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Abstract. The torch problem (also known as the bridge problem or the
flashlight problem) is about getting a number of people across a bridge
as quickly as possible under certain constraints. Although a very simply
stated problem, the solution is surprisingly non-trivial. The case in which
there are just four people and the capacity of the bridge is two is a well-
known puzzle, widely publicised on the internet. We consider the general
problem where the number of people, their individual crossing times
and the capacity of the bridge are all input parameters. We present an
algorithm that determines the shortest total crossing time; the number
of primitive computations executed by the algorithm (i.e. the worst-case
time complexity of the algorithm) is proportional to the square of the
number of people.
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The (capacity-C) torch problem is as follows.

N people wish to cross a bridge. It is dark, and it is necessary to use a
torch when crossing the bridge, but they only have one torch between
them. The bridge is narrow and at most C people can be on it at any
one time. The people are numbered from 1 thru N. Person i takes time
t.i to cross the bridge; when a group of people cross together they must
all proceed at the speed of the slowest.
Construct an algorithm that will get all N people across in the shortest
time. Provide a clear justification that the algorithm does indeed find
the shortest time.

The torch problem is an abstraction from a problem involving four people
wishing to cross a bridge of capacity two and with specific concrete times. In
this form, the problem is believed to have first appeared in 1981. Rote [3] gives
a comprehensive bibliography.

The main interest in the torch problem is that what is “obvious” or “intu-
itive” is often wrong. For example, the “obvious” solution of letting the fastest
person repeatedly accompany C−1 people across the bridge is wrong. (If N =4,
C =2 and the travel times are 1, 1, 2 and 2, this solution takes time 7 whereas



the shortest crossing time is 61.) Also, the “obvious” property that the short-
est time is achieved when the number of crossings is minimised is incorrect. (If
N =5, C =3 and the travel times are 1, 1, 4, 4 and 4, the shortest time is 8,
which is achieved using 5 crossings. The shortest time using 3 crossings is 9.) It
is not difficult to determine an upper bound on the crossing time, even in the
general case. Nor is it difficult to provide counterexamples to incorrect solutions.
The difficulty is to establish an irrefutable lower bound on the crossing time. A
proper solution to the problem poses a severe test of our standards of proof.

In our solution, we assume that the people are ordered so that t.i< t.j if i< j.
If the given times are such that t.i= t.j for some i and j, where i< j, we can
always consider pairs (t.i , i), where i ranges over people, ordered lexicographi-
cally. Renaming the crossing “times” to be such pairs, we obtain a total ordering
on times with the desired property2. We also assume that N is at least C+1.
(When N is at most C, it is obvious that exactly one crossing gives the optimal
solution. When N is at least C+1, more than one crossing is required.)

For brevity, some of the more straightforward proofs at the beginning of the
paper. A full version of the paper, which includes the details of all proofs, is
available from the author’s website.

1 Outline Strategy

An outline of our solution is as follows.
We call a sequence of crossings that gets everyone across in accordance with

the rules a putative sequence. We will say that one putative sequence subsumes
another putative sequence if the time taken by the first is at most the time
taken for the second. Note that the subsumes relation is reflexive (every puta-
tive sequence subsumes itself) and transitive (if putative sequence a subsumes
putative sequence b and putative sequence b subsumes putative sequence c then
putative sequence a subsumes putative sequence c). An optimal sequence is a
putative sequence that subsumes all putative sequences. A putative sequence is
suboptimal if it is not optimal. The problem is to find an optimal sequence.

Recall that, when crossing the bridge, the torch must always be carried. This
means that crossings, both of groups of people and of each individual person,
alternate between “forward”and “return” trips, where a forward trip is a crossing
in the desired direction, and a return trip is a crossing in the opposite direction.

A regular forward trip means a crossing in the desired direction made by at
least two people, and a regular return trip means a trip in the opposite direction
made by exactly one person. A regular sequence is a putative sequence that
consists entirely of regular forward and return trips.
1 Our examples are chosen so that it is easy for the reader to discover the fastest

crossing time. Of course, the examples in puzzle books are deliberately chosen to
make it difficult.

2 Strictly, we also need to extend addition to pairs. Defining (t, i)+(u, j) to be
(t+u , i↓j) guarantees the appropriate algebraic structure, in particular distribu-
tivity of addition over minimum [2].



The first step (lemma 1) is to show that every optimal putative sequence
is regular. The significance of this is threefold. First, it means that the search
space for an optimal solution is finite. (This is because a forward trip followed
by a return trip reduces the number of people at the start; hence there are at
most N−1 forward trips in any regular sequence.) Second, the time taken by
a regular putative sequence can be evaluated knowing only which forward trips
are made. (Knowing the bag of forward trips, it is easy to determine how many
times each person makes a return trip. This is because each person makes one
fewer return trips than forward trips. In this way, the time taken for the return
trips can be calculated.) Finally, and most importantly, knowing just the bag of
forward trips in a regular putative sequence is sufficient to reconstruct a regular
putative sequence. This is proved in theorem 1. Since all such sequences take
the same total time, we can replace the problem of finding an optimal sequence
of forward and return trips by the problem of finding an optimal bag of forward
trips.

Finding an optimal bag of forward trips begins by establishing a number of
lemmas with the goal of reducing the size of the search space. Subsequently, we
can formulate the problem as, essentially, a shortest-path problem on an acyclic
graph. More precisely, we present a collection of equations each of which corre-
sponds to a component of an algorithm for non-deterministically constructing a
bag of forward trips. By calculating the (unique) solution to these equations, we
can resolve the non-determinacy in the construction and so obtain an optimal
bag of forward trips. Then theorem 1 is applied to obtain a regular sequence
that optimises the total travel time. The number of terms in the collection of
equations is quadratic in the number of people and cubic in the capacity of the
bridge, from which we can deduce the worst-case solution time.

2 Terminology

Let us suppose a putative sequence is given. By extracting just the forward trips
in the sequence and ignoring the order in which they are made, we obtain a bag
(multiset) of non-empty sets. We use F to denote such a bag. Note that a bag is
a set with multiplicities. By a slight abuse of notation, we write T∈F and call
T an element of F if T is an element of the set underlying bag F ; we also write
#F T for the multiplicity of T in the bag F . The bag is completely defined by
listing its elements together with their multiplicities.

Since everyone must cross at some time, the bag F satisfies the property that

〈∀i : 1≤ i≤N : 〈∃T : T∈F : i∈T 〉〉 .(1)

Also, since each forward trip is non-empty and the capacity of the bridge is C,

〈∀T : T∈F : 1≤|T |≤C〉 .(2)

From the bag F , we can determine the number of times each individual makes
a forward trip. This is given by the function f which is defined by

fF .i = 〈ΣT : i∈T :#F T 〉 .(3)



The number of times that each person returns is given by the function r; since
each person makes one more forward trip than return trip, we have

rF .i = fF .i−1 .(4)

We distinguish two types of person:

(a) Someone who never makes a return trip is called a settler.

settlerF .i ≡ rF .i = 0 .

(b) Someone who does make a return trip is called a nomad.

nomadF .i ≡ rF .i > 0 .

(Note that settlerF .i 6≡nomadF .i.) We further subdivide the settlers into “pure”
and “mixed” settlers.

(a) A pure settler is a settler who crosses with (only) other settlers.

pureF .i ≡ 〈∀T : T∈F ∧ i∈T : 〈∀j : j∈T : settlerF .j〉〉 .

(b) A mixed settler is a settler who crosses with at least one nomad.

mixedF .i ≡ settlerF .i ∧ 〈∃T ,j : T∈F ∧ i∈T ∧ j∈T : nomadF .j〉 .

Correspondingly, we divide the forward trips into “pure”, “mixed” and “no-
madic”.

(a) A pure trip is a forward trip in which everyone involved is a settler.

pureF .T ≡ 〈∀j : j∈T : settlerF .j〉 .

(b) A mixed trip is a forward trip involving both settlers and nomads.

mixedF .T ≡ 〈∃i,j : i∈T ∧ j∈T : settlerF .i∧nomadF .j〉 .

(c) A nomadic trip is a forward trip in which everyone involved is a nomad.

nomadicF .T ≡ 〈∀i : i∈T :nomadF .i〉 .

A full trip is a forward trip in which C people cross. That is, the trip has no
spare capacity.

full.T ≡ |T |=C .

The leader of a trip is the slowest person in the trip3:

lead.T = 〈⇑i : i∈T : i〉 .

Mixed and pure trips have multiplicity 1 in the bag F , and each settler is an
element of exactly one element of F . It is therefore possible to define a function
from settlers to people which identifies the slowest person in the trip made by
the settler. Let us call this function bossF . Then the defining property of bossF

is

〈∀ i,T : settlerF .i∧T∈F ∧ i∈T : lead.T = bossF .i〉 .

For nomads, the function bossF is undefined.
3 The symbols ⇑ and ⇓ denote the maximum and minimum quantifiers, respectively;

the symbols ↑ and ↓ denote the binary maximum and minimum operators.



3 Regular Sequences

Recall that a “regular” sequence is a sequence in which each forward trip in-
volves at least two people and each return trip involves exactly one person. The
following lemma restricts attention to just the regular sequences. The proof is
omitted.

Lemma 1. Every putative sequence containing irregular trips is suboptimal.
2

3.1 Scheduling Forward Trips

In view of lemma 1, we now consider bags of forward trips that correspond to
regular putative sequences. Suppose F is such a bag. Then, with the function r
defined by (4), the total time taken by the sequence is

〈ΣT : T∈F : 〈⇑i : i∈T : t.i〉 ×#F T 〉 + 〈Σi :: t.i× rF .i〉 .(5)

(Forward trip T takes time 〈⇑i : i∈T : t.i〉 and has multiplicity #F T , and person
i makes rF .i return trips each of which takes time t.i because the sequence is
regular.) Note that the total time is independent of the order in which the trips
are scheduled.

Also, since the number of forward trips is |F | and each return trip is under-
taken by exactly one person,

|F | = 〈Σi :: rF .i〉 +1 .(6)

In a regular sequence, each forward trip involves at least 2 and at most C people,
thus sharpening property (2):

〈∀T : T∈F : 2≤|T |≤C〉 .(7)

Finally, as before, each person must cross at least once:

〈∀i : 1≤ i≤N : 1≤ fF .i〉 .(8)

Crucially, given a bag of sets, F , such that properties (6), (7) and (8) hold of
F , it is always possible to construct a regular putative sequence S such that the
bag of forward trips in S is F . To establish this theorem, we first prove several
properties relating the number of pure trips, the number of nomads and the
number of non-pure trips in F .

To this end, we define the functions n (“number of nomads”), nc (“nomad
count”), rc (“return count”), sc (“settler count”), np (“the number of non-pure
trips”) and pc (“pure-trip count”) as follows. In the definitions, G is an arbitrary
bag of sets, and T ranges over elements of G. The multiplicity of T in G is denoted
by #GT .

nG = 〈Σi :nomadG.i : 1〉(9)
ncG.T = 〈Σi : nomadG.i∧ i∈T : 1〉(10)



rcG = 〈Σi :: rG.i〉(11)
scG.T = 〈Σi : settlerG.i∧ i∈T : 1〉(12)

npG = 〈ΣT :¬(pureG.T ) :#GT 〉(13)
pcG = 〈ΣT :pureG.T : 1〉(14)

(Note that pure trips always have a multiplicity of 1.)
The following lemma and its corollary identify some straightforward relations

between the various counts. Note that lemma 2 is true of all bags, whereas
corollary 1 exploits a relation between the size of the bag and its return count.

Lemma 2. Suppose G is a bag of sets. Then

nG =0 ≡ rcG =0 ,(15)

nG ≤ rcG ,(16)

rcG = 〈ΣT :: ncG.T ×#GT 〉 − nG ,(17)

npG 6=1 .(18)

2

Corollary 1. If G is a bag of sets such that |G| = rcG +1 then

nG =0 ≡ |G|=1 .(19)

nG =1 ⇒ 〈∀T ::¬(pureG.T )〉 .(20)

2

In general, the implication in (20) cannot be strengthened to equivales. For
example, the bag G equal to {{1,3} ,{1,2,4} ,{2,5}} satisfies the property that
|G| = rcG +1 and every trip in G is non-pure. However, the set of nomads in
G is {1,2}. That is, nG 6=1. The converse implication does hold for the bag of
forward trips corresponding to an optimal putative sequence.

Theorem 1. Suppose F is a bag of sets satisfying (6), (7) and (8). Then
there is a regular putative sequence of which the bag of forward trips equals F .4

Proof Consider the algorithm below. It constructs a sequence S of forward
and return trips. On termination, the bag of forward trips defined by S (denoted
by ForwardBag.S in the algorithm) equals F .

The symbol ε denotes the empty sequence and S ++ S′ denotes a sequence
obtained by appending a sequence S′ to the end of S. The sequence S′ begins
with the trip T and has total length 2×ncG.T . The trip T is followed in S′ by
a sequence of alternating return and forward trips, beginning and ending with
a return trip. The return trips are made by the ncG.T nomads in T , the order
being arbitrary; the forward trips are all pure, their choice is also arbitrary. The

4 Thanks to Arjan Mooij for providing the key insight in the proof of this theorem.



choice of T at each iteration (indicated by the “[]T” quantification5) is a non-
pure trip with the property that ncG.T ≤pcG +1. Note that whether or not a
trip is pure is evaluated with respect to the bag G and not the bag F . The guard
on the choice of T guarantees that S′ can be constructed from the elements of
G. The removal of one occurrence of T and the pure trips in S′ from the bag G
results in the bag denoted by G	S′. The symbol “∪̇” in the invariant denotes
bag union.

The invariant is truthified by the initialisation because F satisfies (6). It
is also maintained by the loop body because |G| is decreased by ncG.T and,
simultaneously, rG.i is decreased by 1 for ncG.T instances of i; also, the forward
trips added to the sequence S are precisely the trips removed from the bag G.

On termination of the loop, we claim that G has size 1; the sequence S is
concluded by the one trip remaining in G.

S,G := ε,F ;

{ Invariant: |G| = rcG +1 ∧ F = G ∪̇ForwardBag.S }

do 〈[]T

: T∈G ∧ ¬(pureG.T ) ∧ ncG.T ≤pcG +1

: { See text above for the definition of S′ }

S,G := S ++ S′ ,G	S′

〉

od

{ |G|=1 } ;

〈[]T : G={T} : S := S ++ [T ]〉

{ F = ForwardBag.S }

The key to the correctness of this algorithm is the claim that the assertion
“|G|=1” is implied by the condition for terminating the loop:

〈∀T : T∈G∧¬(pureG.T ) : ¬(ncG.T ≤pcG +1)〉 .

The contrapositive of this claim is that, when |G| 6= 1, there is a non-pure
trip available to extend the sequence S. We prove this as follows. Assume that
|G| 6= 1. Then, by (19), 〈∃T : T∈G : ¬(pureG.T )〉. So,

〈∃T : T∈G∧¬(pureG.T ) : ncG.T ≤pcG +1〉

= { property of minimum }

5 Choice quantifiers are used frequently in this paper. Formally, 〈[]k :R :S〉 introduces a
local variable k with scope delimited by the angle brackets; k is non-deterministically
initialised to a value satisfying R, following which statement S is executed. The type
of k is implicit. Here, T is a trip.



〈⇓T : T∈G∧¬(pureG.T ) : ncG.T 〉 ≤ pcG +1

⇐ { pigeon-hole principle (the minimum of a non-empty

bag of integers is at most the average),

(13) and integer inequalities }

〈ΣT : ¬(pureG.T ) : ncG.T ×#GT 〉 < npG× (pcG +2)

= { (17) }

rcG +nG < npG× (pcG +2)

⇐ { (16) }

2× rcG < npG× (pcG +2)

= { by range splitting, |G| = pcG +npG ;

also, by invariant, |G|= rcG +1 }

2× (pcG +npG−1) < npG× (pcG +2)

⇐ { arithmetic }

2 ≤ npG

= { (18) }

0 6= npG

= { (19) and assumption: |G| 6= 1 }

true .

2

4 The Optimisation Problem

The optimisation problem we now focus on is to determine a bag of sets F such
that properties (6), (7) and (8) hold of F which minimises the total travel time
as given by (5). A bag, F , with the properties (6), (7) and (8) will be called a
regular bag.

In our analysis, we refer to the subterm 〈ΣT : T∈F : 〈⇑i : i∈T : t.i〉〉 in (5)
as F ’s forward time, and 〈Σi :: t.i× rF .i〉 as F ’s return time. We also refer to
the subterm 〈⇑i : i∈T : t.i〉 as T ’s trip time and t.i× rF .i as person i’s return
time. It is important to note that we also use this terminology for bags of trips,
F , that are not necessarily regular.

We continue to use the notion of “subsumption” but now applied to (regular)
bags rather than sequences. So regular bag F subsumes regular bag G if F ’s total
travel time is at most that of G. A bag is optimal if it is regular and subsumes
all other bags, and is suboptimal if it is regular but not optimal.

Our solution is based on the following theorem.



Theorem 2. A bag of trips, F , that does not satisfy the following properties
is suboptimal.

(a) For each T in F , the nomads in T are persons 1 thru ncF .T . That is,

〈∀i,T : T∈F ∧ i∈T : nomadF .i ≡ 1≤ i≤ncF .T 〉 .

(b) The function bossF is monotonically increasing. That is, for all settlers i
and j,

bossF .i≤ bossF .j ⇐ i≤ j .

(c) All pure trips in F are full. There is at most one non-full mixed trip in F
and, if there is one, it is the fastest mixed trip and it has nF nomads.

(d) For all non-nomadic trips, the function nc is a decreasing function of the
leader of the trip. That is, for all non-nomadic trips T and U in F ,

ncF .T ≥ncF .U ⇐ lead.T ≤ lead.U .

2

In words, 2(a) expresses the property that, in an optimal bag, the nomads
are the fastest, and always make forward trips in a contiguous group which
includes person 1. 2(b) expresses the property that the trips divide the settlers
into contiguous groups. 2(d) has the corollary that the pure settlers are the
slowest. So, in summary, theorem 2 establishes the “intuitively obvious” property
that the search for an optimal solution can be restricted to bags of trips in which,
in order of increasing travel times, the groups of people are: the nomads, the
settlers in a non-full mixed trip, the mixed settlers in full trips and the pure
settlers.

To prove theorem 2 we use proof-by-contradiction. We prove a property P
by contradiction by showing that every regular bag, F , that does not satisfy P
can be transformed to a regular bag, F ′, that does satisfy P and has a strictly
smaller total travel time. To establish a succession of properties, P and Q say,
we first prove P and then assume P when proving Q.

Note that non-nomadic trips have multiplicity 1 in F . Thus, for non-nomadic
trips T , there is no confusion between the trip T and the individual occurrences
of T in F . On the other hand, nomadic trips may have multiplicity greater than
1 in F . For such trips, we are careful to make clear whether the transformation
is applied to all occurrences of the trip or just one.

4.1 Choosing Nomads

We begin by proving part (a) of theorem 2. We first establish that the nomads
are persons 1 thru n, for some n.

Lemma 3. Every regular bag of forward trips is subsumed by a regular bag
in which all settlers are slower than all nomads.



Proof Suppose that, within regular bag F , p is the fastest settler and q is the
slowest nomad. Suppose p is faster than q.

Interchange p and q everywhere in F . We get a regular bag, F ′. The return
time is clearly reduced by at least t.q− t.p.

The times for the forward trips in F involving q are not increased in F ′

(because t.p< t.q). The time for the one forward trip in F involving p is increased
in F ′ by an amount that is at most t.q− t.p. This is verified by considering two
cases. The first case is when q is an element of p’s forward trip. In this case,
swapping p and q has no effect on the trip, and the increase in time taken is 0.
In the second case, q is not an element of p’s forward trip. In this case, it suffices
to observe that, for any x (representing the maximum time taken by the other
participants in p’s forward trip),

t.p↑x + (t.q− t.p)

= { distributivity of sum over max, arithmetic }

t.q ↑ (x+(t.q− t.p))

≥ { t.p≤ t.q, monotonicity of max }

t.q ↑x .

Finally, the times for all other forward trips are unchanged.
The net effect is that the total time taken does not increase. That is, F ′

subsumes F . Also, the total forward-trip time of the settlers is strictly increased.
Thus, repeating the process of swapping the fastest settler with the slowest
nomad whilst the former is faster than the latter is guaranteed to terminate
with a bag that subsumes the given bag and in which all settlers are slower than
all nomads.
2

Lemma 4. Every regular bag of forward trips is subsumed by a bag, F , that
satisfies 2(a).

Proof Suppose a regular bag F of forward trips is given. By lemma 3, F is
subsumed by a bag G in which the nomads are persons 1 thru nG. (Bags F and
G may be the same, but that is not significant.)

For each trip T in G, consider the set of nomads in T . Specifically, define
nom.T to be

T ∩ {i |nomadG.i} .

Recall that ncG.T is the number of nomads in set T . That is, ncG.T = |nom.T |.
Replace T in the bag G by

(T ∩ {i | settlerG.i}) ∪ {i | 1≤ i≤ncG.T} .

This replaces G by a bag F ′. To see that F ′ is regular, we observe that the
replacement of T increases the number of forward trips by person i only when
i≤ncG.T . But ncG.T ≤nG; so, settlers in G are also settlers in F ′. Hence, the



size of the bag T is unchanged by the replacement. That is, property (7) is an
invariant of the replacement. The number of forward trips made by nomads i in
G such that ncG.T < i≤nG decreases by at most 1. So, such nomads may not be
nomads in F ′. However, the number of forward trips each makes remains strictly
positive (since a nomad makes at least 2 forward trips, by definition), and each
decrease in the number of forward trips made by such a nomad is compensated
by an increase in the number of forward trips made by some nomad i, where
1≤ i≤ncG.T . That is, properties (8) and (6) are invariant under the replacement.
Finally, the replacement decreases the total trip time because the times of the
return trips are decreased, and the times of the forward trips are not increased.
That is, F ′ subsumes G; by the transitivity of the subsumes relation, F ′ also
subsumes F .
2

Corollary 2. Every regular bag is subsumed by a bag, F , in which the number
of nomads, nF , is at most C.

Proof Every regular bag is subsumed by a bag, F , satisfying 2(a), and

nF ≤C

= { 2(a) }

〈⇑T :T∈F :ncF .T 〉 ≤ C

= { definition of maximum (⇑) }

〈∀T : T∈F : ncF .T ≤C〉

= { definition of ncF , (7) }

true .

2

4.2 Permuting Settlers

In this section, we prove part (b) of theorem 2. We begin, however, with a similar
lemma which is used later in the proof of part (d).

Lemma 5. Suppose bag F satisfies 2(a). Then either the settler count in each
trip is a monotonic function of the leader of the trip (i.e.

scF .T ≤ scF .U ⇐ lead.T ≤ lead.U )

or F is suboptimal.

Proof Take trips T and U in F such that scF .T >scF .U and lead.T ≤ lead.U .
It follows that T 6=U . Because scF .T >0 and F satisfies 2(a), lead.T is a settler.
Now, because lead.T ≤ lead.U and F satisfies 2(a), it follows that lead.U is
also a settler. But settlers are elements of exactly one trip. We conclude that
scF .T >scF .U >0, both T and U have multiplicity 1 in F , and lead.T < lead.U .

Rearrange the settlers in T and U so that scF .T and scF .U are unchanged
(thus guaranteeing a regular bag) and the slowest settlers are in T and the fastest
settlers are in U . Using primes to denote the new values of T and U , we have



t.(lead.T ′) + t.(lead.U ′)

= { lead.U is the slowest settler, so lead.T ′ = lead.U }

t.(lead.U) + t.(lead.U ′)

< { scF .U ′ = scF .U <scF .T and U ′ contains the fastest settlers;

so lead.U ′ <lead.T }

t.(lead.U) + t.(lead.T ) .

Other trips are unchanged, so the effect is to strictly decrease the total travel
time.
2

Lemma 6. A bag F that does not satisfy 2(b) is suboptimal.

Proof Take any two settlers i and j such that bossF .i> bossF .j and i≤ j. It
follows that i 6= j and they must be in different trips, T and U say. Swap bossF .j
(the slowest person in trip U) with the fastest settler in trip T . Then, using
primes to denote the new trips,

t.(lead.T ′) + t.(lead.U ′)

= { i< j≤ bossF .j < bossF .i ; so i 6= bossF .i

hence lead.T ′ = lead.T = bossF .i }

t.(lead.T ) + t.(lead.U ′)

< { lead.U = bossF .j,

bossF .j has been replaced by k where k≤ i< j≤ bossF .j }

t.(lead.T ) + t.(lead.U) .

Other trips are unchanged, so the effect is to strictly decrease the total travel
time.
2

4.3 Filling Non-Nomadic Trips

Part (c) of theorem 2 is about filling non-nomadic trips as far as possible with no-
mads. The proof is split into several lemmas. The proofs themselves are omitted
because they add no new techniques.

Lemma 7. A bag F that satisfies 2(a) but has a non-full pure trip is subop-
timal.
2

Lemma 8. A bag F that satisfies 2(a) but has a non-full mixed trip that is
not the fastest mixed trip is suboptimal.
2



Lemma 9. Suppose bag F satisfies 2(a). Suppose F has a non-full mixed
trip that is the fastest mixed trip but all mixed trips in F have fewer than nF

nomads. Then F is suboptimal.
2

Lemma 10. Suppose bag F satisfies 2(a). Suppose there is a mixed trip, T
say, with nF nomads and a non-full mixed trip, U say, with n nomads where
n<nF . Suppose U is the fastest mixed trip. Then F is suboptimal.
2

Corollary 3. A bag F that satisfies 2(a) but does not satisfy theorem 2(c)
is suboptimal. A bag F that satisfies 2(a) but does not satisfy theorem 2(d) is
suboptimal.
2

5 Constructing an Optimal Bag of Forward Trips

In this section, we use theorem 2 to give a lower bound on the time taken to
cross. In the process of calculating the lower bound, an optimal bag of forward
trips can be constructed. Then, using the construction given in section 4, an
optimal putative sequence can be constructed from the bag.

Our algorithm for constructing an optimal bag constructs in stages an “or-
dered” bag of sets where “ordered” is defined below.

Definition 1 (Ordered). We say that a bag of sets, F , is ordered if

〈∀T :T∈F : 2≤|T |≤C〉(21)

and it satisfies the four properties stated in theorem 2.
2

The algorithm constructs a bag of trips, F , starting with the slowest trips.
The measure of progress is a pair (m, p) ordered lexicographically, where m is
a measure of the number of people not yet included in a trip and p measures
the “excess” of pure trips over return trips. Formally, we exploit the following
theorem.

Theorem 3. If a bag of sets, F , is optimal, it is ordered and

〈∀i : 1≤ i≤N : 1≤ fF .i〉 ,(22)

and

pcF = 〈Σi : 2≤ i≤nF : rF .i〉 .(23)

Proof Comparing the definition of regular bags (properties (6), (7) and (8))
with the definition of ordered bags, we see that (21) and (7) are identical, as are
(22) and (8). Thus, any ordered bag is a solution if it also satisfies (6). We now
show that (6) and (23) are equivalent when the bag F satisfies the properties
stated in theorem 2. That is, we prove that

|F | = 〈Σi :: rF .i〉 +1 ≡ pcF = 〈Σi : 2≤ i≤nF : rF .i〉 .

We have:



|F |

= { definition of |F |, range splitting }

pcF + npF

= { by 2(a), 1∈T ≡¬(pureF .T ), definition of fF .1 }

pcF + fF .1 .

Hence,
pcF = 〈Σi : 2≤ i≤nF : rF .i〉

= { above, arithmetic }

|F | − fF .1 = 〈Σi : 2≤ i≤nF : rF .i〉

= { fF .1 − 1 = rF .1, arithmetic }

|F | = 〈Σi : 1≤ i≤nF : rF .i〉 +1

= { by 2(a), rF .i 6=0 ≡ 1≤ i≤nF }

|F | = 〈Σi :: rF .i〉 +1 .

2

Henceforth, we call pcF − 〈Σi : 2≤ i≤nF : rF .i〉 the excess of the bag F . The-
orem 3 states that an optimal bag is obtained by constructing an ordered bag in
which everyone makes a trip (property (22)) and the number of pure trips equals
the number of return trips made by nomads other than person 1 (property (23)).

Theorem 3 offers no way of determining the number of pure trips in an opti-
mal bag except by considering all the different possibilities. The basic structure
of our solution is thus to evaluate the minimum over all p of the total travel
time of a regular, ordered bag of forward trips in which the number of pure trips
is p. So, the problem becomes one of determining a lower bound on the travel
time incurred by a bag of mixed and nomadic forward trips with an “excess” p.
This problem is solved by identifying a collection of (acyclic) equations on the
travel times; by determining the (unique) solution of the equations we obtain the
desired lower bound on the total travel time; simultaneously, the bag of forward
trips can be constructed in the standard way.

For convenience, we define rt by

rt.n = 〈Σi : 1≤ i≤n : t.i〉 .(24)

In the equations below, occurrences of the function rt record the return time
for a given number of nomads; occurrences of the function t record the forward
time of some trip.

5.1 Outline Algorithm

The basic structure of our solution is to design a non-deterministic algorithm
that constructs regular, ordered bags. The algorithm is designed so that every
such bag is constructed by some resolution of the non-determinism.

An outline of the algorithm is shown below.



{ 2≤C <N }

〈[]p

: 0≤p≤
⌊

N−2
C

⌋
: AddPureTrips

{ |F |=p=pcF } ;

〈[]n,n′

: n=n′ =0

: 〈[]m

: m = N −p×C

: AddFullMixedTrips

{ 2≤m≤C } ;

IncludeRest

{ 〈∀i : 1≤ i≤N : 1≤ fF .i〉 } ;

if 0=p → skip

2 0<p → FinaliseNumberOfNomads

fi

〉 ;

AddNomadicTrips

〉

〉

{ (ordered.F ∧ 〈∀i : 1≤ i≤N : 1≤ fF .i〉)

∧ pcF = 〈Σi : 2≤ i≤nF : rF .i〉 }

The algorithm constructs a bag, F , of trips. At all stages, F is ordered. The
algorithm begins by introducing a variable p which is non-deterministically ini-

tialised to a natural number at most
⌊

N−2
C

⌋
. The step AddPureTrips initialises

the variable F to a bag of p pure trips. Informally, p is the excess of the bag F .
(This isn’t quite true as explained below.) Subsequent stages reduce p to zero.

Next, variables n and n′ are introduced, both with initial value zero; an
invariant of n is that persons 1 thru n are nomads in F . The value of n′ is
always at least n. Persons n+1 thru n′ have a forward count of one (and so are
settlers); these persons will, however, eventually become nomads in F .

The variable m is introduced next. An invariant of m is that persons n′+1
thru m are the ones with a forward count of zero in F ; since all pure trips are full,
the initial value of m is thus N −p×C. The step AddFullMixedTrips adds full



mixed trips to F while C is less than m. Then IncludeRest adds one additional
trip to F in order to guarantee that every person is included in at least one trip.
This additional trip may be full or non-full.

The final step is to add nomadic trips to F in order to reduce the excess p
to 0, if this is not already the case. The number of nomads in these trips is at
least n′↑2 and at most m↓(p+1).

The total travel time is simply the minimum over all possible choices of the
travel times of the constructed bags. The calculation of the optimal travel time
is equivalent to a shortest-path problem. Formally, each non-deterministic choice
is interpreted as a minimum and the addition of a set to F adds the return-trip
time of the nomads in the added trip (where the predicate nomad is evaluated
once the trip is added) and the forward-trip time to the total trip time. We
exploit the fact that addition distributes over minimum —the formal equivalent
of the “principle of optimality” of dynamic programming— in order to obtain a
polynomial-time algorithm.

Let us now give the details of the individual steps.

5.2 Adding Pure Trips

The first step (after the non-deterministic initialisation of p) is AddPureTrips
which initialises F to a set of p pure trips. In order to guarantee that the nomad
count ncF is a decreasing function of the leader, bossF is increasing, and all pure
trips are full, the assignment to F is simply

F := 〈∪k : 1≤k≤p : {{i | N −k×C < i ≤ N − (k−1)×C}}〉 .

All trips added to F are full, and the leader of the kth trip is person N−(k−1)×C.
On completion of this assignment, F is ordered and |F |=p=pcF .
The forward-trip time for the pure trips is constant. It is given by the function

PT :

PT .p = 〈Σi : 0≤ i<p : t.(N−C×i)〉 .(25)

Thus

TOT =
〈
⇓p : 0≤p≤

⌊
N−2

C

⌋
: PT .p + NP.p

〉
.(26)

The value of the function NP is determined by the mixed and nomadic trips
added to F in the later stages.

(Formally, (26) is a consequence of the fact that addition distributes over
minimum. In other words, the time for the pure trips can be “factored out” of
the calculation of the total travel time.)

5.3 Adding Full Mixed Trips

In the second stage, variables n, n′ and m are initialised to 0, 0 and N −p×C,
respectively, and a set of full mixed trips is added to F as follows.



{ Invariant: ordered.F

∧ 0 ≤ n ≤ n′ ≤ C−1 ∧ n′↑1<m

∧ 〈∀i : 1≤ i≤n : 1≤ rF .i〉

∧ 〈∀i : n<i≤n′ ∨ m<i≤N : 1= fF .i〉

∧ pcF = 〈Σi : 2≤ i≤n : rF .i〉 +p+ [0=n<n′]

∧ d.m.n.n′ ≤ p }

do C <m →

〈[]i

: n′↑1 ≤ i ≤ C−1 ∧ d.(m−C+i).n′.i ≤ p−n′↑1+1

: F := F ∪{{j |1≤ j≤ i}∪{j |m−C+i< j≤m}} ;

m,n ,n′ , p := m−C+i , n′ , i , p−n′↑1+1

〉

od

The second, third and fourth clauses of the invariant of this loop express
precisely the functions of m, n and n′. Refer back to section 5.1 for an informal
account of their function.

The clause

pcF = 〈Σi : 2≤ i≤n : rF .i〉 +p+ [0=n<n′]

in the invariant expresses precisely the relation between p and the pure count of
F . Note that when 0=n all trips in F are pure; when, in addition, n<n′ there
is one trip in F which includes persons 1 thru n′. At a later stage, this trip will
become a mixed trip and, so, is not counted in p. The term [0=n<n′] evaluates
to 1 if 0=n<n′ and to 0 otherwise. The inclusion of this term compensates for
not counting the trip in the excess p.

The clause

d.m.n.n′ ≤ p

requires some explanation. Its function is to guarantee that the non-deterministic
choices do not abort; equivalently, the value of p is always at least zero. Specifi-
cally,

d.m.n.n′ = (
⌈

m−C

C−n′↑1

⌉
+1)× (n′↑1−1) .(27)

In order to guarantee 2(d) —the number of nomads in non-nomadic trips is a
decreasing function of the leader of the trip— , the value of n′ is increasing; each
mixed trip that is added to F has at least n′↑1 nomads and at most C−n′↑1

settlers. Thus, in this stage, at least
⌈

m−C

C−n′↑1

⌉
additional trips are added to



F , each of which causes p to be reduced by at least n′↑1−1. The third stage is
executed when m≤C; this stage guarantees that all people make at least one
trip by adding to F a single trip consisting of persons 1 thru m. This also causes
p to be reduced by at least n′↑1−1. Thus d.m.n.n′ is a lower bound on the
amount that p will be reduced by the later addition of trips to F .

We leave the verification of the invariant to the reader.
From the algorithm, we can determine the minimum total travel time for the

mixed trips. We have, for all p such that 0≤p≤
⌊

N−2
C

⌋
,

NP.p = MX.(N −p×C).0.0.p .

For the moment, we define MX.m.n.n′.p only for the case that C <m. Specifi-
cally, for all n and n′ such that 0 ≤ n ≤ n′ ≤ C−1, all m such that C <m, and
all p such that d.m.n.n′ ≤ p, we have

MX.m.n.n′.p = 〈⇓i

: n′↑1 ≤ i ≤ C−1 ∧ d.(m−C+i).n′.i ≤ p−n′↑1+1

: MX.(m−C+i).n′.i.(p−n′↑1+1)

〉 + t.m + rt.n′ .

The justification of this equation is that, for a given choice of i, a trip is added
to F with leader m. The forward time for the trip is thus t.m. The trip adds
1 to the forward count of each person from 1 thru i; after the addition of the
trip, persons 1 thru n′ are the nomads in F and the addition of the trip to F
adds rt.n′ to F ’s return-trip time. As before, the distributivity of addition over
minimum is used to “factor out” the contribution of each trip to the total travel
time.

5.4 Completing the Mixed Trips

The third stage, IncludeRest, ensures that everyone makes at least one forward
trip. The assignment is simply

F ,n , p := F ∪{{j |1≤ j≤m}} , n′ , p−n′↑1+1

From the invariant of the second stage, we determine that the assignment is
executed when n′↑1<m≤C; this guarantees that the added trip is regular. Also,
from the invariant, d.m.n.n′ ≤ p. That is, n′↑1−1 ≤ p. After the assignment,
it is thus that case that 0≤p. In more detail, the postcondition established by
the assignment is

ordered.F

∧ 〈∀i : 1≤ i≤N : 1≤ fF .i〉

∧ pcF = 〈Σi : 2≤ i≤n : rF .i〉 +p+ [0=n<n′]

∧ (0<p ∨ 0<n) .



The final conjunct is a consequence of the assumption C <N . At the conclusion
of the second stage, F is non-empty; so, |F | is at least 2 after the above as-
signment. By inspection of the assignments in the two stages, we conclude that
either 0<p or 0<n′. The conjunct follows because n is assigned the value of n′.

The trip that is added to F may be full (when m=C) or non-full (when
m<C); it may also be (or become) a mixed trip or it may be a nomadic trip.
Immediately following the assignment, the statement

if 0=p → skip

2 0<p → 〈[]i

: n′↑2 ≤ i ≤ m↓(p+1)

: n′ := i

〉

fi

is executed. This chooses the final value of the number of nomads. (The choice
of i cannot abort because, as remarked above, n′↑1<m≤C; as a consequence,
if 0<p then n′↑2 ≤ m↓(p+1).)

The addition of this trip extends our definition of the function MX. Antic-
ipating the fact that when 0=p no further trip is added to F , we have: for all
m, n and n′ such that m≤C,

MX.m.n.n′.(n′↑1−1) = t.m+ rt.n′ .

Also, for all m, n and n′ such that 2≤m≤C, and all p such that 0<p,

MX.m.n.n′.(p+n′↑1−1)

= 〈⇓i : n′↑2≤ i≤m↓(p+1) : NT.n′.i.p〉 + t.m+ rt.n′ .

The function NT gives the time taken by the nomadic trips. See below.

5.5 Adding Nomadic Trips

The final stage in the construction of F is the possible addition of a number of
nomadic trips. When this stage is executed, we have the following properties of
F , n, n′ and p:

0≤n≤n′≤C ∧ (0=p ∨ 2≤n′≤p+1)

∧ ordered.F

∧ pcF = 〈Σi : 2≤ i≤n : rF .i〉 +p+ [0=n<n′]

∧ 〈∀i : 1≤ i≤n : 1≤ rF .i〉 ∧ 〈∀i : n<i≤N : 1= fF .i〉

The goal is to add nomadic trips to F in such a way that F remains ordered,
the number of nomads in F becomes n′ (if it is not n′ already) and p is reduced
to zero.



We present a non-deterministic algorithm to achieve this task. The algorithm
is designed so that every bag that satisfies the specification corresponds to one
way of resolving the non-determinism.

The algorithm begins by ensuring that F has n′ nomads, and then repeatedly
adds nomadic trips to F whilst 0<p. By choosing the trips in order of decreasing
size, 2(a) is guaranteed without loss of choice. The symbl “∪̇” denotes bag union.
(It is only at this point in the construction that trips in F may have multiplicity
greater than 1.)

{ Precondition given above }

if 0=p → skip

2 0<p ∧ n<n′ → F , p , n := F ∪ {{j |1≤ j≤n′}} , p−n′+1 , n′

fi

{ 〈∀i : 1≤ i≤n′ : 1≤ rF .i〉 ∧ 〈∀i : n′ <i≤N : 1= fF .i〉 } ;

do 0<p→ 〈[]i

: 2≤ i≤ (p+1)↓n

: F , p , n := F ∪̇ {{j |1≤ j≤ i}} , p−i+1 , i

〉

od

{ ordered.F ∧ nF =n′ ∧ pcF = 〈Σi : 2≤ i≤nF : rF .i〉 }

Now we determine the additional travel time incurred by adding these trips to
F . Letting NT.n.n′.p denote the additional time, we have:

NT.n.n′.0 = 0 .

Also, for all p, n and n′ such that 0<p, 0≤n<n′ and 2≤n′≤ (p+1)↓C,

NT.n.n′.p = t.n′ + rt.n + TNT .n′.(p−n↑1+1) .

Finally, for all p and n such that 0<p, and 0≤n,

NT.n.n.p = TNT .n.p .

The function TNT is given by:

TNT .n.0 = 0 ,

and, for all p such that 0<p and all n such that 2≤n≤ (p+2)↓C,

TNT .n.p = 〈⇓i : 2≤ i≤ (p+1)↓n : t.i + rt.i + TNT .i.(p−i+1)〉 .



5.6 Solving the Equations

Finding the total travel time incurred by an optimal bag of forward trips is
achieved by determining the greatest solution to the above equations. This can
be done in worst-case time O(N2×C3) by first tabulating PT and TNT , then
NT followed by MX, and finally TOT. Each set of equations is evaluated by
imposing an appropriate lexicographic ordering on the parameters; for example,
MX.m.n.n′.p is evaluated in lexicographic order on p, m, C−n′ and C−n. (As
remarked earlier, the process is equivalent to solving a shortest-path problem,
so other shortest-path algorithms could be used. These are likely to be more
effective in practice; but they may have poorer worst-case complexities.) An
optimal bag (rather than just the travel time) can be determined in the standard
way by recording the terms that realise the minimum when evaluating any such
quantification.

6 Conclusion

That the torch problem can be solved at the level of generality in this paper in
time quadratic in the number of people appears to be new. The case of 4 people
and a bridge capacity of 2 is very widely discussed on the internet (although
its origin appears to be unknown). The case of N people and a bridge capacity
of 2 has been solved by Rote [3]. (The reader is referred to Rote’s paper for
other publications and web links.) I believe that the capacity-C problem has
been attempted, but presumably never solved (in polynomial time), because I
was told before embarking on it that it was believed to be “hard” [Tom Verhoeff,
private communication]. The problem is indeed difficult, but it is not “hard” in
any technical sense of the word (as, for example, in “NP-hard”). As we have
shown, the problem can be solved in time quadratic in the number of people.

I was motivated to tackle the problem because I use the capacity-2 problem
in a course on algorithmic problem solving [1] to entry-level Computer Science
students at the University of Nottingham. The capacity-2 problem is interest-
ing because it demonstrates that “obvious” solutions may be incorrect; also,
obtaining a correct solution demands particular attention to the avoidance of
unnecessary detail. (Like the capacity-C problem, the solution is obtained by
focusing on just the forward trips.) Initially, I thought that the capacity-C prob-
lem would not be much more difficult than the capacity-2 problem. It turned
out to be far harder to solve than I anticipated.

Of course, the solution presented here specialises in the case that the capacity
is 2. In this case, the solution is essentially the same as that presented by Rote. (In
the case that the capacity is 2, all the complications concerning the possibility of
non-full bags disappear; for this reason, the construction simplifies considerably.)
Rote describes the solution in terms of “multigraphs” rather than bags. For
capacity 2, the difference is superficial. Each edge of a “multigraph” connects
two people and, hence, is just a set of two people. However, Rote’s “multigraphs”
do not appear to generalise to capacity N , whereas the use of bags does.



For capacity 2, the solution can be determined in logarithmic time. For full
details see [1, chapter 8]. Rote describes the more obvious “greedy”, linear-time
algorithm.

The current solution leaves much to be desired. The underlying calculations
have not been done to the level of rigour and detail that I would nowadays de-
mand. The fact that the capacity-2 problem can be solved by a greedy algorithm
suggests that there is much scope for improving the worst-case complexity of the
solution presented here. The reason I suspect that improvements can be made is
that the “edges” in the underlying path problem connect vertices labelled with
a four-tuple one of whose components is p but the “length” of an edge does not
depend on p. This suggests that, at the very least, a linear-time algorithm should
be possible.
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