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1 Introduction

Renewed interest in the formal connection between programs and proofs has re-
cently been stimulated by Per Martin-Löf’s formalisation of constructive math-
ematics. Although Martin-Löf is himself a philosopher rather than a computing
scientist his theory has attracted considerable attention among theoretical com-
puting scientists (at least in Europe!). My own contribution to this institute is
to try to explain his theory from my own perspective as a computing scientist.
I have two specific objectives. The first is to demonstrate how the theory in-
creases our understanding of constructive mathematics and the relation between
programs and proofs. The second is to convey to you some of my exuberance
for his system as a formal system for performing program construction.

In order to put his work into perspective I shall begin with a very brief
review of some of the more important advances that have been made in the
“mathematics of programming” since 1968. I have taken 1968 as the starting
point since that was the year of a now-famous NATO conference on Software
Engineering in Garmisch, West Germany. It was at that conference, I believe,
that the term “software crisis” was coined. More importantly, it was at that
conference that the computing community became publicly aware of the vital
need for a theory of programming.
The four developments that I discuss are these.

Data Structuring
Functional Programming
Logic Programming
Program Verification

The first of these, the introduction of type declarations (enumerated types,
record structures etc.) into programming languages is also, historically, the first

∗Subfaculteit Wiskunde en Informatica, Rijksuniversiteit Groningen, Postbus 800,
9700 AV GRONINGEN, The Netherlands

1



to have had a significant impact on the way we program. C. A. R. Hoare’s sug-
gestions on data structuring [Ho], which were subsequently realised in the pro-
gramming language Pascal, were made with the expressed aim of “extend(ing)
the range of programming errors which logically cannot be made”.

That this objective was achieved is undoubtedly true, but the notion of
strong typing — the requirement that the left and right sides of all assignments
(implicit or explicit) have identical type — introduced in Pascal to achieve that
objective involved a severe penalty of inflexibility. For example, it is impossible
to define in Pascal an identity function — a function that takes an arbitrary
value as argument and returns the same value as result. It is, however, possible
to write separate identity functions for integers, for Booleans etc. This may not
seem to be a very significant example; its significance becomes more apparent
when one realises that separate, but essentially identical, procedures are needed
to search a list of widgets for a widget and to search a list of thingummyjigs for
a thingummyjig.

One of the benefits of some functional programming languages was to lib-
erate us from the strait-jacket of strong-typing without compromising Hoare’s
stricture on extending the range of errors which logically cannot be made. Thus
in the language ML, developed by Robin Milner and his colleagues as part of
the Edinburgh LCF system [GMW] one can define the identity function — it
takes the form id = λx.x and has the polymorphic type ∗ → ∗, meaning that it
maps an element of arbitrary type ∗ into an element of the same type ∗. Nev-
ertheless, there is a strict regime governing type correctness of programs that
prevents many involuntary errors. (“Polymorphic” means “having many forms”
and, indeed, polymorphic functions appear in many languages but in the role of
second-class citizens. For instance, the function new in Pascal is polymorphic
since it returns a pointer of arbitrary type. The term was apparently invented
by Christopher Strachey and is distinct from “overloading” such as occurs in
the use of “+” to denote both integer and real addition [Mi1]).

In spite of its undoubted advances there are still shortcomings in the type-
definition mechanism in ML (and in Standard ML [Mi2]). One such is that, for
example, the addition and multiplication functions on integers both have the
same type int× int → int as does the integer division function, div. There is,
thus, no mechanism in the language to record the different algebraic properties
of addition and multiplication (the fact that 0 is the identity of the former
and 1 the identity of the latter, etc.); nor is there any mechanism (in the type
structure) to indicate that addition and multiplication are everywhere-defined
functions whereas integer division is undefined when its second argument is zero.

Another shortcoming of the type-mechanism in ML is that there is no notion
of a dependent type, in which components of a type may depend on the values
held by previously-defined types. An example of a dependent type is the type
semigroup. An element of the type semigroup is a set S, say, together with an
associative binary operator +, say, defined on the elements of S. The point to
note about this definition is that a semigroup has two components, the second
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of which has type S × S → S which depends on the set, S, defined in the first
component.

The third topic on my list, logic programming, is often identified with pro-
gramming in Prolog. Prolog allows statements to be made in a limited form
of the predicate calculus called Horn-clause form. Horn clauses are interpreted
procedurally so that a set of one or more clauses describes a set of one or more
recursive procedures. There is no doubt that Prolog has achieved a great deal
in highlighting the value of formal logic to programming; my reference to logic
programming is, however, to a rather broader understanding of the nature of
programming as a mathematical activity requiring an unusual degree of formal-
ity and rigour.

The final topic on my list, program verification, is for me the most fun-
damental. But, although its development began about the same time as the
development of data-structuring techniques, it is probably the topic that has
had the least effect on the way that practising programmers develop software.
Its effects have been emasculated because the techniques of program verifica-
tion have never been properly integrated into a programming language. It is
still possible to write programs without having the slightest clue about program
proofs, invariant properties etc. and those few programmers who do have such
knowledge often regard program proofs as a gross incumbrence and impossible
to use except for “toy” problems.

I am impressed by Martin-Löf’s theory because it seems to combine within
the same framework many of the advances I have been discussing. It is a log-
ical system, developed from Gentzen’s system of natural deduction [Ge], that
formalises constructive mathematics in the style of Bishop [Bi]. It incorporates
very powerful type-definition facilities, including the notion of dependent types
mentioned earlier and it embodies an extremely important principle, the so-
called principle of “propositions as types”. In the time that I have available I
shall try to provide an account of the contribution that the theory might make
to the very practical task of program construction.

1.1 Propositions As Types

In outline, Martin-Löf’s theory is a formal system for making judgements about
certain well-formed formulae. Such judgements take one of four possible forms.
For the moment, however, I shall consider only one of these, the form

p ∈ P

A judgement of the form p ∈ P can be read in several different ways. In the
conventional computing science sense it is read as “p has type P” or “p is a
member of the set P”. Examples of such judgements (introduced now so that I
can use them very shortly) are

0 ∈ IN
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Proposition Type Type Name Example

P ⇒ Q P −→ Q function space λx.x ∈ A ⇒ A

λx.λy.x ∈ A ⇒ (B ⇒ A)

P ∧Q P ×Q cartesian product λx.〈x, x〉 ∈ A ⇒ (A ∧ A)
λy.fst y ∈ (A ∧ B) ⇒ A

P ∨Q P +Q disjoint sum λx.inl x ∈ A ⇒ (A ∨ B)

∃(P, x.Q(x)) Σ(P, x.Q(x)) dependent product 〈IN, 0〉 ∈ ∃(U1, A.A)
〈IN, λx.x〉 ∈ ∃(U1, A.A ⇒ A)

∀(P, x.Q(x)) Π(P, x.Q(x)) dependent function space λA.λx.x ∈ ∀(U1, A.A ⇒ A)

¬P P −→ ∅ λf.f∅ ∈ ¬∀(U1, A.A)

Table 1: Propositions as types.

meaning “0 has the type natural number”

red ∈ {red, white, blue}

meaning “red is an element of the enumerated type {red, white, blue}”

IN ∈ U1,

and
∅ ∈ U1.

Here U1 stands for a universe of types, the first in a hierarchy of universes. Thus
the judgement IN ∈ U1 reads that the set of natural numbers is an element of
the first universe, and the judgement ∅ ∈ U1 reads that the empty type is also
such an element.

In “intuitionistic” or “constructive” logic the judgement form p ∈ P ad-
mits a different reading. If P is a proposition (i.e. a well-formed formula con-
structed from the propositional connectives ∧,∨ etc.) then the judgement form
p ∈ P means that p is a summary of a (constructive) proof of P . In other
words proposition P is identified with the set (or “type”) of its proofs. This is
the idea generally attributed to Curry and Howard and called the principle of
propositions-as-types. Table 1 illustrates the principle.1

In constructive mathematics, a proof of P ⇒ Q is a method of proving Q

given a proof of P . Thus P ⇒ Q is identified with the type P −→ Q of (total)

1The notation we are using for λ-expressions and function application is the conventional
one [Chu,St]. That is, function application is denoted by juxtaposition and associates to the
left, and we assume that when a λ-term such as λx.q occurs in a larger expression q is taken as
extending as far to the right as possible — to the first unmatched closing bracket or the end of
the expression, whichever is first. Corresponding to the convention that function application
associates to the left we have the convention that implication associates to the right. Thus
P ⇒ Q ⇒ R is read as P ⇒ (Q ⇒ R).
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functions from the type P into the type Q. Assuming that A is a proposition,
an elementary example would be the proposition A ⇒ A. A proof of A ⇒ A is
a method of constructing a proof of A given a proof A. Such a method would
be the identity function of A, λx.x, since this is a function that, given an object
of A, returns the same object of A. The proposition A ⇒ (B ⇒ A) provides a
second, slightly more complicated, example of the constructive interpretation of
implication. Assuming that A and B are propositions, a proof of A ⇒ (B ⇒ A)
is a method that, given a proof of A, constructs a proof of B ⇒ A. Now, a proof
of B ⇒ A is a method that from a proof of B constructs a proof of A. Thus,
given that x is a proof of A the constant function λy.x is a proof of B ⇒ A.
Hence the function λx.λy.x is a proof of A ⇒ (B ⇒ A).

To prove P ∧Q constructively it is necessary to exhibit a proof of P and to
exhibit a proof of Q. Thus the proposition P ∧Q is identified with the cartesian
product, P ×Q, of the types P and Q. That is, P ×Q is the type of all pairs
〈x, y〉 where x has type P and y has type Q. For example, assuming that A

and B are propositions, the proposition (A ∧ B) ⇒ A is proved constructively
as follows. We have to exhibit a method that given a pair 〈x, y〉, where x is
an object of A and y is an object of B, constructs an object of A. Such a
method is clearly the projection function fst that projects an object of A ∧ B

onto its first component. (The function fst is not a primitive of type theory but
is expressed as λp.split(p, (x, y).x). In general split(p, (x, y).e) splits a pair p

into its two components and evaluates the expression e with the variables x and
y bound to the respective components. Thus split(p, (x, y).x) splits p into its
two components and then evaluates the expression x with x bound to the first
component, i.e. it evaluates the first component.)

A constructive proof of P ∨Q consists of either a proof of P or a proof of Q
together with information indicating which of the two has been proved. Thus
P ∨Q is identified with the disjoint sum of the types P and Q. That is, objects
of P ∨Q take one of the two forms inl x or inr y, where x is an object of P , y
is an object of Q, and the reserved words inl (inject left) and inr (inject right)
indicate which operand has been proved. As elementary examples of provable
propositions involving disjunction we take A ⇒ A ∨ B and A ∨ B ⇒ B ∨ A.
The proposition A ⇒ A ∨ B is proved by the function λx.inl x that injects
an argument x of type A into the left operand of A ∨ B. The proposition
A ∨ B ⇒ B ∨ A is proved by the function λx.when(x, y.inr y, z.inl z).2 In
general the construct when(x, y.e, z.f) is evaluated as follows. The argument
x is evaluated; if it takes the form inl a then the expression e is evaluated with
the variable y bound to a; if x takes the form inr b then the expression f is
evaluated with the variable z bound to b. Thus when(x, y.inr y, z.inl z) has
the effect of transforming a value of the form inr b into inl b and vice-versa.

The notation ∀(P, x.Q(x)) denotes a universal quantification. We prefer

2Later the name “∨-elim” is used instead of “when”. The latter is used for the moment in
order to suggest its operational meaning. Similarly, “∧-elim” should have been used instead
of “split”.
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this notation to the more conventional (∀x ∈ P )Q(x) because it makes clear
the scope of the binding of the variable x. In order to prove constructively
the proposition ∀(P, x.Q(x)) it is necessary to provide a method that, given
an object p of type P constructs a proof of Q(p). Thus proofs of ∀(P, x.Q(x))
are functions (as for implication), their domain being P and their range, Q(p),
being dependent on the argument p supplied to the function. As an example the
polymorphic identity function λA.λx.x is a proof of the proposition ∀(U1, A.A ⇒
A).

The notion of dependent function space is often severely restricted if not
completely unknown in conventional programming languages even though the
idea is commonplace in the space of real world problems. Examples would
include the type of functions that input a number n and then return a number
that is at least n, the type of functions that input a number n and then return
a function that inputs an array of size n and outputs its length, or a function
that inputs the details of a person and then, depending on whether the person
is living or dead, outputs that person’s employment status or details of the
person’s estate.

A constructive proof of ∃(P, x.Q(x)) consists of exhibiting an object p of P
together with a proof of Q(p). Thus proofs of ∃(P, x.Q(x)) are pairs 〈p, q〉 where
p is a proof of P and q is a proof of Q(p).

The type ∃(P, x.Q(x)) is called a dependent product because the type of the
second component, q, in a pair 〈p, q〉 in the type depends on the first component,
p. For example, there are many objects of the type ∃(U1, A.A). Each consists
of a pair 〈A, a〉 where A is a type and a is an object of that type. (Thus the
proposition is interpreted as the statement “there is a type that is provable”, or
“there is a type that is non-empty”.) The pair 〈IN, 0〉 is an object of ∃(U1, A.A)
since IN is an element of U1 and 0 is an element of IN. Two further examples
are 〈{red, white, blue}, red〉 and 〈IN ⇒ IN, λx.x〉.

Objects of the type ∃(U1, A.A) are the simplest possible examples of algebras
(one or more sets together with a number of operations defined on the sets) since
they each consist of a set A together with a single constant of A. Indeed algebras
are good examples of the need for dependent types. A semigroup, for example,
is a set S together with an associative binary operation on S. Thus a semigroup
is a pair in which the type of the second component depends on the value of the
first component.

Negation is not a primitive concept of type theory. It is defined via the
empty type. The empty type , denoted ∅, is the type containing no elements.
The negation ¬P is defined to be P ⇒ ∅.

¬P ≡ P ⇒ ∅

(≡ stands for definitionally equal to.) This means that a proof of ¬P is a
method for constructing an object of the empty type from an object of P . Since
it would be absurd to construct an object of the empty type this is equivalent
to saying that it is absurd to construct a proof of P .
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As an example of a provable negation, consider the proposition ¬∀(U1, A.A).
The proposition states that not every proposition (in U1) is provable, or not
every type is non-empty. The basis for its proof is very ordinary — we exhibit
a counter-example, namely the empty type ∅. Formally, we have to construct
a function that maps an argument f , say, of type ∀(U1, A.A) into ∅. Now f is
itself a function mapping objects, A, of U1 into objects of A. So, for any type
A, the application of f to A, denoted fA, has type A. In particular, f∅ has
type ∅. Thus the proof object we require is λf.f∅.

Some further examples of provable propositions may help to clarify the na-
ture of constructive proof.

λf.λg.λx.g(fx) ∈ (A ⇒ B) ⇒ (B ⇒ C) ⇒ (A ⇒ C)(1)

Functional composition proves the transitivity of implication.

λf.λx.λy.f〈x, y〉 ∈ (A ∧B ⇒ C) ⇒ (A ⇒ B ⇒ C)(2)

The propositional equivalent of currying.

λf.λw.split(w, (x, y).fxy) ∈ (A ⇒ B ⇒ C) ⇒ (A ∧B ⇒ C)(3)

Uncurrying.

λf.λx.f(inl x) ∈ (A ∨B ⇒ C) ⇒ (A ⇒ C)(4)

λw.when(w, f.λx.f(fst x), g.λx.g(snd x))(5)

∈ [(A ⇒ C) ∨ (B ⇒ C)] ⇒ [(A ∧B) ⇒ C]

1.2 An example derivation

Martin-Löf’s theory is defined by a number of natural deduction style [Ge]
inference rules. For the purposes of illustration we consider just four rules for
the moment. These are (simplified forms of) the rules for function introduction
and elimination, and two rules for ∨-introduction.

|[ x ∈ A

⊲ f(x) ∈ B

]|
⇒-introduction

λx.f(x) ∈ A ⇒ B

a ∈ A

f ∈ A ⇒ B

⇒-elimination
fa ∈ B
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a ∈ A

inl a ∈ A ∨B

b ∈ B

∨-introduction
inr b ∈ A ∨B

The second of these rules (⇒-elimination) introduces the least amount of
new notation and so is the easiest to begin with. It can be read in two senses
— in a logical sense and in a computational sense. In a logical sense the rule
states that if a is a proof of A and f is a proof of A ⇒ B, i.e. a method of
going from a proof of A to a proof of B, then fa — the result of applying the
method f to the given proof a — is a proof of B. In a computational sense it
states that if a has type A and f is a function from A to B then fa, the result
of applying the function f to a, has type B.

The first rule (⇒-introduction) says how functions can be constructed. It
has one premise — a so-called “hypothetical premise.” Hypothetical judgements
play an extremely important role in the theory and are indicated by the use
of scope brackets (“ |[ ” and “ ]| ”). (This notation, borrowed from the book by
Dijkstra and Feijen [DF], is not used by Martin-Löf but is one that I, personally,
have introduced in my own accounts of the theory. It is likely that a number
of my colleagues in this institute will also use the same notation for their own
purposes. Although there may be some differences in interpretation you will
not go far wrong if you consider all uses as meaning the same.) A hypothetical
judgement has two parts, first a number of assumptions and then a number
of conclusions that can be made in the context of those assumptions. In the
notation used here the assumptions are separated from the conclusions by the
symbol “⊲”. In a logical sense the rule may be read as “if assuming that x is a
proof of A it is possible to construct a proof f(x) of B then λx.f(x) is a proof of
A ⇒ B.” In a computational sense the rule is read differently. “If in a context
in which x is an object of type A the object f(x) has type B then the function
λx.f(x) is an object of type A ⇒ B.”

In general, f(x) will be an expression containing zero or more free occur-
rences of x. Such occurrences of x become bound in the expression λx.f(x).
Such binding of variables is always associated with the discharge of assump-
tions.

The last two rules say how to construct a proof of a disjunction or, equally,
how to construct an element of a disjoint sum. To prove A ∨ B we exhibit a
proof of A and tag it with the constant inl, or we exhibit a proof of B and
tag it with the constant inr. Put another way, an element of the disjoint sum
of types A and B is an element of A tagged by inl or an element of B tagged
by inr. The constants inl and inr are called injection functions and stand for
inject left and inject right, respectively.

We use these rules in the proof of the proposition

[(A ∨ (A ⇒ B)) ⇒ B] ⇒ B
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Example 1.1

λf.f(inr(λx.f(inl x))) ∈ [(A ∨ (A ⇒ B)) ⇒ B] ⇒ B

Derivation
0.0
0.1.0

0.1.1

0.1.2

0.1

0.2

0.3

1

|[ f ∈ [(A ∨ (A ⇒ B)) ⇒ B]
⊲ |[ x ∈ A

⊲ % 0.1.0,inl-introduction %
inl x ∈ A ∨ (A ⇒ B)

% 0.0,0.1.1, ⇒-elimination %
f(inl x) ∈ B

]|

% 0.1.0, 0.1.2, ⇒-introduction %
λx.f(inl x) ∈ A ⇒ B

% 0.1, inr-introduction %
inr(λx.f(inl x)) ∈ A ∨ (A ⇒ B)

% 0.0, 0.2, ⇒-elimination %
f(inr(λx.f(inl x))) ∈ B

]|

% 0.0, 0.3, ⇒-introduction %
λf.f(inr(λx.f(inl x))) ∈ [(A ∨ (A ⇒ B)) ⇒ B] ⇒ B

(End of derivation)

There is an ulterior motive for presenting the above as an example of proof
derivation in constructive mathematics, namely to explain the role of the law of
the excluded middle. It is commonly — misleadingly — stated that the latter
law is not valid in constructive mathematics. This is not so. What is valid is that
there is no general method for establishing the law for an arbitrary proposition;
a theory obtained by adding the law of the excluded middle to Type Theory
would not be inconsistent. Indeed it is the case that the law of the excluded
middle can never be refuted in constructive mathematics. Evidence for this
is obtained from the above example. Specifically, by substituting ∅ for B and
replacing P ⇒ ∅ by ¬P we obtain the tautology

¬¬(A ∨ ¬A).

Quantifying over A we obtain

∀(U1, A.¬¬(A ∨ ¬A))

and applying the result that “∀¬ ⇒ ¬∃” we obtain

¬∃(U1, A.¬(A ∨ ¬A)).

We interpret the last proposition as the statement that it is impossible to exhibit
a type, A, for which the law of the excluded middle does not hold.
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The form ¬¬P is of interest because it asserts that P cannot be refuted.
Other examples of propositions that are classically valid but cannot be generally
established in constructive mathematics are the following:

(A ⇒ B) ∨ (B ⇒ A)

(A ⇒ B ∨ C) ⇒ [(A ⇒ B) ∨ (A ⇒ C)]

(¬B ⇒ ¬A) ⇒ A ⇒ B

For each such proposition, P , it is however the case that ¬¬P can be proven
constructively. Indeed it is a theorem attributed by Kleene [Kl] to Glivenko
[Gl] that if P is any tautology of the classical propositional calculus then the
proposition ¬¬P is always constructively valid. For one method of modelling
classical reasoning in a formal implementation of a constructive theory you are
referred to [CH].

2 The Structure of the Rules

The programmer is, in his everyday activities, a user of formal systems— operat-
ing systems, text-processing systems and programming systems. The computing
scientist is therefore, in his everyday activities, concerned with the construction
and analysis of formal systems. What criteria should we use to assess a for-
mal system? What is it that distinguishes an “elegant” formal system from
an “inelegant” formal system? Certainly there have been many formalisations
of constructive mathematics but none has gained as much acclaim among the
computing scientist community as that of Per Martin-Löf. I believe that it is
because his system exhibits a certain elegance that others lack.

On first encounter, however, the universal reaction among computing scien-
tists appears to be that the theory is formidable. Indeed, several have specifically
referred to the overwhelming number of rules in the theory. On closer examina-
tion, however, the theory betrays a rich structure — a structure that is much
deeper than the superficial observation that types are defined by introduction,
elimination and computation rules. Once recognised this structure considerably
reduces the burden of understanding. The aim of this lecture is, therefore, to
convey that structure to you.

There is a very practical reason for wanting to recognise the inherent struc-
ture of the formal system. As programmers using a typed programming language
we are strongly encouraged to introduce and exploit our own type structures.
Such declared data types are intended to reflect the structure of the given data
and are in turn reflected in the structure of the programs that we write [see for
example Ja]. Any formalisation of constructive reasoning should also strongly
encourage the introduction of new type structures, but of course in a disci-
plined way. That his theory is already open to extension is a fact that was
clearly intended by Martin-Löf. Indeed, it is a fact that has been exploited by
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several individuals; Nordström, Petersson and Smith [NPS] have extended the
theory to include lists, they and Constable et al. [Co] have added subset types
and Constable et al. have introduced quotient types, Nordström has introduced
multi-level functions [No], Chisholm has introduced a very special-purpose type
of tree structure [Chi1] and Dyckhoff [Dyc] has defined the type of categories.

(Objections to such extensions can be made on the grounds that they can
always be encoded within the existing theory, in particular using the W-type
[Dyb], because they add to the complexity of the theory and because they
might undermine the quality of the theory even to the extent of introducing
inconsistencies. The experiences and arguments of others have convinced me
that this view is wrong. In the context of this lecture, however, my main
purpose is not to argue this view but to elucidate the structure of the rules as
presented by Martin-Löf.)

The rules defining individual type constructors can be divided into five sets.

1. The formation rule.

2. The introduction rules.

3. An elimination rule.

4. Computation rules.

5. Congruence rules.

The formation rule specifies how a type constructor may be parameterised by
other types; the introduction rules say how to form elements of the type and the
elimination rule says how to reason about elements of the type (or equally since
reasoning is constructive how to construct functions defined over the elements of
the type). The elimination rule associates with the type constructor a so-called
non-canonical object form; the computation rules then prescribe how to evaluate
instances of this form. Finally, the congruence rules express substitutivity and
extensionality properties. I shall not have time to discuss the latter rules; in
any case their formulation is relatively straightforward.

The main contribution that we make here is to describe a scheme for com-
puting the elimination rule and computation rules for a newly introduced type
constructor. In other words, we show that it suffices to provide the type for-
mation rule and the introduction rules for a new type constructor; together
these provide sufficient information from which the remaining details can be
deduced. The significance of this result is that it has the twin benefits of re-
ducing the burden of understanding and the burden of definition. It reduces
the burden of understanding since we now need to understand only the forma-
tion and introduction rules and the general scheme for inferring the remaining
rules. Conversely, the burden of definition is reduced since it suffices to state
the formation and introduction rules, the others being inferred automatically.

The method of inferring the elimination rule from the introduction rules is
described by way of examples rather than formally, although a formal method
does indeed underlie our descriptions and should be evident.
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2.1 Lists

The list type constructor should be familiar. The formation rule and two intro-
duction rules are as follows.

A type

List formation
List(A) type

A type

[ ]-introduction
[ ] ∈ List(A)

A type

a ∈ A

l ∈ List(A)

:-introduction
a : l ∈ List(A)

It is normal to omit the premises of the formation rule from the premises of
the introduction rules. Thus the premise “A type” would normally be omitted
from the [ ]- and :-introduction rules above. We shall follow the same practice
in the remainder of this discussion.

The (single) elimination rule for a given type constructor performs two func-
tions: it says how to reason about objects of the type and it says how to define
functions over objects of the type. (Because proofs are interpreted constructively
these amount to the same thing.) The first premise (excluding the premises of
the formation rule) of the elimination rule for type constructor Θ is therefore
the statement that C, say, is a family of types indexed by objects of Θ. In
other words C is postulated to be a property of objects of type Θ. The intro-
duction rules represent the only way that canonical objects of the type may be
constructed; so, in order to show that property C holds for an arbitrary object
of type Θ, it suffices to show that it holds for each of the different sorts of
canonical objects. There is thus one premise in the elimination rule for each of
the introduction rules. Moreover the premises of an introduction rule become
assumptions in the corresponding premise of the elimination rule.

In the case of lists there are just two sorts of canonical element, the empty
list and composite lists consisting of a head element and a tail list. In order to
prove that a property C is true of an arbitrary list we thus have to show that it
is true of the empty list and of composite lists. Equally, to define a function over
lists it suffices to define its value on the empty list and its value when applied
to a composite list. The elimination rule is therefore as follows.
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|[ w ∈ List(A)
⊲ C(w) type
]|

x ∈ List(A)
y ∈ C([ ])

|[ a ∈ A; l ∈ List(A);h ∈ C(l)
⊲ z(a, l, h) ∈ C(a : l)
]|

List-elimination
List-elim(x, y, z) ∈ C(x)

In this rule the third premise is the one corresponding to [ ]-introduction;
it is not hypothetical since apart from the premises of List formation there
are no premises in the [ ]-introduction rule. The fourth premise corresponds
to the :-introduction rule; it is hypothetical since the :-introduction rule has
two premises in addition to the premises of List formation. To emphasise the
way in which the premises of the introduction rule become assumptions of the
corresponding premise in the elimination rule we have used the same symbols,
a and l in the :-introduction rule and in the elimination rule.

Note that there is an additional assumption (“h ∈ C(l)”) in the elimination
rule arising from the fact that l is a recursive introduction variable.

The computation rules for a type introduce a third judgement form about
which we need to make some preparatory remarks before going into the details
of the computation rules for lists. The judgement form is

p = q ∈ P

and is read as “p and q are equal objects within the type P”. Thus implicit in
such a judgement are the judgements that p is an object of P and that q is an
object of P .

Computation in the theory is lazy. That is, to evaluate an expression like
List-elim(. . .) the first parameter is evaluated to its canonical form and then
further evaluation involving the other parameters takes place. Since the in-
troduction rules specify the only forms that the canonical objects of a type
can take it suffices to provide a computation rule corresponding to each of the
introduction rules. For the List type constructor we must therefore explain
how to evaluate expressions of the form List-elim([ ], . . .) and of the form List-
elim(a : l, . . .). We do so by replacing the premise “x ∈ List(A)” in the List
elimination rule by the premises of the introduction rule. Taking first the [ ]-
introduction we obtain the following computation rule.
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|[ w ∈ List(A)
⊲ C(w) type
]|

y ∈ C([ ])

|[ a ∈ A; l ∈ List(A);h ∈ C(l)
⊲ z(a, l, h) ∈ C(a : l)
]|

[ ]-computation
List-elim([ ], y, z) = y ∈ C([ ])

Since there are no premises in the [ ] introduction rule the effect of the replace-
ment is simply to reduce the number of premises by one. The conclusion of
the rule is also straightforward to see. Note the parameter to the elimination
hypothesis C in the conclusion.

The computation rule for composite lists is a little more difficult to under-
stand. As before the premise “x ∈ List(A)” in the elimination rule is replaced
this time by the premises of the :-introduction rule. The construction of the
conclusion of the rule is guided by its type part, viz. C(a : l). The right side
of the equality must be an object of this type. But the last premise of the List
elimination rule tells us how to construct such an object: we have to exhibit ob-
jects a, l and h of appropriate type and, having done so, the expression z(a, l, h)
has type C(a : l). The type of h is C(l); to construct something of this type
given that l has type List(A) we would use List elimination. Thus we obtain
the following rule.

|[ w ∈ List(A)
⊲ C(w) type
]|

a ∈ A

l ∈ List(A)
y ∈ C([ ])

|[ a ∈ A; l ∈ List(A);h ∈ C(l)
⊲ z(a, l, h) ∈ C(a : l)
]|

:-computation
List-elim(a : l, y, z) = z(a, l, List-elim(l, y, z)) ∈ C(a : l)

One final comment should be made about the computation rules to avoid
misunderstanding. The two rules above should be regarded as left-to-right
rewrite rules for the purposes of evaluating an expression involving List-elim.
As such the rules involve a recursive computation. The number of recursive
evaluations of List-elim may however be smaller than the length of the given
list — this occurs for example when the expression z(a, l, h) contains no oc-
currences of the variable h. This is what is meant by saying that evaluation
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is “lazy.” As a consequence an expression may well contain occurrences of the
constant ∅-elim — discussed in section 2.3 and for which no computation rules
are given — without evaluation of the expression being in any way divergent.

2.2 Disjoint sums

We may now return to the disjoint sum type whose introduction rules were
presented in section 1.2. Since there are two introduction rules there are four
premises in the elimination rule — the two standard premises which postulate
the existence of a family of types C and an object of the type, and one premise
for each introduction rule.

|[ w ∈ A ∨B

⊲ C(w) type
]|

d ∈ A ∨B

|[ a ∈ A

⊲ e(a) ∈ C(inl a)
]|

|[ b ∈ B

⊲ f(b) ∈ C(inr b)
]|

∨-elimination
∨-elim(d, a.e(a), b.f(b)) ∈ C(d)

Note how the premises of the introduction rules become assumptions in the
corresponding premises of the elimination rule. Note also the parameterisation
of C in each of the premises.

There are two computation rules for ∨-elim objects, one for each sort of
canonical object.

|[ w ∈ A ∨B

⊲ C(w) type
]|

a ∈ A

|[ a ∈ A

⊲ e(a) ∈ C(inl a)
]|

|[ b ∈ B

⊲ f(b) ∈ C(inr b)
]|

inl-computation
∨-elim(inl a, a.e(a), b.f(b)) = e(a) ∈ C(inl a)
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|[ w ∈ A ∨B

⊲ C(w) type
]|

b ∈ B

|[ a ∈ A

⊲ e(a) ∈ C(inl a)
]|

|[ b ∈ B

⊲ f(b) ∈ C(inr b)
]|

inr-computation
∨-elim(inr b, a.e(a), b.f(b)) = f(b) ∈ C(inr b)

The operational understanding of ∨-elim is that ∨-elim(t,a.e(a),b.f(b)) picks
out either e(a) or f(b) depending on the form taken by t. If it has the form
inl p then e is evaluated with the parameter a bound to p. On the other hand
if it has the form inr q then f is evaluated with the parameter b bound to q.

2.3 The empty set

It is always instructive to consider extreme cases. Let us therefore consider the
empty type. The formation rule is just the axiom:

∅-formation
∅ type

There are no introduction rules for the empty type (since it would be absurd
to construct an element of the empty type). Thus there are no premises in the
elimination rule other than the standard ones.

|[ w ∈ ∅
⊲ C(w) type
]|

r ∈ ∅
∅-elimination

∅-elim(r) ∈ C(r)

This rule is easily recognised as the absurdity rule — if it is possible to
establish an absurdity then it is possible to establish any proposition whatever.

Since there are no introduction rules there are no computation rules. The
object ∅-elim(r) should thus be considered as a divergent computation.
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2.4 Finite Sets

Suppose we wish to define a type constructor ℑ such that ℑ(A) is the type of
finite subsets of A.3 Any such subset can be constructed by listing its elements.
Conversely any list of elements of A may be regarded as a finite subset of A
provided that we disregard the order of the elements and repeated occurrences
of the same element. ℑ(A) is thus the quotient of List(A) with respect to the
equivalence relation that defines two lists as equal if they have the same elements
independent of order and number of repeated occurrences.

We define the type constructor ℑ by adding to the introduction rules for
List two additional rules defining the above equivalence. In full the rules are as
follows.

A type

ℑ-formation
ℑ(A) type

φ-introduction
φ ∈ ℑ(A)

a ∈ A

s ∈ ℑ(A)

;-introduction
a; s ∈ ℑ(A)

a ∈ A

s ∈ ℑ(A)

repetition
a; a; s = a; s ∈ ℑ(A)

a ∈ A

b ∈ A

s ∈ ℑ(A)

order
a; b; s = b; a; s ∈ ℑ(A)

How should we construct the elimination rule for ℑ ? The best way to begin
is to view the rule as a method of defining a function over objects of the type. If
a function is to be truly a function then it must give equal values when applied
to equal objects. Looking at it from the point of view of proofs, a proof that
an object has some property must be independent of the way the object was
constructed. Thus the ℑ-elimination rule is constructed like the List-elimination

3The material in this section is due to [Chi2] to whom the readers are referred for further
discussion.
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rule but with two additional premises, one corresponding to the repetition rule
and the other corresponding to the order rule.

|[ w ∈ ℑ(A)
⊲ C(w) type
]|

x ∈ ℑ(A)
y ∈ C(φ)

|[ a ∈ A; s ∈ ℑ(A);h ∈ C(s)
⊲ z(a, s, h) ∈ C(a; s)
]|

|[ a ∈ A; s ∈ ℑ(A);h ∈ C(s)
⊲ z(a, a; s, z(a, s, h)) = z(a, s, h) ∈ C(a; s)
]|

|[ a ∈ A; b ∈ A; s ∈ ℑ(A);h ∈ C(s)
⊲ z(a, b; s, z(b, s, h)) = z(b, a; s, z(a, s, h)) ∈ C(a; b; s)
]|

ℑ-elimination
ℑ-elim(x, y, z) ∈ C(x)

The premise corresponding to the repetition rule

|[ a ∈ A; s ∈ ℑ(A);h ∈ C(s)
⊲ z(a, a; s, z(a, s, h)) = z(a, s, h) ∈ C(a; s)
]|

is constructed as follows. The assumptions are derived from the premises of
the repetition rule as in our discussion of lists. The judgement asserts that the
proof object of C(a; s) is the same whether we choose to evaluate it from a; s
or a; a; s. In the former case we evaluate z(a, s, h) and in the latter case we
evaluate z(a, a; s, z(a, s, h)).

The premise corresponding to the order rule

|[ a, b ∈ A; s ∈ ℑ(A);h ∈ C(s)
⊲ z(a, b; s, z(b, s, h)) = z(b, a; s, z(a, s, h)) ∈ C(a; b; s)
]|

is constructed similarly.

2.5 Polynomials over {0, 1}

Consider now the representation of numbers in binary form. A binary numeral
is a list of 1’s and 0’s in which leading 0’s are insignificant. Thus 11 = 011 =
0011 and so on. A binary numeral is, however, one particular interpretation of
such a list. More generally we may regard such a list as denoting a polynomial;
thus, 11 denotes 1 × x + 1. Using Λ to denote the empty list we can define a
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type, called P say, of lists of 0’s and 1’s in which leading 0’s are insignificant as
follows.

Λ-introduction
Λ ∈ P

p ∈ P

0-introduction
p0 ∈ P

p ∈ P

1-introduction
p1 ∈ P

leading zeroes
Λ0 = Λ ∈ P

Given these four introduction rules the elimination rule for P has four
premises. The four premises state that to define a function over P it is necessary
to consider three cases — the case where the argument is Λ, the case where it
is of the form p0 and the case where it is of the form p1 — and furthermore
it is necessary to show that the insignificance of leading zeroes is respected.
Specifically, we have the following rule.

|[ w ∈ P

⊲ C(w) type
]|

x ∈ P

y1 ∈ C(Λ)

|[ p ∈ P ;h ∈ C(p)
⊲ y2(p, h) ∈ C(p0)
]|

|[ p ∈ P ;h ∈ C(p)
⊲ y3(p, h) ∈ C(p1)
]|

y2(Λ, y1) = y1 ∈ C(Λ)

P -elimination
P -elim(x, y1, y2, y3) ∈ C(x)
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3 The Boyer-Moore Majority-Vote Algorithm

3.1 Preliminary remarks

This lecture is concerned with examining the relationship between the heuristics
used in inductive proof and the heuristics used in the development of loop
invariants [Ba1,DF,Gr] in algorithm design. Before we do so it is necessary to
introduce two additional type structures, the natural numbers and the subset
type [Co,NP,Pe2]. Given the discussion in the previous lecture the type of
natural numbers is easy to explain. There are just two introduction rules, the
first asserting that 0 is a natural number, and the second asserting that the
successor of m is a natural number whenever m is a natural number.

0-introduction
0 ∈ IN

m ∈ IN
+1-introduction

m+ 1 ∈ IN

The elimination rule for natural numbers is the familiar rule of simple mathe-
matical induction. We leave as an exercise the reconstruction of the elimination
and computation rules.

The subset type is less straightforward since it introduces a new concept, that
of information loss. Quite early on in the application of the theory to computing
science it was recognised that some proof objects have no computational content.
Proof objects that witness equalities are the most obvious example, to which we
can also add proof objects of negations and other propositions built with these
two as basis. For this reason the subset type was introduced into the theory.
The subset type is like the existential or Σ-type. To construct an object of the
latter we have to construct a pair.

a ∈ A

b ∈ B(a)

∃-introduction
〈a, b〉 ∈ ∃(A, x.B(x))

In the subset type the information contained in the proof of the second
component is lost (the reason being that it very often carries no computational
content).

a ∈ A

B(a) true

Subset introduction
a ∈ Set(A, x.B(x))
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The judgement form P true means that P is a proposition that has been
established to be true. This judgement form offers a possible mechanism for
integrating other formal proof systems with that of type theory. One of the rules
for establishing such a judgement should be, of course, that if P is constructively
true then P is true.

p ∈ P

Constructive truth
P true

There is however no reason why one should not also allow instances of the
law of the excluded middle to be true judgements.

excluded middle
P ∨ ¬P true

The elimination rule for subset types is however a little harder to use since
the constructive evidence is unavailable.

|[ w ∈ Set(A, x.B(x))
⊲ C(w) type
]|

x ∈ Set(A, x.B(x))

|[ a ∈ A; B(a) true
⊲ c(a) ∈ C(a)
]|

Subset elimination
c(x) ∈ C(x)

3.2 Problem statement

The problem we use to illustrate algorithm development in Martin-Löf’s theory
of types is called the majority-vote problem. It may briefly be described as
determining whether or not one of the candidates in a ballot has received a ma-
jority of the votes. The solution on which our development is based is described
in [MG] and is attributed by them to R. Boyer and J.S. Moore.

Let us suppose that the number of votes cast in a ballot is n and that the
votes are recorded in an array a of length n. To be completely formal we further
suppose that the candidates are drawn from the (non-empty) type A. Equality
on A is necessarily decidable. Thus from now on we work within the following
context.

|[ A ∈ U1

; .eq. ∈ ∀(A, a.∀(A, b.(a = b) ∨ ¬(a = b)) % We write a.eq.b

; n ∈ IN
; a ∈ Set(IN, i.i < n) −→ A
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; x0 ∈ A

⊲

In most ballots there are few candidates and many voters. Thus an obvious
solution is to create a pigeon hole for each candidate and to put votes one-by-one
into the pigeon holes. When all votes have been counted the number of votes of
the candidate receiving most votes can be compared with n div 2. This means,
however, that we must either assume known the number of candidates, allow for
n candidates, or perform a preliminary analysis to determine the exact number
of candidates. We obtain a much more elegant solution by doing none of these
and abandoning the pigeon-hole solution altogether.

The specification in type theory of the program we require is the following
theorem.

(0) Set(A, x.majority(x)) ∨ ¬Set(A, x.majority(x))

where
majority(x) ≡ N(i : 0 ≤ i < n : ai = x) > n div 2.

Note that (0) is trivially true in classical mathematics; in constructive math-
ematics it is only true if one can provide a proof of either the proposition
Set(A, x.majority(x)) — i.e. exhibit a candidate receiving a majority of votes
— or the proposition ¬Set(A, x.majority(x)). Note also that an object in the
right summand of (0) carries no computational content. What is significant is
that the specification is deterministic: any two objects that achieve the specifi-
cation must be equal.

3.3 Solution strategy

In searching problems such as this a common strategy is to replace a proposition
that may or may not be satisfiable by one that is always satisfiable but in such a
way that a simple test on a satisfying instance determines whether the original
proposition is satisfiable. This, for example, is the strategy adopted when a
sentinel is added to the end of an array during a linear search for an element x.
It is also the strategy used in specifying binary search when we seek an index to
a given array that separates all values at most a given value x from those greater
than x, rather than determining whether or not x occurs in the array [Ba1]. And
it is the strategy used in the Knuth-Morris-Pratt string searching algorithm
where the search for a pattern in a string is replaced by the computation of a
failure function [KMP]. In this case we recognise that an easily solved problem
is that of determining whether or not a given candidate x occurs a majority of
times in a. This problem has specification:

(1) ∀(A, x.majority(x) ∨ ¬majority(x)).

We leave it as an exercise for the reader to construct an object of (1).
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Our solution to the majority-vote problem is based on combining a solution
to (1) with a solution to the following:

(2) Set(A, x.pm(n, x)),

where the predicate pm has yet to be defined. (The parameter n occurs in pm

in anticipation of later developments.)
Comparing (2) with (0) immediately suggests a definition of pm.

(3) pm(n, x) = majority(x) ∨ ¬Set(A, x.majority(x)).

Of course a pair of objects of types (1) and (2) is not the same as an object of
(0). However such an object can be easily recovered. Specifically, the function

λq.split(q, (f, p).when(fp, a.inl p, b.inr (λx.x))

is of type (1) ∧ (2) ⇒ (0). This can be seen by the following derivation (which
the reader may choose to skip).

0.0
0.1

0.2

0.3.0
0.3.1

0.3.2

0.3.3.0

0.3.3.1

0.3.4.0

0.3.4.1

0.3.4.2

0.3.5

0.4

% The abbreviation S is used throughout for
Set(A,x.majority(x)) ∨ ¬Set(A, x.majority(x))

%

|[ f ∈ ∀(A,x.majority(x)∨ ¬majority(x))
; p ∈ Set(A,x.pm(n, x))
⊲ % pm(n, x) ⇒ (¬majority(x) ⇒ ¬Set(A, x.majority(x)),

%exercise 1.13 (b)%
%

p ∈ Set(A,x.¬majority(x) ⇒ ¬Set(A,x.majority(x)))

|[ x ∈ A

; g ∈ ¬majority(x) ⇒ ¬Set(A,x.majority(x))
⊲ % 0.0,0.3.0, ∀-elim %

fx ∈ majority(x) ∨ ¬majority(x)

|[ a ∈ majority(x)
⊲ % 0.3.0, 0.3.3.0, Subtype-intro, inl-intro %

inl x ∈ S

]|

|[ b ∈ ¬majority(x)
⊲ % 0.3.1,0.3.4.0, ⇒-elim %

gb ∈ ¬Set(A, x.majority(x))

% 0.3.4.1, example 2.1, inr-intro %
inr(λx.x) ∈ S

]|

% 0.3.2,0.3.3,0.3.4, ∨-elim %
when(fx, a.inl x, b.inr(λx.x)) ∈ S

]|

% 0.2,0.3, Subtype-elim %
when(fp, a.inl p, b.inr(λx.x)) ∈ S

]|
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The identifier “pm” has been chosen as an abbreviation for “possible-majority
candidate”. From (3) we observe that an object x ∈ Set(A, x.pm(n, x)) satisfies
the property

(4) ¬majority(x) ⇒ ¬Set(A, x.majority(x))

(since the right side of (3) formally implies (4)). Because a candidate obtaining
a majority of votes is always unique, if one exists, (4) may be read as the
statement that x excludes all other candidates from being in the majority.

3.4 Invariants versus Inductive Hypotheses

We choose to prove (2) by elimination on n (i.e. by induction over the natural
numbers). The basis is trivial since no candidate can occur a majority of times
among 0 votes: thus we can straightforwardly exhibit an object of the right
summand of (3) and any object will do as our possible-majority candidate.
Problems occur when we try to perform the induction step. Suppose that x ∈
Set(A, x.pm(k, x)) for some k ∈ IN. How does one construct an object y ∈
Set(A, x.pm(k + 1, x))? It is clear that more information is needed about the
object x — we must strengthen our induction hypothesis.

In programming terms our aim is simply to construct a loop of the form for

i := 1 to n do that exhibits a possible-majority candidate at each iteration. The
notion of inductive hypothesis corresponds directly to the notion of invariant
property. Strengthening the inductive hypothesis corresponds to introducing
additional auxilliary variables into the computation.

Too strong a hypothesis would be the conjunction of (0) and

∀(A, x.majority(x) ∨ ∀(x,¬majority(x)) ⇒ pm(n, x))

since it defeats the purpose of introducing the predicate pm. (Such a hypothesis
states that x is a possible-majority candidate if either it is a majority candidate
or no value is a majority candidate. It is a hypothesis likely to be proposed by
a mathematician with no regard for the computational efficiency of the proof.)
Instead we wish to strengthen the induction hypothesis as little as possible.

Another hypothesis we might consider is that along with the possible ma-
jority candidate is known its number of occurrences in the array segment. This
is both too strong and too weak. It is too weak to stand alone as an inductive
hypothesis. It is too strong because if we do try to prove it inductively we are
obliged to consider a hypothesis in which the number of occurrences of every
candidate is known, i.e. we have to revert to the pigeon-hole method.

The hypothesis we actually make is that not only is there a possible-majority
candidate x but there is also an “estimate” of its number of occurrences in the
array segment.

The information that the estimate must convey is when to discard one value
and replace it by another. Suppose x is a possible-majority candidate for the
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first k votes. Then it is necessary to discard x as a possible-majority value for
the first (k+1) votes if the number of occurrences of x among these votes does
not guarantee that no other value is a possible-majority value. This will be so
when the number of occurrences of x is at most (k + 1) div 2. This suggests
that the estimate we maintain is an upper bound on the number of occurrences
of x. Denoting the estimate by e we require:

(5.1) no−of−occurrences(k, x) ≤ e

(where no−of−occurrences(k, x) = N(i : 0 ≤ i < k : ai = x)).
But this property alone is insufficient. We need to know that e is not a

gross overestimate of the number of occurrences of x (the value e = k satisfies
(5.1)). The value e must also represent some limit on the number of occurrences
of other candidates which precludes their being majority values. We propose
therefore that e should also have the property:

(5.2) ∀(A, y.(y = x) ∨ no−of−occurrences(k, y) ≤ k − e).

The property (5.2) will imply the property pm(k, x) if we also add the re-
quirement:

(5.3) k ≤ 2 ∗ e.

In summary, the property we require to prove is

(6) Set(A× IN, (x, e).ind−hypo(n, x, e))

where ind−hypo(k, x, e) is the conjunction of properties (5.1), (5.2) and (5.3).
We now have two tasks. The first is to prove (6) by induction. An object

of (6) will therefore take the form IN-elim(n, basis, (m,h)induction−step). The
second task is to verify that the conjunction of properties (5) is indeed a stronger
property than pm(k, x). This is needed in order to show that the function fst

maps an object of type (6) into the required object of type (2).
The second task is a problem of integer arithmetic and is one that we do not

tackle here. We assume therefore that (the reader will verify for himself that)

fst ∈ ∀((6), (x, e).pm(n, x)).

Let us now turn to the inductive proof of (6). The basis is a trivial problem
of integer arithmetic since we can exhibit an arbitrary candidate, x0 say, as
possible-majority candidate and 0 as the estimate of its number of occurrences.

For the induction step we assume that x and e satisfy properties (5) and
show how to construct new values x′ and e′ satisfying (5)[k := k + 1]. (To be
completely formal we should assume that z, say, is an object of (6) and then
split z into its components x and e.) Consider now the effect of the inclusion of
the kth vote, ak, in the votes cast.
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If ak = x the estimate e of its occurrences increases by one and x is retained
as a possible-majority value. That is (x, e + 1) ∈ (6)[k := k + 1].

If, however, ak 6= x the estimate e of x’s occurrences remains constant and
the situation is more complicated. One possibility is that k = 2 ∗ e and hence
k + 1 > 2 ∗ e. This clearly indicates that x is not a possible-majority value
and there is the possiblility that some other value occurs a majority of times.
The only value this could be is ak since by the induction hypothesis no value y

different from x is a majority value in the first k votes and ak is the only value
whose number of occurrences has increased in the process of extending the array
segment. An upper bound on the number of occurences of ak is k − e+ 1 since
it occurs, by (5.2), at most k − e times among the first k votes and, trivially,
once more among the first (k + 1) votes. Thus if ak 6= x and k = 2 ∗ e the new
possible majority value is x′ = ak and the new estimate is e′ = k− e+1 (which
we observe equals e+ 1).

The final possiblility is that although ak 6= x the bound k+1 ≤ 2∗e remains
true. In this case k+1− e is exactly one more than than k− e and the number
of occurrences of each element y in the first (k + 1) votes is at most one more
than its number of occurrences is the first k votes. Thus (5)[k := k + 1] is true
of x′ = x and e′ = e.

Summarising, the inductive step takes the form:

if ak = x −→ 〈x, e+ 1〉
[] (ak 6= x) ∧ (2 ∗ e = k) −→ 〈ak, e+ 1〉
[] (ak 6= x) ∧ (2 ∗ e > k) −→ 〈x, e〉
fi

and the complete program (including a solution to (1)) takes the form:

split(
IN-elim(n

,< x0, 0 >

, (k, p).split(p
, (x, e).if ak = x −→< x, e + 1 >

[] (ak 6= x) ∧ (2 ∗ e = k) −→< ak, e+ 1 >

[] (ak 6= x) ∧ (2 ∗ e > k) −→< x, e >

fi

)
)

, (x, e).
(λx.when(

IN-elim(n, 0, (k, c)if ak = x −→ c+ 1
[] ak 6= x −→ c

fi

)
.gt.n div 2
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4 The future of type structure

The world of programming languages seems to be split into two quite distinct
and antagonistic parts — the world of untyped languages and the world of
typed languages. The best-known example of the former is probably Lisp but it
also includes Prolog, all command languages such as Cshell and text-processing
languages like TEX. The best-known example of the latter is probably Pascal but
it also includes modern functional languages like SML [Mi2]. An illuminating
account of the differences between Lisp and Pascal is afforded by the following
quotation from the Foreword written by Alan J. Perlis to Abelson and Sussman’s
book, “Structure and Interpretation of Computer Programs” [AS].

“It would be difficult to find two languages that are the communicating coin of
two more different cultures than those gathered around these two languages. Pas-
cal is for building pyramids — imposing, breathtaking, static structures built by
armies pushing heavy blocks into place. Lisp is for building organisms — impos-
ing, breathtaking, dynamic structures built by squads fitting fluctuating myriads
of simpler organisms into place. . . . In Pascal the plethora of declarable data
structures induces a specialization within functions that inhibits and penalizes
casual cooperation. It is better to have 100 functions operate on one data struc-
ture than to have 10 functions operate on 10 data structures.

The tension that exists between the typed and type-free worlds will never, in
my view, be completely reconciled. Those of us who advocate typed languages
are, in so doing, also advocating a discipline that ensures that the structure
of our “pyramids” is always evident. Discipline means constraint. But there
will always be a need for “throw-away” programs, “organisms” that are used,
perhaps quite intensively but for a short period of time and then discarded.

Although the tensions will never be reconciled the aim must surely be to
bring the two sides closer and closer together. Such certainly is the aim of ML
with its introduction of the notion of polymorphic type. Moreover, on the other
side, noone would argue against the idea that a clearer structure would facilitate
and not hinder the reuse of software.

Alongside the dichotomy between typed and type-free languages most pro-
grammers would recognise a dichotomy between “static”, or “compile-time”,
type checking and “dynamic”, or “run-time” type-checking. This view of type
is however a severe impediment to future progress because there is indeed no
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such dichotomy; there is a trichotomy. There is a third time at which type
checking can take place and that is at development time.

There are many properties of a program that cannot be discovered either at
run-time or at compile-time because of either theoretical or practical impossi-
bility. I need only mention one — termination. Many would argue, however,
that static type checking is an a priori requirement on any notion of type in
programming languages, that such a machine-check substantially increases the
reliability of our programs. The truth is though that the most significant benefit
of a well-defined type structure is the support that it gives to organising the
development of programs and that an experienced programmer will (or should?)
never make major type errors in just the same way that he never makes major
syntactic errors. The standards that we require of professional programmers
should at least ensure that.

For there to be any progress in the exploitation of type structure in improving
the quality of computer programs it is vital that it be linked to the development
process rather than to issues of implementation. Martin-Löf’s theory, with
its concept of dependent types has sufficiently enriched the language of types
that they may be equated with specifications. There can be no going back to
an impoverished, statically-checkable language. The direction has been set for
development-time type-checking and we must continue to pursue it.
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