prove the �rst equation by mutual inlusion. First,

(∆R)≺ ⊆ (∆R)< ◦R≺

= { ∆R is difuntional, theorem 49; de�nition: (28) }

∆R ◦∆R
∪ ⊆ (∆R)< ◦R//R

⇐ { domains and monotoniity }

∆R ◦∆R
∪ ⊆ R//R

= { de�nition of R//R , onverse and fators }

∆R ◦∆R
∪
◦R ⊆ R

= { ∆R⊆R ; ∆R∪⊆R\R/R and anellation }

true .

Seond,

(∆R)< ◦R≺ ⊆ (∆R)≺

= { ∆R is difuntional, theorem 49 }

(∆R)< ◦R≺ ⊆ ∆R ◦∆R
∪

⇐ { domains and de�nition: (28) }

∆R ◦∆R
∪
◦R//R ⊆ ∆R ◦∆R

∪

⇐ { monotoniity and onverse }

R//R ◦∆R ⊆ ∆R

= { de�nition of diagonal }

R//R ◦∆R ⊆ R ∧ R//R ◦∆R ⊆ (R\R/R)∪

⇐ { ∆R⊆R ; onverse }

R//R ◦R ⊆ R ∧ ∆R
∪
◦R//R ⊆ R\R/R

= { anellation; fators }

true ∧ R ◦∆R
∪
◦R//R ◦R ⊆ R
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⇐ { anellation and ∆R
∪ ⊆R\R/R }

R ◦R\R/R ◦R ⊆ R

= { anellation }

true .

The remaining three equalities are simple onsequenes of the properties of onverse,

pers and oreexives.

✷

The following orollary of lemma 179 proves to be ruial later:

Lemma 180 For all relations R ,

(∆R)≺ = R≺ ≡ (∆R)< = R< .

Dually,

(∆R)≻ = R≻ ≡ (∆R)> = R> .

Proof The proof is by mutual impliation:

(∆R)< = R<

⇒ { lemma 179 and Leibniz }

(∆R)≺ = R< ◦R≺

= { dual of (36) }

(∆R)≺ = R≺

⇒ { Leibniz }

((∆R)≺)< = (R≺)<

= { dual of (36) with R :=∆R and R :=R }

(∆R)< = R< .

✷

12.3 Reduction to the Core

In this setion our goal is to prove that if J is an index of relation R then ∆J is an

index of ∆R . Instantiating de�nition 100 with J,R :=∆J,∆R the properties we have to

prove are as follows.

(a) ∆J⊆∆R ,
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(b) ∆R ◦∆J
∪
◦∆R = ∆R .

(c) (∆J)< ◦∆R ◦∆R
∪
◦ (∆J)< = (∆J)< ,

(d) (∆J)> ◦∆R
∪
◦∆R ◦ (∆J)> = (∆J)> .

Of these, the hardest to prove is (b). For properties (a), () and (d), all we need is

that J is an arbitrary index of R . For property (b), we use the fat that an index of

an arbitrary relation R is de�ned to be J◦R◦K where J is an index of R≺
and K is an

index of R≻
.

We begin with the easier properties.

Lemma 181 Suppose J is an index of R . Then

∆J⊆∆R .

Proof

∆J⊆∆R

= { de�nition 173 }

J∩ (J\J/J)∪ ⊆ R∩ (R\R/R)∪

= { domains }

J ∩ J< ◦ (J\J/J)∪ ◦ J> ⊆ R∩ (R\R/R)∪

⇐ { J is an index of R , so J⊆R ; monotoniity }

J< ◦ (J\J/J)∪ ◦ J> ⊆ (R\R/R)∪

= { onverse }

J> ◦ J\J/J ◦ J< ⊆ R\R/R

= { fators }

R ◦ J> ◦ J\J/J ◦ J< ◦R ⊆ R

= { J is an index of R , de�nition 78(b); per domains }

R≺ ◦ J ◦R≻ ◦ J> ◦ J\J/J ◦ J< ◦R≺ ◦ J ◦R≻ ⊆ R≺ ◦R ◦R≻

⇐ { monotoniity }

J ◦R≻ ◦ J> ◦ J\J/J ◦ J< ◦R≺ ◦ J ⊆ R .

Continuing with the left side of the inlusion:
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J ◦R≻ ◦ J> ◦ J\J/J ◦ J< ◦R≺ ◦ J

= { domains }

J ◦ J> ◦R≻ ◦ J> ◦ J\J/J ◦ J< ◦R≺ ◦ J< ◦ J

= { J is an index of R ; de�nition 78() and (d) }

J ◦ J> ◦ J\J/J ◦ J< ◦ J

⊆ { domains and anellation }

J

⊆ { J is an index of R ; de�nition 78(a) }

R .

✷

Lemma 182 Suppose J is an index of R . Then

(∆J)< ◦ ∆R ◦ ∆R
∪

◦ (∆J)< = (∆J)< .

Dually,

(∆J)> ◦ ∆R
∪

◦ ∆R ◦ (∆J)> = (∆J)> .

Proof

(∆J)< ◦ ∆R ◦ ∆R
∪

◦ (∆J)<

= { ∆R is a difuntion, theorem 49 }

(∆J)< ◦ (∆R)≺ ◦ (∆J)<

= { lemma 179 (and symmetry) }

(∆J)< ◦ (∆R)< ◦R≺ ◦ (∆R)< ◦ (∆J)<

= { by lemma 181 and monotoniity, (∆J)<⊆ (∆R)< }

(∆J)< ◦R≺ ◦ (∆J)<

= { (∆J)<⊆ J< (sine ∆J⊆ J ) }

(∆J)< ◦ J< ◦R≺ ◦ J< ◦ (∆J)<

= { J is an index of R , de�nition 78() }

(∆J)< ◦ J< ◦ (∆J)<

= { (∆J)<⊆ J< (sine ∆J⊆ J ) }

(∆J)< .
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✷

In order to prove (b), we prove a more general theorem on ores. First, a lemma:

Lemma 183 Suppose R , C , λ and ρ are as in de�nition 90. Then

R> ◦R\R/R ◦R< = ρ
∪

◦C\C/C ◦λ .

Proof

R> ◦R\R/R ◦R<

= { (36) }

(R≻)> ◦R\R/R ◦ (R≺)<

= { R≺ = λ
∪
◦λ , R≻ = ρ

∪
◦ρ , and domains }

ρ> ◦R\R/R ◦λ>

= { lemma 92 }

ρ> ◦ (λ∪
◦C ◦ρ)\(λ∪

◦C ◦ρ)/(λ∪
◦C ◦ρ) ◦λ>

= { lemma 44 with f,g,U,V,W :=ρ,λ,C,C,C }

ρ
∪
◦ (λ< ◦C)\C/(C ◦ρ<) ◦λ

= { C = λ ◦R ◦ρ
∪

; so λ< ◦C = C = C ◦ρ< }

ρ
∪
◦C\C/C ◦λ .

✷

Theorem 184 Suppose R , C , λ and ρ are as in de�nition 90. Then

∆R = λ
∪

◦∆C ◦ρ ∧ ∆C = λ ◦∆R ◦ρ
∪

.

In words, if λ and ρ witness that C is a ore of R , then λ and ρ witness that ∆C is

a ore of ∆R .

Proof

∆R

= { de�nition }

R∩ (R\R/R)∪

= { domains and onverse }

R ∩ (R> ◦R\R/R ◦R<)∪
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= { lemma 183 }

R ∩ (ρ∪
◦C\C/C ◦λ)∪

= { lemma 92 }

λ
∪
◦C ◦ρ ∩ (ρ∪

◦C\C/C ◦λ)∪

= { distributivity of onverse and funtional relations }

λ
∪
◦ (C∩ (C\C/C)∪) ◦ρ

= { de�nition 173 }

λ
∪
◦∆C ◦ρ .

Hene

λ ◦∆R ◦ρ
∪

= { above }

λ ◦λ
∪
◦∆C ◦ρ ◦ρ

∪

= { λ and ρ are funtional }

λ< ◦∆C ◦ρ<

= { ∆C⊆C ; so (∆C)< ⊆ C<
and (∆C)> ⊆ C>

lemma 94 and domains }

∆C .

✷

We are now in a position to prove the �nal property (b) above.

Lemma 185 Suppose J is an index of R . Then

∆R ◦∆J
∪
◦∆R = ∆R .

Proof We begin by noting that theorem 184 applies with C instantiated to J and λ

and ρ de�ned by λ = J< ◦R≺
and ρ = J> ◦R≻

. This is beause J is a ore of R : see

theorem 91. So

∆R ◦∆J
∪
◦∆R

= { theorem 184 with C,λ,ρ := J , J< ◦R≺ , J> ◦R≻ }

∆R ◦ (λ ◦ ∆R ◦ ρ
∪)∪ ◦ ∆R

= { onverse }

∆R ◦ ρ ◦ ∆R
∪

◦ λ
∪

◦ ∆R
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= { de�nition of ρ and λ , (J< ◦R≺)∪ = R≺ ◦ J< }

∆R ◦ J> ◦R≻ ◦ ∆R
∪

◦ R≺ ◦ J< ◦ ∆R

= { per domains }

∆R ◦ (∆R)≻ ◦ J> ◦R≻ ◦ ∆R
∪

◦ R≺ ◦ J< ◦ (∆R)≺ ◦ ∆R

= { lemma 179 }

∆R ◦ (∆R)> ◦R≻ ◦ J> ◦R≻ ◦ ∆R
∪

◦ R≺ ◦ J< ◦R≺ ◦ (∆R)< ◦ ∆R

= { lemma 87 }

∆R ◦ (∆R)> ◦R≻ ◦ ∆R
∪

◦ R≺ ◦ (∆R)< ◦ ∆R

= { lemma 179 }

∆R ◦ (∆R)≻ ◦ ∆R
∪

◦ (∆R)≺ ◦ ∆R

= { per domains }

∆R ◦ ∆R
∪

◦ ∆R

= { ∆R is difuntional, theorem 49 }

∆R .

✷

Putting all the lemmas together, we have:

Theorem 186 Suppose J is an index of R . Then ∆J is an index of ∆R .

Proof Lemmas 181, 182 and 185 ombined with de�nition 100 (instantiated with

J,R :=∆J,∆R ).

✷

We onlude with a beautiful theorem.

Theorem 187 Suppose J is an index of R . Then

∆J = J< ◦∆R ◦ J> ∧ ∆R = R≺ ◦∆J ◦R≻ .

Proof We �rst prove, by mutual impliation, that the two equations are equivalent.

Assume that

∆R = R≺ ◦∆J ◦R≻ .

Then,

J< ◦∆R ◦ J>

= { assumption }



113

J< ◦R≺ ◦∆J ◦R≻ ◦ J>

= { ∆J⊆ J , so (∆J)<⊆ J< and (∆J)>⊆ J> ; domains }

J< ◦R≺ ◦ J< ◦∆J ◦ J> ◦R≻ ◦ J>

= { J is an index of R , de�nition 78() and (d) }

J< ◦∆J ◦ J>

= { reverse of middle step }

∆J .

Conversely, assume

∆J = J< ◦∆R ◦ J> .

Then,

R≺ ◦∆J ◦R≻

= { assumption }

R≺ ◦ J< ◦∆R ◦ J> ◦R≻

= { lemma 179 }

R≺ ◦ J< ◦ (∆R)< ◦R≺ ◦∆R ◦R≻ ◦ (∆R)> ◦ J> ◦R≻

= { lemma 181 and domains }

R≺ ◦ J< ◦R≺ ◦∆R ◦R≻ ◦ J> ◦R≻

= { de�nition 78() and 78(d) }

R≺ ◦∆R ◦R≻

= { lemma 179 and domains }

∆R .

Combining the two alulations, the two equations are equivalent and, therefore, it suf-

�es to prove just one of them

4

. We prove the seond by mutual inlusion:

∆R

= { ∆R is difuntional }

∆R ◦∆R
∪
◦∆R

4

It is not neessary to prove the equivalene of the two statements in order to prove the theorem; we

ould have omitted the seond alulation. But some redundany in proofs enhanes their reliability.
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= { lemma 185, onverse }

∆R ◦∆R
∪
◦∆J ◦∆R

∪
◦∆R

= { ∆R is difuntional, theorem 49(iv) and (vi) }

(∆R)≺ ◦∆J ◦ (∆R)≻

= { lemma 179 }

(∆R)< ◦R≺ ◦∆J ◦R≻ ◦ (∆R)>

⊆ { domains are oreexive }

R≺ ◦∆J ◦R≻

⊆ { lemma 181 and monotoniity }

R≺ ◦∆R ◦R≻

= { lemma 179, domains }

∆R .

✷

12.4 Non-Redundant Polar Coverings

We have shown in theorem 166 how to onstrut an injetive polar overing of a given

relation R . Now we onsider irumstanes in whih the overing is non-redundant. In

the ase that R is difuntional, it is straightforward to show that the overing onstruted

in theorem 166 is non-redundant and is its own de�niens. (We omit the proof beause

it is a speial ase of theorem 188.) This suggests that, in general, a overing of the

diagonal of a relation R an be used as the de�niens of a overing of R . This, however,

is not the ase: see example 195. It is true so long as the diagonal is suÆiently large.

Spei�ally:

Theorem 188 Suppose R is a relation and suppose (∆R)>=R>
. Suppose J is an

index of R≻
. Then the funtion D de�ned by

D = 〈b : b⊆ J : ∆R ◦b ◦∆R\∆R〉

is an injetive, polar overing of ∆R . Moreover, if (∆R)>=R>
, for all points b and b ′

suh that b⊆ J and b ′⊆ J ,

b 6= b ′ ≡ (∆R ◦b ◦∆R\∆R)< ◦ (∆R ◦b ′
◦∆R\∆R)< = ⊥⊥

and

b 6= b ′ ≡ (∆R ◦b ◦∆R\∆R)> ◦ (∆R ◦b ′
◦∆R\∆R)> = ⊥⊥ .
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It follows that, if (∆R)>=R>
, D is a ompletely disjoint, injetive, polar overing of

∆R .

Proof That D is an injetive overing of ∆R is an appliation of theorem 166 with

R :=∆R : it suÆes to note that the assumption (∆R)>=R>
is equivalent to the assump-

tion (∆R)≻=R≻
, by lemma 180, and so J is an index of (∆R)≻ .

We use lemma 162 to show that D is ompletely disjoint. First, the elements are

non-empty beause D is a polar overing. That is,

〈∀b : b⊆ J : ∆R ◦b ◦∆R\∆R 6= ⊥⊥〉 .(189)

For the seond proof obligation (see lemma 162), assume that b 6= b ′
. We begin by

noting that we an exploit (52) to rewrite the de�nition of D . Spei�ally,

∆R ◦b ◦∆R\∆R

= { b⊆ J⊆ (∆R)> }

∆R ◦b ◦ (∆R)> ◦∆R\∆R

= { ∆R is difuntional, (52) }

∆R ◦b ◦ (∆R)≻ .

That is,

D = 〈b : b⊆ J : ∆R ◦b ◦ (∆R)≻〉 .(190)

We use this de�ntion of D to prove that its elements are ompletely disjoint. First, the

left domains. We have, for all points b and b ′
suh that b⊆ J and b ′⊆ J ,

∆R ◦b ◦ (∆R)≻ ◦ (∆R ◦b ′
◦ (∆R)≻)∪

= { onverse, (∆R)≻ is a per, b ′
is oreexive }

∆R ◦b ◦ (∆R)≻ ◦b ′
◦∆R

∪

= { b⊆ J and b ′⊆ J , b , b ′
and J are oreexive }

∆R ◦b ◦ J ◦ (∆R)≻ ◦ J ◦b ′
◦∆R

∪

= { J is an index of (∆R)≻ , lemma 104 with R :=(∆R)≻ }

∆R ◦b ◦ J ◦b ′
◦∆R

∪

= { b⊆ J and b ′⊆ J , b , b ′
and J are oreexive }

∆R ◦b ◦b ′
◦∆R

∪

= { assumption: b 6= b ′
, (127) }

⊥⊥ .
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That is,

〈

∀b,b ′ : b⊆ J ∧ b 6=b ′ : (∆R ◦b ◦ (∆R)≻) ◦ (∆R ◦b ′
◦ (∆R)≻)

∪

= ⊥⊥
〉

.(191)

The alulation for the right domains is similar. We have:

(∆R ◦b ◦ (∆R)≻)∪ ◦ (∆R ◦b ′
◦ (∆R)≻)

= { onverse }

(∆R)≻ ◦b ◦∆R
∪
◦∆R ◦b ′

◦ (∆R)≻

= { theorem 49 }

(∆R)≻ ◦b ◦ (∆R)≻ ◦b ′
◦ (∆R)≻

= { b ◦ (∆R)≻ ◦b ′ = b ◦b ′
(see last alulation) }

(∆R)≻ ◦b ◦b ′
◦ (∆R)≻

= { assumption: b 6=b ′
, (127) }

⊥⊥ .

That is, applying lemma 161,

〈

∀b,b ′ : b⊆ J ∧ b 6=b ′ : (∆R ◦b ◦ (∆R)≻)
∪

◦ (∆R ◦b ′
◦ (∆R)≻) = ⊥⊥

〉

.(192)

The ombination of (189), (191) and (192) together with lemma 162 establishes that the

elements of D are ompletely disjoint.

✷

It is now easy to see that D is a de�niens of the injetive polar overing of R de�ned

in theorem 166:

Theorem 193 Suppose R is a relation suh that (∆R)>=R>
. Suppose also that J is

a oreexive index of R≻
. Then the indexed bag R of retangles de�ned by

R = 〈b : b⊆ J : R ◦b ◦R\R〉

is a non-redundant, injetive, polar overing of R . (In partiular, R is an indexed set.)

A de�niens of the overing is the indexed set D de�ned by

D = 〈b : b⊆ J : ∆R ◦b ◦∆R\∆R〉 .

Moreover, by theorem 188, D is a overing of ∆R .

Proof Theorem 166 shows that R is an injetive, polar overing of R. It remains to

show that it is non-redundant as witnessed by the funtion D .

We must �rst prove that, for all points b suh that b⊆ J , D.b⊆R.b . To this end,

we use (190) as de�nition of D . Assume b is a point suh that b⊆ J . Then
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D.b⊆R.b

= { (190) and de�nition of R }

∆R ◦b ◦ (∆R)≻ ⊆ R ◦b ◦R\R

⇐ { ∆R⊆R , monotoniity }

(∆R)≻⊆R\R

= { fators }

R ◦ (∆R)≻ ⊆ R

= { assumption: (∆R)>=R>
; so, by lemma 180, (∆R)≻=R≻ }

R ◦R≻ ⊆ R

= { per domains }

true .

That the elements of D form a ompletely disjoint set of retangles was shown in theorem

188. It remains to show that D \de�nes" R . We have, for all points b and b ′
suh

that b⊆ J and b ′⊆ J ,

R.b = R.b ′

= { R is injetive (theorem 166) }

b = b ′

= { D is injetive (theorem 188) }

D.b = D.b ′ .

✷

Example 194

Fig. 7 pitures a small example of the theorems in this setion. Fig. 7(a) depits a

(ore) relation R of type {α,β,γ}∼{A,B} ; other parts of the �gure depit the result of

applying di�erent funtions to the relation R . (Heterogeneous relations are depited

as bipartite graphs whereas homogeneous relations are depited as direted graphs.)

Spei�ally, these are as follows.

(a) R , (b) ∆R ,

() R\R , (d) R/R ,

(e) R ◦A ◦R\R , (f) R ◦B ◦R\R ,
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α β γ

BA

α γ

BA

βα β γ

BA

α β γ

BA

α β γ

BA

A B α β γ

α β γ

BA

α β γ

BA

α β γ

BA

(a) (b)

(e) (f)

(g) (h)

(i) (j) (k)

(c) (d)

α β γ

BA

Figure 7: A Small Example
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(g) ∆R ◦A ◦R≻
, (h) ∆R ◦B ◦R≻

,

(i) R/R ◦α ◦R , (j) R/R ◦β ◦R , (k) R/R ◦γ ◦R .

We have hosen to depit the relation as a graph (rather than a boolean matrix)

beause |for very small examples suh as this| it is muh easier for a human being to

perform the neessary alulations by manipulating the graphs. For example, omputing

the omposition of two relations is exeuted by hasing edges.

The example has been hosen deliberately to illustrate a number of aspets simulta-

neously. Note partiularly that, for the relation depited, (∆R)>=R>
but (∆R)< 6=R<

.

This means that theorem 193 is appliable but its dual is not.

Considering the appliation of theorem 166, note that the ombination of �gs. 7(e)

and 7(f) overs the relation R ; also the relation depited by 7(g) uniquely identi�es

the retangle R ◦A ◦R\R shown in �g. 7(e) whilst 7(h) uniquely identi�es the retangle

R ◦A ◦R\R shown in �g. 7(f). In ontrast, �gs. 7(i), (j) and (k) depit the relations

R/R ◦α ◦R , R/R ◦β ◦R and R/R ◦γ ◦R but none of these is identi�ed by any subretangle:

the retangles depited by �gs. 7(i) and (k) are disjoint but both have a non-empty

intersetion with the retangle depited by �g. 7(j).

✷

Example 194 is an example of a relation R suh that (∆R)>=R>
but (∆R)< 6=R<

. It

is thus the ase that, for this example,

R = 〈∪b : b⊆ (∆R)> : R ◦b ◦R\R〉 .

(Note the range restrition on the dummy b .) Curiously, in spite of the fat that

(∆R)< 6=R<
, it is also the ase that

R = 〈∪a : a⊆ (∆R)< : R/R ◦a ◦R〉 .

(Again, note the range restrition on the dummy a . To hek the validity of the equation,

it suÆes to observe that the relation R is the union of the relations depited by �gs. 7(i)

and (k).) This is also a non-redundant polar overing of R . One might thus onjeture

that, in all ases, the diagonal ∆R is the key to �nding a non-redundant polar overing

of a given relation R . However, this is not always the ase, as evidened by the following

example.

Example 195

The top diagram of �g. 8 pitures a relation R of type {A,B,C}∼{α,β,γ} suh that

∆R is the empty relation. The example is a simpli�ation of the example on p.161 of

[KGJ00℄.
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γ

B C

B

α

A C

β

A

γ

B C

(a)  Relation 

(b) Non−redundant covering

α β

A

(c) A Definiens

B

α β

A

γ

C

Figure 8: Empty Diagonal and Non-Redundant Covering

The three omponents of the polar overing predited by theorem 166 are depited

in the seond row. (The index set of the overing is {α,β,γ} .) Note that the overing

is non-redundant: the third row pitures a funtion that satis�es the de�nition of a

de�niens of the overing. This ontradits [KGJ00, theorem 1,p.159℄: eah of the edges

in this third row is what [KGJ00℄ alls an \isolated point" in a \maximal retangle" but

none is a \point" in the diagonal.

✷

13 Block-Ordered Relations

In general, dividing a subset of a set A into bloks is formulated by speifying a fun-

tional relation f , say, with soure

5

the set A ; elements a0 and a1 are in the same

blok equivales f.a0 and f.a1 are both de�ned and f.a0= f.a1 . In mathematial ter-

minology, a funtional relation f de�nes the partial equivalene relation f
∪
◦ f and the

\bloks" are the equivalene lasses of f
∪
◦ f . (Partiality means that some elements may

not be in an equivalene lass.)

5

In the terminology we use, a relation of type A∼B has target A and soure B .
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Given funtional relations f and g with soures A and B , respetively, and equal

left domains, relation R of type A∼B is said to be blok-strutured by f and g if there

is a relation S suh that R = f∪ ◦S ◦g . Informally, whether or not a and b are related

by R depends entirely on the \blok" (f.a , g.b) to whih they belong. Note that it is

not required that f and g be total funtions: it suÆes that f>=R<
and g>=R>

. The

type of S is C∼C where C inludes {a: a ◦ f> = a: f.a} (equally {b: b ◦ f> = b: g.b} ).

Definition 196 (Block-Ordered Relation) Suppose T is a relation of type C∼C ,

f is a relation of type C∼A and g is a relation of type C∼B . Suppose further that T

is a provisional ordering, i.e. that

T ∩T
∪

⊆ I ∧ T = (T ∩T
∪

) ◦T ◦ (T ∩ T
∪

) ∧ T ◦T ⊆ T .(197)

Suppose also that f and g are funtional and onto the domain of T . That is, suppose

f ◦ f
∪

= f< = T ∩T
∪

= g< = g ◦g
∪

.(198)

Then we say that the relation f
∪
◦ T ◦g is a blok-ordered relation. A relation R of

type A∼B is said to be blok-ordered by f , g and T if R = f∪ ◦T ◦g and f
∪
◦T ◦g is

a blok-ordered relation.

✷

The arhetypial example of a blok-ordered relation is a preorder. Informally, if R

is a preorder, its symmetri losure R∩R∪

is an equivalene relation, and the relation

R de�nes a partial ordering on the equivalene lasses. Equivalently, if a representative

element is hosen for eah equivalene lass, the relation R is a partial ordering on the

representatives. Theorem 201 makes this preise.

Assume that T is a provisional preorder. That is, by de�nition 53 and lemma 57,

T< = T> ∧ T< ⊆ T ∧ T> ⊆ T ∧ T ◦T ⊆ T .(199)

Also, by lemma 59,

T ∩T
∪

= T≺ = T≻ .(200)

Theorem 201 Suppose T is a provisional preorder and suppose J is a (oreexive)

index of T≺
. Then J◦T ◦J is an index of T and is a provisional ordering. Hene, T is a

blok-ordered relation.

Proof That J◦T ◦J is an index of T is the ombination of (200) and theorem 107. So,

it remains to show that J◦T ◦J is a provisional ordering. That is, we must show that

J◦T ◦J ∩ (J◦T ◦J)∪ ⊆ I .
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J◦T ◦J ∩ (J◦T ◦J)∪

= { J is oreexive, distributivity }

J◦(T ∩T∪)◦J

⊆ { (200) }

J ◦T≺ ◦ J

= { J is an index of T≺
, de�nition 105(b) with P :=T≺ }

J

⊆ { J is oreexive }

I .

✷

Identifying a blok-ordering of a relation |if it exists| is important for eÆieny.

Although a relation is de�ned to be a set of pairs, relations |even relations on �nite

sets| are rarely stored as suh; instead some base set of pairs is stored and an algo-

rithm used to generate, on demand, additional information about the relation. This is

partiularly so of ordering relations. For example, a test m<n on integers m and n

in a omputer program is never implemented as a table lookup; instead an algorithm

is used to infer from the basi relations 0<1 together with the internal representation

of m and n what the value of the test is. In the ase of blok-strutured relations,

funtional relations f and g de�ne partial equivalene relations f
∪
◦ f and g

∪
◦g on

their respetive soures. (The relations f
∪
◦ f and g

∪
◦g are partial beause f and g are

not required to be total.) Combining the funtional relations with an ordering relation

on their (ommon) target is an e�etive way of implementing a relation (assuming the

ordering relation is also implemented e�etively).

Example 202 Suppose G is the edge relation of a �nite graph. The relation G∗
is, of

ourse, a preorder and so is blok-ordered. The blok-ordering of G∗
given by theorem

201 is, however, not very useful. For pratial purposes a blok-ordering onstruted

from G (rather than G∗
) is preferable. Here we outline how this is done.

Reall from example 175, that the diagonal ∆(G∗) is the relation G∗∩ (G∪)∗ and that

this is an equivalene relation on the nodes of G , whereby the equivalene lasses are

the strongly onneted omponents of G . Let N denote the nodes of G and C denote

the set of strongly onneted omponents of G. By theorem 109, there is a funtion sc

of type C←N suh that

G∗∩ (G
∪

)∗ = sc
∪

◦ sc .(203)

The relation A de�ned by

sc ◦G ◦ sc
∪

∩ ¬IC
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is a homogeneous relation on the strongly onneted omponents of G , i.e. a relation of

type C∼C . Informally, it is a graph obtained from the graph G by oalesing the nodes

in a strongly onneted omponent of G into a single node whilst retaining the edges

of G that onnet nodes in distint strongly onneted omponents

6

. A fundamental

theorem is that

G∗ = sc
∪

◦A∗
◦ sc .(204)

Moreover, A is ayli. That is,

IC ∩ A+ = ⊥⊥ .(205)

(See [BDGv22, Ba22℄ for the details of the proof of (204) and (205). In fat the theorem

is valid for all relations G ; �niteness is not required.)

The relation A∗
is, of ourse, transitive. It is also reexive; ombined with its

ayliity, it follows that

A∗∩ (A∗)
∪

= IC .(206)

That is, A∗
is a (total) provisional ordering on C. The onlusion is that G∗

is blok-

ordered by sc , sc and A∗
.

Informally, a �nite graph an always be deomposed into its strongly onneted om-

ponents together with an ayli graph onneting the omponents.

Although the informal interpretation of this theorem is well-known, the formal proof

is non-trivial. Although not formulated in the same way, it is essentially the \transitive

redution" of an arbitrary (not neessarily ayli) graph formulated by Aho, Garey and

Ullman [AGU72, Theorem 2℄.

The deomposition (204) is (impliitly) exploited when omputing the inverse A−1

of a real matrix A in order to minimise storage requirements: using an elimination teh-

nique, a so-alled \produt form" is omputed for eah strongly onneted omponent,

whilst the proess of \forward substitution" is applied to the ayli-graph struture.

✷

It is important to note the very strit requirement (198) on the funtionals f and g .

Were this requirement to be omitted (retaining only that f and g are funtional relations

into |not onto| the domain of T ), there would be no guarantee of non-redundany.

As we shall see, our de�nition of blok-ordering does guarantee the existene of a non-

redundant polar overing (theorem 228) but not vie-versa (orollary 231). This suggests

that the requirement may be too strong.

Theorem 207 makes preise the statement that blok orderings |where they exist|

are unique \up to isomorphism".

6

Although we don't go into details, for any funtion f of appropriate type, the graph f ◦G ◦ f
∪

is

\pathwise homomorphi" [MN67℄ to G .
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Theorem 207 Suppose T is a provisional ordering. That is, suppose

T ∩T
∪

⊆ I ∧ T = (T ∩T
∪

) ◦T ◦ (T ∩ T
∪

) ∧ T ◦T ⊆ T .

Suppose also that f and g are funtional and onto the domain of T . That is, suppose

f ◦ f
∪

= f< = T ∩T
∪

= g< = g ◦g
∪

.

Suppose further

7

that S , h and k satisfy the same properties as T , f and g (respe-

tively) and that

f
∪

◦T ◦g = h
∪

◦S ◦k .(208)

Then

f>=h> ∧ g>=k> ,(209)

f
∪

◦g = h
∪

◦k ,(210)

f
∪

◦T
∪

◦g = h
∪

◦S
∪

◦k , and(211)

f ◦h
∪

= g ◦k
∪

.(212)

Also, letting φ denote f ◦h
∪

(equally, by (212), g ◦k
∪

),

φ ◦φ
∪

= T ∩ T
∪

∧ φ
∪

◦φ = S∩S
∪

∧ φ◦T =S◦φ .(213)

In words, φ is an order isomorphism of the domains of T and S .

Proof In ombination with the assumption (208), properties (209), (211) and (210) are

immediate from (222), (223) and (224), respetively.

Proof of (212) is a step on the way to proving (213). From symmetry onsiderations,

it is an obvious �rst step.

f ◦h
∪

= { assumption: k ◦k
∪ = h< }

f ◦h
∪
◦k ◦k

∪

= { (210) }

f ◦ f
∪
◦g ◦k

∪

= { assumption: f ◦ f
∪ = g< }

g ◦k
∪

.

7

The types of T and S may be di�erent. The types of f and h , and of g and k will then also be

di�erent. As in lemma 221, the requirement is that the types are ompatible with the type restritions on

the operators in all assumed properties. The symbol \ I " in (213) is overloaded: if the type of T is A∼A

and the type of S is B∼B , φ ◦φ
∪

has type A∼A and φ
∪

◦φ has type B∼B .
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Now,

φ ◦φ
∪

= { de�nition of φ , onverse }

f ◦h
∪
◦h ◦ f

∪

= { (212) }

g ◦k∪
◦h ◦ f∪

= { (210) and onverse }

g ◦g
∪
◦ f ◦ f

∪

= { assumption: f ◦ f
∪ = T ∩T∪ = g ◦g

∪

}

T ∩T∪

.

Symmetrially, φ
∪
◦φ = T ∩ T∪

. Finally,

T ◦φ

= { de�nition of φ }

T ◦ f ◦h
∪

= { assumptions: f ◦ f
∪ = T ∩ T∪ = g ◦g

∪

T = (T ∩T∪) ◦T ◦ (T ∩ T∪) }

f ◦ f
∪
◦T ◦g ◦g

∪
◦ f ◦h

∪

= { assumption: f
∪
◦T ◦g = h

∪
◦S ◦k , (210) and onverse }

f ◦h
∪
◦S ◦k ◦k

∪
◦h ◦h

∪

= { assumption: h ◦h
∪ = S∩S∪ = k ◦k

∪

}

f ◦h
∪
◦S

= { de�nition of φ }

φ◦S .

✷

13.1 Pair Algebras and Galois Connections

In order to �nd lots of examples of blok-ordered relations one need look no further than

the theory of Galois onnetions (whih are, of ourse, ubiquitous). In this setion, we

briey review the notion of a \pair algebra" |due to Hartmanis and Stearns [HS64,

HS66℄| and its relation to Galois onnetions.
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Hartmanis and Stearns studied a partiular pratial problem: the so-alled \state

assignment problem". This is the problem of how to enode the states and inputs of a

sequential mahine in suh a way that state transitions an be implemented eonomially

using logi iruits. However, as they made lear in the prefae of their book [HS66℄,

their ontribution was to \information siene" in general:

It should be stressed, however, that although many struture theory results

desribe possible physial realizations of mahines, the theory itself is in-

dependent of the partiular physial omponents of tehnology used in the

realization.

. . .

The mathematial foundations of this struture theory rest on an algebraiza-

tion of the onept of \information" in a mahine and supply the algebrai

formalism neessary to study problems about the ow of this information.

Hartmanis and Stearns limited their analysis to �nite, omplete posets, and their

analysis was less general than is possible. This work was extended in [Ba98℄ to non-

�nite posets and the urrent setion is a short extrat.

A Galois onnetion involves two posets (A,⊑) and (B ,� ) and two funtions,

F∈A←B and G∈B←A . These four omponents together form a Galois onnetion

i� for all b∈B and a∈A

F.b⊑a ≡ b�G.a .(214)

We refer to F as the lower adjoint and to G as the upper adjoint.

A Galois onnetion is thus a onnetion between two funtions between posets.

Typial aounts of the properties of Galois onnetions (for e.g. [GHK

+
80℄) fous on

the properties of these funtions. For example, given a funtion F , one may ask whether

F is a lower adjoint in a Galois onnetion. The question posed by Hartmanis and Stearns

was, however, rather di�erent.

To motivate their question, note that the statement F.b⊑a de�nes a relation be-

tween B and A . So too does b�G.a . The existene of a Galois onnetion states

that these two relations are equal. A natural question is therefore: under whih ondi-

tions does an arbitrary (binary) relation between two posets de�ne a Galois onnetion

between the sets?

Exploring the question in more detail leads to two separate questions. The �rst is:

suppose R is a relation between posets (A,⊑) and (B ,� ). What is a neessary and

suÆient ondition that there exist a funtion F suh that

(a, b)∈R ≡ F.b⊑a ?
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The seond is the dual of the �rst: given relation R , what is a neessary and suÆient

ondition that there exist a funtion G suh that

(a, b)∈R ≡ b�G.a ?

The onjuntion of these two onditions is a neessary and suÆient ondition for a

relation R to de�ne a Galois onnetion. Suh a relation is alled a pair algebra .

Example 215 It is easy to demonstrate that the two questions are separate. To

this end, �g. 9 depits two posets and a relation between them. The posets are {α,β}

and {A,B} ; both are ordered lexiographially: the reexive-transitive redution of the

lexiographi ordering is depited by the direted edges. The relation of type {α,β}∼{A,B}

is depited by the undireted edges.

α

β

A

B

Figure 9: A Relation on Two Posets

Let the relation be denoted by R . De�ne the funtion F of type {α,β}← {A,B} by

F.B=α and F.A=β . Then it is easy to hek that. for a∈{α,β} and b∈{A,B} ,

(a, b)∈R ≡ F.b⊑a .

(There are just four ases to be onsidered.) On the other hand, there is no funtion G

of type {A,B}← {α,β} suh that

(a, b)∈R ≡ b�G.a .

To hek that this is indeed the ase, it suÆes to hek that the assignment G.A=α

is invalid (beause α⊑α but (α,A) 6∈R ) and the assignment G.A=β is also invalid

(beause α⊑β but (α,A) 6∈R ).

✷

Example 216 A less arti�ial, general way to demonstrate that the two questions

are separate is to onsider the membership relation. Spei�ally, suppose S is a set.

Then the membership relation, denoted as usual by the |overloaded| symbol \∈ ", is
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a heterogeneous relation of type S ∼2S (where 2S denotes the type of subsets of S ).

Now, for all x of type S and X of type 2S ,

x∈X ≡ {x}⊆X .

The right side of this equation has the form F.b⊑a where F is the funtion that maps

an element into a singleton set and the ordering is the subset ordering. Also, its left side

has the form (a, b)∈R , where the relation R is the membership relation and a and

b are x and X , respetively. (This is where the overloading of notation an beome

onfusing, for whih our apologies!) It is, however, not possible to express x∈X in the

form x�G.X (exept in the trivial ases where S has ardinality at most one). We

leave the proof to the reader.

✷

Example 217 An example of a Galois onnetion is the de�nition of the eiling

funtion on real numbers: for all real numbers x , ⌈x⌉ is an integer suh that, for all

integers m ,

x≤m ≡ ⌈x⌉≤m .

To properly �t the de�nition of a Galois onnetion, it is neessary to make expliit

the impliit oerion from integers to real numbers in the left side of this equation.

Spei�ally, we have, for all real numbers x and integers m ,

x ≤IR real.m ≡ ⌈x⌉ ≤ZZ m

where real denotes the funtion that \oeres" an integer to a real, and ≤IR and ≤ZZ

denote the (homogeneous) at-most relations on, respetively, real numbers and integers.

If, however, we onsider the symbol \≤ " on the left side of the equation to denote the

heterogeneous at-most relation of type IR∼ZZ , the fat that

x≤m ≡ ⌈x⌉ ≤ZZ m

gives a representation of the (heterogeneous) \≤ " relation of type IR∼ZZ as a blok-

ordered relation: referring to de�nition 196, the provisional ordering is ≤ZZ , f is the

eiling funtion and g is the identity funtion.

More interesting is if we take the ontrapositive. We have, for all real numbers x and

integers m ,

m<x ≡ m≤⌈x⌉−1 .

On the right of this equation is the (homogeneous) at-most relation on integers. On the

left is the (heterogeneous) less-than relation of type ZZ∼ IR . The equation demonstrates
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that this relation is blok-ordered; the \bloks" of real numbers being all the numbers

that have the same eiling. (The funtional f is the identity funtion, the funtional g

maps real number x to ⌈x⌉−1 and the provisional ordering is the ordering ≤ZZ .) The

example is interesting beause the (homogeneous) less-than relation on real numbers is

not blok-ordered. This is beause its diagonal is empty. See [Ba21℄ for details.

✷

Returning to the disussion immediately preeding example 215, the two separate

questions are eah of interest in their own right: a positive answer to either question

may predit that a given relation has a blok-ordering of a spei� form: in the ase

of the �rst question, where the funtional g in de�nition 196 is the identity funtion,

and, in the ase of the seond question, where the funtional f in de�nition 196 is the

identity funtion. In both ases, a further step is to hek the requirement on f and g :

in the �rst ase, one has to hek that the funtion F is surjetive and in the seond ase

that the funtion G is surjetive. (A Galois onnetion is said to be \perfet" if both F

and G are surjetive.) For example, the fat that

x≤m ≡ x ≤IR real.m

does not de�ne a blok-ordering beause the funtion real is not surjetive.

The relevant theory prediting exatly when the �rst of the two questions has a

positive answer is as follows. Suppose (B,⊑) is a omplete poset. Let ⊓ denote the

in�mum operator for B and suppose p is a prediate on B . Then we de�ne inf-

preserving by

p is inf-preserving ≡ 〈∀g :: p.(⊓g) ≡ 〈∀x :: p.(g.x)〉〉 .(218)

So, for a given a , the prediate 〈b:: (a, b)∈R〉 is inf-preserving equivales

〈∀g :: (a , ⊓g)∈R ≡ 〈∀x :: (a , g.x)∈R〉〉 .

Then we have:

Theorem 219 Suppose A is a set and (B,⊑) is a omplete poset. Suppose R⊆A×B

is a relation between the two sets. De�ne F by

F.a = 〈⊓b : (a, b)∈R : b〉 .(220)

Then the following two statements are equivalent.

� 〈∀a,b : a∈A∧b∈B : (a, b)∈R ≡ F.a⊑b〉 .

� For all a , the prediate 〈b:: (a, b)∈R〉 is inf-preserving.
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✷

The answer to the seond question is, of ourse, obtained by formulating the dual of

theorem 219.

In general, for most relations ourring in pratial information systems the answer

to the pair-algebra questions will be negative: the required inf- and sup-preserving prop-

erties just do not hold. However, a ommon way to de�ne a pair algebra is to extend a

given relation to a relation between sets in suh a way that the in�mum and supremum

preserving properties are automatially satis�ed. Hartmanis and Stearns' [HS64, HS66℄

solution to the state assignment problem was to onsider the lattie of partitions of a

given set; in so-alled \onept analysis", the tehnique is to extend a given relation to

a relation between retangles.

An important property of Galois onnetions is the (well-known) theorem we all the

\unity of opposites": if F and G are the adjoint funtions in a Galois onnetion of the

posets (A,⊑) and (B,� ), then there is an isomorphism between the posets (F.B , ⊑)

and (G.A ,� ). ( F.B denotes the \image" of the funtion F , and similarly for G.A .)

Knowledge of the unity-of-opposites theorem suggests theorem 207, whih expresses an

isomorphism between di�erent representations of blok-ordered relations.

13.2 Analogie Frappante

In this setion, we relate blok-orderings to diagonals. The main results are theorems 228

and 235. We have named theorem 235 the \analogie frappante" beause it generalises

Riguet's \analogie frappante" onneting \relation de Ferrers" to diagonals.

Lemma 221 Suppose T is a provisional ordering of type C∼C . That is, suppose

T ∩T
∪

⊆ IC ∧ T = (T ∩ T
∪

) ◦ T ◦ (T ∩T
∪

) ∧ T ◦T ⊆T .

Suppose also that f and g are funtional and onto the domain of T . That is, suppose8

that

f ◦ f
∪

= f< = T ∩T
∪

= g< = g ◦g
∪

.

Let R denote f
∪
◦T ◦g . Then

R< = f> ∧ R>=g> ,(222)

f
∪

◦T
∪

◦g = R< ◦ (R\R/R)
∪

◦R>
, and(223)

8

The ordering T must be homogeneous but f and g may be heterogeneous and of di�erent type, so

long as both have target C .
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f
∪

◦g = ∆R ,(224)

R< = (∆R)< ∧ R> = (∆R)> ,(225)

R≺ = ∆R ◦∆R
∪

= f
∪

◦ f ∧ R≻ = ∆R
∪

◦∆R = g
∪

◦g .(226)

Proof Property (222) is a straightforward appliation of domain alulus:

R>

= { de�nition: R = f∪ ◦ T ◦g }

(f∪ ◦T ◦g)>

= { domains (spei�ally, [ (U◦V)>=(U> ◦V)> ] and [ (U∪)>=U< ] ) }

(f< ◦T ◦g)>

= { assumption: T = f< ◦T ◦g<
(so T = f< ◦T ) }

(T ◦g)>

= { domains (spei�ally, [ (U◦V)>=(U> ◦V)> ] ) }

(T> ◦g)>

= { lemma 61 and assumption: T ∩T∪ = g< }

g> .

By a symmetri argument, (f∪ ◦T ◦g)< = f> .

Now we onsider (223). The raison d'être of (223) is that it expresses the left side as a

funtion of f
∪
◦T ◦g . In a pointwise alulation a natural step is to use indiret ordering.

In a point-free alulation, this orresponds to using fators. That is, we exploit lemma

58:

f
∪
◦T

∪
◦g

= { assumption: T is a provisional ordering

lemmas 55, 59 and 58 }

f
∪

◦ (T ∩ T∪) ◦ T
∪

\ T
∪

/ T
∪

◦ (T ∩T∪) ◦ g

= { assumption: f< = T ∩T∪ = g< }

f
∪

◦ T
∪

\ T
∪

/ T
∪

◦ g

= { lemma 44 and assumption: T = f< ◦T ◦g< }

f> ◦ (g∪
◦ T

∪
◦ f) \ (g∪

◦ T
∪
◦ f) / (g∪

◦T
∪
◦ f) ◦ g>

= { (222) and de�nition of R }
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R< ◦ R
∪

\R
∪

/R
∪

◦ R>

= { fators }

R< ◦ (R\R/R)∪ ◦R> .

Note the use of lemma 44. The disovery of this lemma is driven by the goal of the

alulation.

The pointwise interpretation of f∪ ◦g is a relation expressing equality between values

of f and g . This suggests that, in order to prove (224), we begin by exploiting the

anti-symmetry of T :

f
∪
◦g

= { f< = T ∩ T∪ = g<
and domains }

f
∪
◦ (T ∩ T∪) ◦g

= { distributivity (valid beause f and g are funtional) }

f
∪
◦T ◦g ∩ f

∪
◦T

∪
◦g

= { de�nition of R and (223) }

f∪ ◦T ◦g ∩ f> ◦ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦T ◦g))∪ ◦g>

= { (227) (see below) }

f> ◦ f
∪
◦T ◦g ◦g> ∩ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦ T ◦g))∪

= { domains (spei�ally, f> ◦ f
∪ = f∪ and g ◦g> = g ) }

f
∪
◦T ◦g ∩ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦ T ◦g))∪

= { de�nition of R and ∆R }

∆R .

A ruial step in the above alulation is the use of the property

U ∩ p◦V◦q = p◦(U∩V)◦q = p◦U◦q ∩ V(227)

for all relations U and V and oreexive relations p and q . This is a frequently used

property of domain restrition.

The remaining equations (225) and (226) are straightforward. First

(∆R)<

= { (224) }

(f∪ ◦g)<
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= { domains and assumption: f< = g< }

f>

= { assumption: f< = T ∩ T∪

}

((T ∩T∪) ◦ f)>

= { domains and onverse }

(f∪ ◦ (T ∩ T∪))<

= { lemma 61 and domains }

(f∪ ◦T)<

= { domains and assumption: g< = T ∩T∪

and lemma 61 }

(f∪ ◦T ◦g)< .

That is (∆R)< = R<
. The dual equation (∆R)> = R>

is immediate from the fat that

(∆R)∪=∆(R∪) and properties of the domain operators. For the per domains, we have:

R≺

= { R< = (∆R)< and R> = (∆R)> (above); lemma 180 }

(∆R)≺

= { ∆R is difuntional, theorem 49 (with R :=∆R ) }

∆R ◦∆R
∪

= { lemma 221 and de�nition of ∆R }

f
∪
◦g ◦ (f∪ ◦g)∪

= { onverse and f< = g< = g ◦g
∪

}

f
∪
◦ f .

Again, the dual equation is immediate.

✷

Theorem 228 Suppose R = f∪ ◦T ◦g where f , g and T have the properties stated

in de�nition 196. Then the funtion R de�ned by

R =
〈

c : c ⊆ T ∩T
∪

: f
∪

◦T ◦ c ◦T ◦g
〉

(229)

is a non-redundant, injetive, polar overing of R , and the funtion D de�ned by

D =
〈

c : c ⊆ T ∩ T
∪

: f
∪

◦ c ◦g
〉

(230)
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is a de�niens of R suh that ∪D=∆R . That is, a blok-ordered relation has a non-

redundant, injetive, polar overing suh that the de�niens of the overing is a overing

of the diagonal of R .

Proof The theorem is a onsequene of lemma 221, theorem 193 and theorem 188.

Spei�ally, lemma 221 (in partiular (226) and (225)) states that the onditions required

to apply theorem 193 are met with ρ instantiated to g . Thus,

R =
〈

c : c⊆g< : R ◦g
∪

◦ c ◦g ◦R\R
〉

is a non-redundant, injetive polar overing of R . The de�nition of R is simpli�ed as

follows. First,

g ◦R\R

= { R = f∪ ◦T ◦g }

g ◦ (f∪ ◦T ◦g)\(f∪ ◦ T ◦g)

= { lemma 45 with R,S,f,g := T , T ◦g , f , g }

g ◦g
∪
◦T\(T ◦g)

= { g ◦g
∪ = g< }

g< ◦T\(T ◦g) .

So, for all c suh that c⊆g<
,

R ◦g
∪
◦ c ◦g ◦R\R

= { R overs R , so (R ◦g
∪
◦ c ◦g ◦R\R)>⊆R>

; R>=g>

(in preparation for lemma 43) }

R ◦g
∪
◦ c ◦g ◦R\R ◦g>

= { R = f∪ ◦T ◦g and g ◦R\R = g< ◦T\(T ◦g) (see above) }

f
∪
◦T ◦g ◦g

∪
◦ c ◦g< ◦T\(T ◦g) ◦g>

= { g ◦g
∪ = g<

, assumption: c⊆g<
, lemma 43 with R,f :=T,g }

f
∪
◦T ◦ c ◦T\T ◦g

= { T is a provisional ordering, T ∩T∪ = g<
,

lemma 57 }

f
∪
◦T ◦ c ◦T ◦g .
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Sine g< = T ∩T∪

by assumption, we have established (229).

Theorem 193 de�nes the de�niens of the overing as the indexed set D where

D =
〈

c : c⊆g< : ∆R ◦g
∪

◦ c ◦g ◦R≻

〉

.

But, for all c suh that c⊆g<
,

∆R ◦g
∪
◦ c ◦g ◦R≻

= { (226) and (224) }

f
∪
◦g ◦g

∪
◦ c ◦g ◦g

∪
◦g

= { g ◦g
∪ = g<

, assumption: c⊆g< }

f
∪
◦ c ◦g .

Using the assumption that g< = T ∩T∪

one again, we have established (230). That

∪D = f∪ ◦g = ∆R follows from f
∪
◦g = ∆R and the saturation axiom.

✷

Lemma 221 has as immediate orollary that the onverse of theorem 228 is invalid.

Corollary 231 There are relations that have a non-redundant polar overing but are

not blok-ordered.

Proof Examples 194 and 195 are both examples of �nite relations that have non-

redundant polar overings. Example 194 has the property that (∆R)< 6=R<
; however,

(∆R)>=R>
. Example 195 has an empty diagonal; that is, (∆R)< 6=R<

(and (∆R)> 6=R>
).

So by (the onverse of) lemma 221 (spei�ally, (225)), neither relation is blok-ordered.

✷

We now prove the onverse of lemma 221.

Lemma 232 A relation R is blok-ordered if R< = (∆R)< and R> = (∆R)> .

Proof Suppose R< = (∆R)< and R> = (∆R)> . Our task is to onstrut relations f , g

and T suh that

R = f
∪

◦ T ◦g ,

T ∩T
∪

⊆ I ∧ T = (T ∩T
∪

) ◦T ◦ (T ∩ T
∪

) ∧ T ◦T ⊆ T and

f ◦ f
∪

= f< = T ∩T
∪

= g< = g ◦g
∪

.

Sine ∆R is difuntional, theorem 111 is the obvious plae to start. Applying the

theorem, we an onstrut f and g suh that ∆R = f∪ ◦g and

∆R = f
∪

◦g ∧ f ◦ f
∪

= f< = g ◦g
∪

= g< .
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Using standard properties of the domain operators together with the assumption that

R< = (∆R)< and R> = (∆R)> , it follows that

R< = f> ∧ R> = g> .

It remains to onstrut the provisional ordering T . The appropriate onstrution is

suggested by lemma 221, in partiular (223). Spei�ally, we de�ne T by the equation

T = g ◦R\R/R ◦ f
∪

.(233)

The proof that R = f∪ ◦T ◦g is by mutual inlusion. First note that

f
∪

◦T ◦g = ∆R ◦R\R/R ◦∆R(234)

sine

f∪ ◦T ◦g

= { (233) }

f
∪
◦g ◦R\R/R ◦ f

∪
◦g

= { ∆R = f∪ ◦g }

∆R ◦R\R/R ◦∆R .

So

f
∪
◦T ◦g

⊆ { (234) and ∆R⊆R }

R ◦R\R/R ◦R

⊆ { anellation }

R .

Also,

R ⊆ f
∪
◦T ◦g

= { (234) }

R ⊆ ∆R ◦R\R/R ◦∆R

= { per domains: (33) }

R≺ ◦R ◦R≻ ⊆ ∆R ◦R\R/R ◦∆R

= { assumption: R< = (∆R)< and R> = (∆R)> , lemma 180 }
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(∆R)≺ ◦R ◦ (∆R)≻ ⊆ ∆R ◦R\R/R ◦∆R

= { ∆R is difuntional, theorem 49 (with R :=∆R ) }

∆R ◦∆R
∪
◦R ◦∆R

∪
◦∆R ⊆ ∆R ◦R\R/R ◦∆R

⇐ { monotoniity }

∆R
∪
◦R ◦∆R

∪ ⊆ R\R/R

⇐ { ∆R
∪⊆R\R/R , monotoniity }

R\R/R ◦R ◦R\R/R ⊆ R\R/R

= { fators }

R ◦R\R/R ◦R ◦R\R/R ◦R ⊆ R

= { anellation }

true .

Combining the two inlusions we onlude that indeed R = f∪ ◦ T ◦g .

We now establish the requirements on T . First,

T ∩T∪

= { de�nition and onverse }

g ◦R\R/R ◦ f
∪ ∩ f ◦ (R\R/R)∪ ◦g

∪

⊆ { modular law }

f ◦ (f∪ ◦g ◦R\R/R ◦ f
∪
◦g ∩ (R\R/R)∪) ◦g∪

= { ∆R = f∪ ◦g }

f ◦ (∆R ◦R\R/R ◦∆R ∩ (R\R/R)∪) ◦g∪

⊆ { ∆R⊆R , monotoniity and anellation }

f ◦ (R ∩ (R\R/R)∪) ◦g∪

= { ∆R = R ∩ (R\R/R)∪ }

f ◦∆R ◦g
∪

= { ∆R = f∪ ◦g }

f ◦ f
∪
◦g ◦g

∪

= { f ◦ f
∪ = f< = g ◦g

∪ = g< }

f< .

Thus T ∩ T∪ ⊆ f< . So T ∩T∪ ⊆ I . Now
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f< ⊆ T ∩T∪

= { in�ma and f< is oreexive }

f< ⊆ T

⇐ { domains }

f ◦ f
∪ ⊆ T

⇐ { de�nition of T and monotoniity }

f ⊆ g ◦R\R/R

⇐ { f< = g ◦g
∪

, domains and monotoniity }

g
∪
◦ f ⊆ R\R/R

= { f
∪
◦g = ∆R }

∆R
∪ ⊆ R\R/R

= { ∆R = R ∩ (R\R/R)∪ , onverse }

true .

So, by anti-symmetry we have established that T ∩T∪ = f< . Sine also f<=g<
, we

onlude from the de�nition of T and properties of domains that

T = (T ∩ T
∪

) ◦T ◦ (T ∩T
∪

) .

The �nal task is to show that T is transitive:

T ◦T

= { de�nition }

g ◦R\R/R ◦ f
∪
◦g ◦R\R/R ◦ f

∪

= { ∆R = f∪ ◦g }

g ◦R\R/R ◦∆R ◦R\R/R ◦ f
∪

⊆ { ∆R⊆R }

g ◦R\R/R ◦R ◦R\R/R ◦ f∪

⊆ { fators }

g ◦R\R/R ◦ f
∪

= { de�nition }

T .
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✷

It is interesting to reet on the proof of lemma 232. The hardest part is to �nd

appropriate de�nitions of f , g and T suh that R = f∪ ◦ T ◦g . The key to onstruting

f and g is Riguet's \analogie frappante" [Rig51℄ whereby he introdued the \di��erene"

|the diagonal ∆R| of the relation R . Expressing the diagonal in terms of fators as

we have done makes many parts of the alulations very straightforward. One muh less

straightforward step is the use of lemma 180 in the proof that R ⊆ f
∪
◦T ◦g . Note how

alulational needs drive the searh for the lemma: in order to simplify the inlusion it

is neessary to expose the term R\R/R on the right side, and that is preisely what the

lemma enables.

We onlude with the theorem that we all the \analogie frappante". It is not the

theorem that Riguet presented but we have hosen to give it this name in order to

reognise Riguet's ontribution.

Theorem 235 (Analogie Frappante) A relation R is blok-ordered if and only if

R< = (∆R)< and R> = (∆R)> .

Proof Lemma 221 establishes \only-if" and lemma 232 establishes \if".

✷

Example 236 Reall that example 194 is of a relation R suh that R< = (∆R)<

but R> 6= (∆R)> . Beause of the simpliity of the example, it is possible to hek,

by exhausting all possible assignments to f and g , that the relation is not blok-

ordered. For suppose, on the ontrary, that R = f∪ ◦T ◦g , where f , T and g satisfy

the onditions for a blok-ordering. Then it must be the ase that g.A 6=g.B (sine

(R◦A)< 6=(R◦B)< ). But also it must be the ase that f.α , f.β and f.γ are distint (be-

ause, eg., (α◦R)> 6=(β◦R)> ). This has the onsequene that f< 6=g<
. But, by de�ning

f.α=x , f.β=y , f.γ= z , g.A=x , g.B= z and y⊑x and y⊑ z , it is the ase that

R = f∪ ◦⊑ ◦g . We say that the relation has an \imperfet" blok-ordering.

✷

Example 237 A generi way to onstrut examples of relations that are not blok-

ordered is to exploit example 177. In order to avoid unneessary repetition, we refer the

reader to that example for the de�nition of the relation in given a �nite set X and a

set S of subsets of X .

(Example 236 is a slightly disguised instane of the generi onstrution: the nodes

A and B an be identi�ed with, respetively, {α,β} and {β,γ} .)

Reall that the diagonal ∆in of type X∼S is injetive. It follows that the size of

(∆in)< is at most the size of S . If, however, the set S has X as one of its elements, the
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size of in<
equals the size of X . Theorem 235 thus predits that, if X is an element of

S , a neessary ondition for in to be blok-ordered is that the sizes of X and S must

be equal; onversely, if X is an element of S , in is not blok-ordered if the sizes of X

and S are di�erent.

Fig. 6 (example 177) shows that, even if the sizes of X and S are equal, the relation

in may not be blok-ordered: as remarked then, for the hoie of S shown in �g. 6, in<

and (∆in)< are di�erent sine 0 and 3 are elements of the former but not the latter.

It is straightforward to onstrut instanes of X and S suh that the relation in is

blok-ordered. It suÆes to ensure that three onditions are satis�ed: X is an element of

S , the sizes of X and S are equal, and, for eah x in X , the set of sets represented by

(x◦in)> is totally ordered. Fig. 10 is one suh. Referring to de�nition 196, the funtional

f is ∆in
∪

(depited by retangles) and the funtional g is IS ; the ordering relation is

the subset relation in\in (depited by the direted graph).

{0,1,2,3,4}

{0,1}

{0}

{3,4}1

2

0

4

{3} 3

Figure 10: A Blok-Ordered Membership Relation

✷

The following theorem is a orollary of theorem 184. In ombination with theorem

235 it states that a relation is blok-ordered i� its ore is blok-ordered. Testing whether

or not a given relation is blok-ordered an thus be deomposed into omputing the ore

of the relation and then testing whether or not that is blok-ordered.

Theorem 238 Suppose R is an arbitrary relation and suppose C is a ore of R as

witnessed by λ and ρ . Then

R< = (∆R)< ≡ C< = (∆C)< .

Dually,

R> = (∆R)> ≡ C> = (∆C)> .
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Proof Suppose R , C , λ and ρ are as in de�nition 90. Then

C< = (∆C)<

= { de�nition 90 and theorem 184 }

(λ ◦R ◦ρ
∪)< = (λ ◦∆R ◦ρ

∪)<

⇒ { Leibniz }

(λ∪
◦ (λ ◦R ◦ρ

∪)<)< = (λ∪
◦ (λ ◦∆R ◦ρ

∪)<)<

= { domains }

(λ∪
◦λ ◦R ◦ρ

∪)< = (λ∪
◦λ ◦∆R ◦ρ

∪)<

= { λ
∪
◦λ ◦R = R≺ ◦R = R ,

(ρ∪)< = (ρ∪
◦ρ)< = (R≻)< = R>

, and domains }

R< = (λ∪
◦λ ◦∆R ◦ρ

∪)<

= { (ρ∪)< = (ρ∪
◦ρ)< and domains }

R< = (λ∪
◦λ ◦∆R ◦ρ

∪
◦ρ)<

= { theorem 184 }

R< = (λ∪
◦∆C ◦ρ)<

= { theorem 184 }

R< = (∆R)< .

Similarly,

R< = (∆R)<

= { de�nition 90, theorem 184 and Leibniz }

(λ∪
◦C ◦ρ)< = (λ∪

◦∆C ◦ρ)<

⇒ { Leibniz and domains }

(λ ◦λ
∪
◦C ◦ρ)< = (λ ◦λ

∪
◦∆C ◦ρ)<

= { ρ< = (ρ ◦ρ
∪)< and domains }

(λ ◦λ
∪
◦C ◦ρ ◦ρ

∪)< = (λ ◦λ
∪
◦∆C ◦ρ ◦ρ

∪)<

= { theorem 184 (applied twie) }

C< = (∆C)< .

The property

R< = (∆R)< ≡ C< = (∆C)<
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follows by mutual impliation. The dual follows by instantiating R to R
∪

and applying

the properties of onverse.

✷

By ombining the de�nition of blok-ordering with theorem 184, it is immediately

lear that R is blok-ordered if its ore C is a provisional ordering. In general, a ore

of a blok-ordered relation will not be a provisional ordering. This is beause the types

of the targets of the omponents λ and ρ in the de�nition of a ore are not required

to be the same; on the other hand, orderings are required to be homogeneous relations.

However by arefully restriting the hoie of ore, it is possible to onstrut a ore that

is indeed a provisional ordering.

Theorem 239 Suppose R is an arbitrary relation. Then if R is blok-ordered it has

a ore that is a provisional ordering.

Proof Suppose R is blok-ordered. That is, suppose that f , g and T are relations

suh that T is a provisional ordering,

R = f
∪

◦ T ◦g

and

f ◦ f
∪

= f< = T ∩T
∪

= g< = g ◦g
∪

.

Then, by lemma 221, R≺ = f∪ ◦ f and , R≻ = g∪
◦g . Thus f and g satisfy the onditions

for witnessing a ore C of R . (Cf. de�nition 90 with λ,ρ := f,g .) Consequently,

C

= { de�nition 90 }

f ◦R ◦g
∪

= { R = f∪ ◦T ◦g }

f ◦ f
∪
◦T ◦g ◦g

∪

= { f ◦ f
∪ = f< = T ∩T∪ = g< = g ◦g

∪

}

(T ∩T∪) ◦T ◦ (T ∩ T∪)

= { T is a provisional ordering, lemma 61 and domains }

T .

We onlude that C is the provisional ordering T .

✷

Combining theorem 239 with theorem 93, we onlude that any ore of a blok-

ordered relation is isomorphi to a provisional ordering. Loosely speaking, blok-ordered

relations are provisional orderings up to isomorphism and redution to the ore.
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Example 240 From the Galois onnetion, for all reals x and integers m ,

⌈x⌉≤m ≡ x≤m

de�ning the eiling funtion, we dedue that the heterogeneous relation IR≤ZZ has ore

the provisional ordering ≤ZZ . This is beause the eiling funtion is surjetive. Its ore

in not the ordering ≤IR beause the oerion real from integers to reals is not surjetive.

(See also example 217.)

On the other hand, if a Galois onnetion

F.b⊑a ≡ b�G.a

of posets (A,⊑) and (B ,� ) is \perfet" (i.e. both F and G are surjetive), both the

orderings ⊑ and � are ores of the de�ned heterogeneous relation. That the orderings

are isomorphi is an instane of the unity-of-opposites theorem [Ba02℄.

✷
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14 Conclusion

A major advantage of point-free relation algebra is the ombination of onision with pre-

ision. But there are numerous irumstanes where pointwise reasoning is unavoidable.

Unbridled use of pointwise reasoning is, in our view, unwelome beause of the potential

lak of onision, with the danger of an aompanying loss of preision. In this paper,

we have shown how the pointwise reasoning that is neessary to formulate the properties

of polar overings of a relation and of blok-ordered relations an be onduted in a way

that avoids suh dangers. Doing so has led to the introdution of the onepts of an in-

dex and a ore of a relation whih we believe may have important pratial appliations

when dealing with very large volumes of data. Our de�nitions of indexes and ores of a

(heterogeneous) relation are point-free.

The primary ontribution of the paper has been to show how the addition of a simple

axiom to relation algebra |essentially, it is possible to hoose a representative element of

every equivalene lass of a partial equivalene relation| has far-reahing onsequenes

in enabling pointwise reasoning, whilst not sari�ing the ombination of onision and

preision. Some may ritiise the axiom for being non-onstrutive, but the ritiism

has little pratial relevane. For �nite pers, it is straightforward to onstrut an index

and, indeed, in pratie this is done as a matter of ourse. For example, the two-phase

algorithm attributed to R.Kosaraju and M.Sharir by Aho, Hoproft and Ullman [AHU82℄

for onstruting the strongly onneted omponents of a graph omputes a representative

element (alled a \delegate" in [Ba19℄) of eah omponent in the seond phase.

One fous of this investigation has been on showing that the so-alled \all-or-nothing"

rule introdued by Gl�uk [Gl�u17℄ is a onsequene of our axiom. There are other ways

of failitating pointwise reasoning in relation algebra. Bird and De Moor [BdM97℄ argue

that the introdution of \tabulations" and a \unit" (as formulated by Freyd and

�

S�edrov

[Fv90℄) \makes it possible to mimi pointwise proofs in a ategorial setting". But Bird

and De Moor do not give any pratial appliation of tabulations

9

. Separately from

tabulations, Bird and De Moor [BdM97, setion 4.6, p.103℄ introdue so-alled \power

allegories". This involves the introdution of \power-objets", the \power transpose"

of a relation, and a \membership relation". Subsequently, they do make signi�ant

pratial use of these notions in their derivation of algorithms. However, as we have

shown elsewhere [BDGv22, Ba22℄, these notions an be derived from the all-or-nothing

rule.

In fat, the only pratial appliation of pointwise reasoning in this paper is in setion

9

Indeed, their only use of tabulations is in an erroneous proof. [BdM97, theorem 5.1℄ asserts that (in

a tabular allegory) a funtor is a relator i� it preserves onverse. However, the penultimate step in the

\proof" asserts that appliation of a funtor to a \simple" relation preserves the \simple" property. A

traditional pointwise argument makes lear that the step has no justi�ation.
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11 on overings of a relation. In this ase, points are unavoidable beause they de�ne

the individual retangles in the overing. In ontrast, our investigation of the diagonal

of a relation and blok-ordered relations, and the formulation of the analogie frappante

onneting the two, is entirely point-free. At the same time, we make extensive use of our

(point-free) formulation of indexes and ores in order to signi�antly improve previous

alulations of the same results [Ba21℄.

As shown elsewhere, the diret use of pointwise reasoning (as formulated here) does

ombine onision with preision in an elegant way in the onstrution of the hara-

terisations of pers and difuntions. (See setion 8.) Spei�ally, [BO22℄ ompares the

expliit use of points with the use of the power transpose of a relation. This paper o�ers

an alternative third way. We leave the reader to make the judgement on whih method

is to be preferred.

Finally, a few words on notation. The very rih algebrai properties of the onverse

of a relation mean that many notions and properties ome in pairs, eah element of the

pair being the dual mirror-image of the other. For example, we have de�ned both the

left domain and right domain of a relation. Some authors emphasise suh mirroring by

their hoie of notation. Freyd and

�

S�edrov [Fv90℄, for example, denote the soure and

target of a relation R by ✷R and R✷ , respetively.

A onsequene of this is that it is possible to get away with de�ning just one of a

pair of operators, leaving its mirror image to have an \obvious" de�nition in terms of

relational onverse. Doing this systematially would mean introduing the notation R<

for the left domain of relation R and then using the notation (R∪)< to denote the right

domain of R . Similarly, one might introdue just the left fator R/S and then write

(S∪

/R
∪)∪ for the right fator R\S . This is, of ourse, very undesirable beause then the

assoiativity of the operators (the rule that R\(S/T) and (R\S)/T are equal, whih we

exploit by using the notation R\S/T ) beomes the very umbersome

((S/T)
∪

/R
∪

)
∪

= (S
∪

/R
∪

)
∪

/ T .

Even worse is when a symmetri notation is used for an operator that has both left

and right variants | as is done by both Freyd and

�

S�edrov [Fv90℄ and Shmidt and

Str�ohlein [SS93, p.80℄ in the ase of the so-alled \symmetri division/quotient" of a

relation. By writing

R
S
(or R÷S ), the reader may be misled into supposing that either

the operator has no mirror image or that the mirror image is

S
R
(or S÷R ). The main

drawbak, however, is that the notation gives |literally and �guratively| a one-sided

view of relation algebra that inhibits progress. The notions of \index" and \ore" of a

relation are, so far as we know, novel; the insight leading to their introdution is the

simple formula

R = R≺ ◦R ◦R≻
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ombined with well-known properties of (partial) equivalene relations. It is, in our view,

a striking example of the sort of insight that is obsured using Freyd and

�

S�edrov's or

Shmidt and Str�ohlein's notation.
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