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Abstract

This thesis addresses the topic of constructive normalization proofs for typed λ-calculi
with weak notions of conversion between λ-terms, and their formalization in a computer
proof-checker. The name “weak conversion” encompasses various definitions, but all of
them share the common property of not validating the ξ rule of the λ-calculus, which is
responsible for allowing arbitrary reductions under λ-abstractions.

A particularly interesting notion of weak conversion is what we call CH-weak con-
version. This relation is subtle, since despite the absence of the ξ rule, it still allows
to perform a limited class of reductions on terms under λ-abstractions. This notion of
reduction is different in some crucial aspects from both weaker and stronger reduction
relations, thus existing constructive proofs of normalization do not adapt neatly to it, and
new solutions have to be found. This thesis provides an analysis of the term-rewriting
properties of CH-weak conversion, and develops a novel method that is used to prove
normalization for a version of Gödel’s System T with this notion of equality. The proof
has been fully formalized and verified in the Agda proof-checker, and provides the first
account of a constructive proof of normalization for a typed λ-calculus with CH-weak
equality.

The thesis also investigates weak equality in the context of dependent types, with
the definition of an original version of Martin-Löf Type Theory (MLTT) with a notion of
weak conversion called “weak explicit substitutions”, and a full computer formalization
of the normalization theorem. This version of MLTT is also compared with the Minimal
Type Theory, a dependent type theory with CH-weak conversion that constitutes the
intensional level of the Minimalist Foundation.
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Chapter 1

Introduction

Typed λ-calculi have first arised in logic as foundational theories for mathematics,
starting from the works of Church and Curry [23, 17]. They then evolved into expressive
formalisms for defining and reasoning about programming languages and their properties
[39]. A rich and active line of research is the one that studies these formalisms from
both points of view, according to what is known as the Curry-Howard correspondence,
or the propositions-as-types paradigm [46].

The λ-calculus is, in its essence, a term-rewriting system [19], usually considered
together with a notion of reduction, that is a binary relation between λ-terms that gives
a set of rewrite rules. A reduction relation defines how to “compute” with terms of the
λ-calculus, or “run” programs written as λ-terms, by repeated application of rewrite
rules. When a term cannot be reduced any further, we say that it reached a normal
form. The process of finding a normal form for a term is called normalization. Normal
forms can be seen as representing values for λ-terms, thus they attach meaning to them.
Two terms are then considered equal whenever they have the same normal form.

Through the lens of the Curry-Howard correspondence, type theories can be seen as
systems of formal logic, where propositions are identified with the type of their proofs, so
that proving a proposition is nothing more than providing a term of the corresponding
type. A characteristic of most typed λ-calculi is that they enjoy the normalization
property, meaning that every well-typed term has a normal form. This property is
important because it implies that certain types are empty, making the theory consistent
as a logic. It follows that, when considering typed λ-calculi as foundational systems
for mathematics, the particular notion of reduction that is considered, as well as its
normalizability, are crucial aspects that must be taken into great consideration.

The standard reduction relation of the λ-calculus is β-reduction [23, 16]. Sometimes a
stronger notion is considered, with the addition of the η-reduction scheme that represents
a weak principle of extensionality of functions. Stronger reduction relations imply that
more equations hold, something that is particularly useful in proof assistant based on
dependent type theories, where computational equalities between λ-terms can be checked
automatically by the machine.

There are, however, some good reasons to consider notions of reduction that are
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2 CHAPTER 1. INTRODUCTION

weaker then the standard, “full” β-reduction, in the sense that the allowed reductions
are a subset of full β: a weak reduction relation equates fewer terms, so weak equational
theories have more models. Moreover, certain properties of term-rewriting systems, like
the standardization theorem, are easier to prove under weaker reduction relations than
under full β-reduction [22].

There are several different notions of reduction that can be deemed as weak, but
they all share the common property of not validating the ξ rule, which is responsible
for allowing arbitrary reductions under λ binders, to be performed on the body of
abstractions. This aspect makes weak reduction particularly interesting for the study
of the dynamics of programming languages [41, 31], where evaluation only involves
closed terms, and thus never goes under binders. Among the most elementary notions
of reduction is weak-head reduction. Weak-head reduction can be informally described
as β-reduction without the ξ rule.

Another kind of weak λ-calculus can be defined in the framework of explicit substi-
tutions [7]. Weak explicit substitutions are usually defined from explicit substitution
calculi by disallowing substitutions to be propagated under λs or other binding forms
[41, 12, 26]. Explicit substitutions, including their weak variant, are easier to formalize,
since they do not involve metalinguistic substitution operations. Moreover, their gener-
ally lead to efficient implementations, because they correspond quite closely to abstract
machines used in concrete implementations of the λ-calculus [7].

A perhaps more obscure notion of weak reduction is known in the literature as
restricted reduction [32] or weak combinatory reduction [22], that we call CH-weak
reduction here to avoid confusion with other weak reduction relations. CH-weak reduction
can be informally described as a β-reduction where contraction under λ-abstractions is
restricted to a particular class of terms, called weak redexes. Formally, this is achieved by
defining the reduction relation without the usual congruence rules for term constructors,
as in the full β-reduction, but using a substitution rule instead. As a consequence of this
definition, the ξ rule is rendered invalid. CH-weak reduction can be shown to correspond
in a precise way to reduction in combinatory logic [22].

A notable example of a typed λ-calculus equipped with a CH-weak reduction relation
is found within the framework of the Minimalist Foundation, a two-level foundation
for constructive mathematics ideated in [43] and completed in [42]. The intensional
level of the Minimalist Foundation in [42] is represented by a dependent type theory in
the style of Martin-Löf Type Theory, called the Minimal Type Theory, or mTT. mTT
exhibits a peculiar formulation of judgmental equality that replaces all congruence rules
with a primitive substitution rule, thus implementing CH-weak reduction instead of full
β-reduction.

The subtlety of CH-weak reduction lies in the fact that, despite the absence of the
ξ rule, it is still possible to perform certain reductions on terms under λ-abstractions
and binders in general, via the substitution rule. Thus, when defining an algorithm
to compute the normal form of terms, it is not possible to just ignore λ-abstractions,
because their bodies could contain valid redexes. But at the same time, one can not
simply proceed by recursion inside the λ and evaluate the body, because such operation
is only sound, in general, in presence of the ξ rule.
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1.1 Contributions

This thesis addresses the problem of constructive normalization proofs for typed λ-calculi
with weak notions of equality between terms. The work was originally motivated by
the open normalization problem for the mTT, a dependent type theory with CH-weak
reduction. This notion of reduction is different in some crucial aspects from both weaker
and stronger reduction relations, thus existing constructive proofs of normalization do
not adapt neatly to it, and new solutions have to be found. For this reason, in this
thesis we specifically focus our attention on typed calculi with CH-weak reduction and
similar notions.

The first contribution is represented by a method to define a normalization procedure
for CH-weak reduction on untyped λ-terms, and use it to prove normalization for
simply-typed λ-calculi with CH-weak equality judgments. To do this, we show how it
is possible to systematically construct an “explicit” version of the original, “implicit”
weak calculus that one intends to prove normalization for. The explicit calculus is
specifically designed to facilitate the metatheoretical analysis of CH-weak definitional
equality, by making certain aspects of this particular notion of reduction syntactically
evident in the terms and judgments of the calculus, so that all the missing congruence
rules can be restored. The explicit calculus is proved normalizing by the semantic
method of Normalization by Evaluation [8]. Then, we show that one can establish a
suitable correspondence between the equality judgments of the two calculi, that allows
to transfer all normalization results from the explicit calculus to the implicit one. The
proposed proof method is demonstrated in its entirety on a version of System T with
CH-weak equality as typed equality judgments. This appears to be first analysis of
normalization for a typed λ-calculus with CH-weak equality, encompassing the definition
of a normalization procedure and a full formal proof of its correctness. In fact, we
observe that CH-weak equality, and especially typed calculi employing it, have received
rather limited attention in the literature so far. Current normalization proofs for typed
λ-calculi either refer to stronger reduction relations, like full β-reduction in which the
ξ rule is valid and computation under binders is treated normally, or target calculi
with weaker notions of computation [45, 25], like weak-head reduction or weak explicit
substitutions, where the absence of the ξ rule is not an obstacle since no reductions ever
happen under binders.

The second part of the thesis focuses on dependent types. We begin by pointing
out certain characteristics of dependently-typed calculi that prevent a straightforward
adaptation of the “explicit” construction used to normalize weak System T. We thus
propose an alternative approach to weak reduction in a dependently-typed setting,
based on weak explicit substitutions. We formulate MLTTwk, a version of Martin-Löf
Type Theory with one universe and large elimination, and a weak notion of reduction
defined by means of explicit substitutions. The system can be seen as a dependently-
typed version of existing simply-typed calculi with weak explicit substitutions, like [12].
However, the system appears to be an original formulation, or at least the author is not
aware, at the moment of writing, of similar investigations of MLTT with specifically weak
explicit substitutions. The calculus is proved normalizing by instantiating normalization
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by evaluation. We observe that weak explicit substitutions exhibit many of the good
properties of CH-weak reduction, despite giving rise to a weaker equational theory,
and are also easier to formalize and reason about. We thus consider the possibility of
integrating weak explicit substitutions in the treatment of the Minimal Type Theory.

All the results presented in this thesis have been fully formalized and checked in the
proof assistant Agda [21]. Thus, this work additionally contributes to the community of
formalized mathematics with two completely verified proofs of normalization [5, 4], which,
given the difficulty of mechanization of λ-calculi in general, and regarding normalization
proofs in particular, is an achievement on its own.

1.2 Outline

• Chapter 2 establishes the foundational notions on which the rest of the thesis is
based.

• Chapter 3 starts with an analysis of weak reduction in the untyped λ-calculus, and
then develops an “explicit” syntax for λ-terms that leads to a simple definition of
a recursive evaluator for CH-weak equality. It then focuses on an alternative weak
notion of reduction, based on explicit substitutions. It is observed that, although
weaker than CH-weak and thus not useful to CH-weakly normalize λ-terms, weak
explicit substitutions exhibit many of the good properties of CH-weak equality,
making them an alternative worth exploring.

• Chapter 4 introduces System Twk, a version of System T with CH-weak equality
judgments, that can be seen as a propositional fragment of mTT. It then points
out the difficulties that one faces when attempting to prove normalization for
the system. These problems are addressed with the definition of an “explicit”
reformulation of Twk’s type system, System T ex, that directly reflects the “explicit”
syntax of Chapter 3 in the very definition of judgments. It is shown that the
problems that were found in System Twk do not arise in T ex, making it more
suitable for a normalization proof. The chapter concludes with the proof of
correspondence between Twk and T ex, that will allow in Chapter 5 to transfer all
normalization results proved for System T ex to Twk.

• Chapter 5 proves normalization by evaluation for System T ex. It concludes by
establishing normalization for System Twk via the correspondence previously shown
in Chapter 4.

• Chapter 6 addresses weak equality in the context of dependent types. It begins
with a discussion of the challenges that would arise in the attempt of adapting the
“explicit” construction to a dependently-typed calculus. It then shifts the focus
to an alternative notion of weak reduction, by defining a version of Martin-Löf
Type Theory with weak explicit substitutions and large elimination. The calculus
is proved normalizing, again via normalization by evaluation.
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• Chapter 7 concludes with a summary of the contributions, and a discussion on the
advantages of weak explicit substitutions over CH-weak reduction, in particular in
the context of the Minimal Type Theory. It finally identifies possible directions
for future work, and points out related work in the area of weak λ-calculi and
normalization proofs.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Background

This chapter establishes the conceptual and technical background of the thesis.

2.1 Lambda calculus

The lambda calculus [16] is a formalism in mathematical logic introduced in the 1930s
by Alonzo Church [23]. It is a formal language, whose terms are inductively defined as
follows:

t, u := x | λx.t | tu

The term λx.t is a λ-abstraction, tu is an application. Variables in a term can either
appear free or bound. A variable x is bound in a term t if it has been abstracted by a
λ-abstraction. For example, in the term λx.xy, the occurrence of the free variable x in
the term xy has been abstracted by λx. We denote by FV (t) the set of free variables
of a term t. A term t such that FV (t) = ∅ is closed. Closed terms are also called
combinators.

The λ-calculus is usually considered together with some notion of reduction telling us
how to “run” terms. The most basic form of computation for λ-terms is the β-contraction
scheme

(λx.t)s t[s/x]

where t[s/x] stands for capture-avoiding substitution, that replaces every occurrence
of x in t with s, making sure that no free variables in s become bound by abstractions in t.
We define β-reduction, in its standard formulation, as the binary relation corresponding
to the congruence closure of β-contraction.

(λx.t)s −→ t[s/x]
(β) t −→ s

λx.t −→ λx.s
(ξ) t −→ r

ts −→ rs
(ν) s −→ r

ts −→ tr
(µ)

We write the reflexive transitive closure of β-reduction as −→∗, and define β-
conversion as the equivalence closure of β-reduction, and write it like =β. Conversion

7
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relations usually include α-conversion, telling us that bound variables can be renamed
freely:

λx.t = λy.t[y/x] y /∈ FV(t)

An extension of β-reduction is the so-called βη-reduction, that is obtained from
β-reduction with the addition of the η-rule, corresponding to the following η contraction
schema:

λx.(t x) t x /∈ FV(t)

The η rule is a weak extensionality principle. In fact, η and ξ together imply
admissibility of the rule schema of function extensionality [16], asserting that t = s
follows from t x = s x for any terms t, s and variables x.

We say that a term M is in normal form (or it is a normal form), when there is
no term N such that M → N . We say that a term M has a normal form when there
exists a normal form N such that M −→∗ N . A fundamental property of the λ-calculus
is that the order in which β-reductions are performed does not matter.

Theorem 1 (Church-Rosser property). Let M,P,Q be λ-terms, such that M −→∗ P
and M −→∗ Q. Then, there exists a term R such that P −→∗ R and Q −→∗ R.

This property is called confluence or Church-Rosser property, and it implies the
uniqueness of normal forms.

Corollary 1. Let M,N1, N2 be λ-terms, such that M −→∗ N1 and M −→∗ N2, and
N1, N2 are normal forms. Then, N1 ≡ N2.

Proof. By confluence, there exists N such that N1 −→∗ N and N2 −→∗ N . But since
N1, N2 are normal, the steps of reduction must be zero, hence N1 ≡ N ≡ N2.

Thus, a confluent notion of reduction like β-reduction gives us a way to assign
meaning to λ-terms, namely their normal form. As we will see, not all notions of
reductions are confluent.

2.1.1 Typed lambda calculus

The untyped lambda calculus can be enriched in various ways. One of these is the
addition of a type discipline [15]. Typed λ-calculus is concerned with typing judgments
of the form Γ ` t : A, where Γ is a context of typing assumptions assigning types to
t’s free variables, t is a λ-term, and A is a type. The collection of terms t such that
Γ ` t : A holds for some Γ and A constitutes the well-typed terms. An example of
typed calculus is the Simply-Typed λ-Calculus (STLC) [15]. Its types are given by the
following grammar:

A,B ::= ι | A→ B
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where ι is an primitive type that is left unspecified, and A→ B is the higher-order
function space. Its inference rules are given as follows:

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A→ B
Γ ` t : A→ B Γ ` s : A

Γ ` ts : B

Typed λ-calculi are usually formulated in either Church-style or Curry-style. In
the first case, the syntax of terms comes already defined with a built-in notion of type.
In particular, variables always specify the type of terms over which they range, and
abstractions always specify their domain:

t, u ::= xA | λxA.t | t u

The Curry-style syntax is what we have seen so far: λ-terms are conceived before
types, defined as an untyped syntax, and subsequently assigned a type. A consequence
of this type-assignment approach is that the same Curry-style term may be assigned
different types.

In addition to a notion of typed term, we can have a notion of typed conversion
between terms of a certain type. We do so by defining typed equality judgments,
Γ ` a = b : A, asserting that the terms a and b are convertible as terms of type A. Here
are two examples, axiomatizing the β and ξ rules of the λ-calculus in a typed setting.

Γ, x : A ` t : B Γ ` s : A

Γ ` (λx.t)s = t[s/x] : B
(β)

Γ, x : A ` t = s : B

Γ ` λx.t = λx.s : A→ B
(ξ)

This kinds of judgments gives rise to a so called definitional equality, or judgmental
equality, since it is axiomatized within the rules of the type system itself, rather than
from a reduction relation assumed a priori on the untyped syntax.

2.1.2 Nameless representation

Syntax with binders is usually considered modulo α-renaming, that is, terms are identified
with their α-equivalence classes. This tacit convention works fine within informal
reasoning, but in computer formalizations it is important that terms have a unique
representation. The usual solution is to employ a so-called nameless representation, in
which binders do not name the variables they bind; rather, variables themselves uniquely
determine the abstraction that binds them, so α-renaming holds by construction.

One way to implement nameless representation is with De Bruijn indices [27, 52]. In
this representation, variable occurrences are given by indices, i.e. natural numbers indi-
cating how many other binders separate the occurrence and its binder, counting outward
from the variable to the outside levels. Hence, for example, the term λx.((λy.x)(λz.z))
is represented with De Bruijn indices as λ.(λ.1)(λ.0).

Another nameless scheme is given by De Bruijn levels [40]. Levels are assigned
to binders according to the order in which they appear from outermost to innermost,
and variables refer to their binders by their assigned level. For example, the term
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λx.(λy.x)(λz.z)x is represented with levels as λ.(λ.0)(λ.1) 0. A pleasant property of
this scheme is that every occurrence of a variable associated to some binder has the
same exact representation no matter its position inside the term.

2.2 Martin-Löf Type Theory

A particular flavor of typed λ-calculus is Martin-Löf Type Theory (MLTT) [47, 49]. This
theory includes four kinds of judgments:

• A is a type: Γ ` A;

• a is a term of type A: Γ ` a : A;

• A and B are equal types: Γ ` A = B;

• a and b are equal terms of type A: Γ ` a = b : A.

MLTT is a theory with dependent types, meaning that types can contain arbitrary
terms. In fact, there is very little formal distinction between terms and types, and
the two are usually defined in the same syntactic category. This explains the need
for type and type equality judgments: since a type can contain arbitrary terms, its
well-formedness, unlike STLC, is not obvious a priori, and must be established by a
derivation. Moreover, types can contain reducible terms, so we must include definitional
equality between types, that follows from the computation rules of the theory. A unique
characteristic of dependent type theories is a coercion rule, expressing the fundamental
link between typing and computation:

Γ ` t : A Γ ` A = B
Γ ` t : B

A consequence of the coercion rule is that decidability of type checking crucially
depends on decidability of definitional equality. The usual way to prove decidability of
definitional equality is by proving a normalization theorem, stating that every well-typed
term has a normal form. This allows to reduce definitional equality to syntactic identity
of normal forms, which is trivially decidable.

Dependent type theories like MLTT include a generalized version of function type,
called dependent function type or Π-type. The elements of a Π-type are functions whose
codomain depends on the argument of the function. Thus, when a dependent function
is applied, the result type is specialized to the particular argument:

Γ ` A Γ, x : A ` B
Γ ` Π(x : A)B

Γ, x : A ` t : B

Γ ` λx.t : Π(x : A)B

Γ ` f : Π(x : A)B Γ ` a : A

Γ ` f a : B[a/x]

We can generalize product types A×B in a similar way, and allow the type of the
second component of a pair to depend on the first component. This is called a dependent
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pair type, or Σ-type. Elements of a Σ-type are pairs (a, b), where the type of the second
component b may depend on the first component a.

Γ ` A Γ, x : A ` B
Γ ` Σ(x : A)B

Γ ` a : A Γ ` b : B[a/x]

Γ ` (a, b) : Σ(x : A)B

Γ ` p : Σ(x : A)B

Γ ` π1 p : A

Γ ` p : Σ(x : A)B

Γ ` π2 p : B[π1 p/x]

Notions of equality An crucial difference between type theory and set theory is
in their treatment of equality. In common mathematics equality is a proposition, i.e.
a binary relation between objects that can be proved or disproved using the rules of
predicate logic. In type theory, equality is a type: given a type A and a, b : A, we can
construct the identity type a =A b. In type theory, proving an equality corresponds to
constructing an inhabitant of the corresponding identity type. When a =A b is inhabited,
we say that a and b are propositionally equal.

However, in type theory we have a second notion of equality, what we have called
judgmental equality of definitional equality. Definitional equality, as the name suggests,
is a metatheoretical concept that is part of the definition of the theory, and it is not
internal to the theory. It is established by inference rules, which mostly correspond to
conversion rules of the λ-calculus, and it is usually decidable. This careful distinction
between computational equality, that is decidable, and propositional equality, that is
undecidable, contributes to make Type Theory a convenient foundation for computer
formalization of mathematics.

Universes Universes are types whose elements are themselves types, or, in certain
formulations, codes standing for types. As in set theory, it is unsound to have a universe
of types U be member of itself, namely U : U , as this leads to Girard’s paradox and
inconsistency. Instead, a hierarchy of universes is introduced:

U0 : U1 : U2 : ...

In the presence of a universe U , types belonging to U are sometimes called small
types. With a hierarchy of universes every type is “small”, in the sense that every type
belongs to some universe Ui, thus the judgment A type is effectively subsumed by A : Ui.

The power of type universes is really unveiled when we allow to define types by
induction on elements of other types, something that is also called large elimination.
With universes and large elimination we can define, for example, a function f of type
N→ U by recursion on N, a family of types that assigns a type to every natural number.

2.2.1 Curry-Howard-Lambek correspondence

The Curry-Howard-Lambek correspondence is the idea that Type Theory can be seen
an expressive formalism unifying logic, computer science, and category theory under
the shared, fundamental notion of computation. According to the propositions-as-types
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paradigm, type theories are systems of formal logic, where propositions are identified with
the type of their proofs, so that proving a proposition is nothing more than providing a
term of the corresponding type. An essential property exhibited by most typed λ-calculi
is normalization, which is important because it implies that certain types are empty,
making the theory consistent as a logic. From this point of view, Type Theory can be
used as a foundational system for mathematics, as an alternative to set theory. Under
the so-called proofs-as-programs paradigm, Type Theory is an extremely expressive
functional programming language, where programs, specifications of programs, and
proofs of program correctness with respect to a specification can be expressed in the
same language as first-class concepts. Finally, under the identification of types and terms
with objects and morphisms of a category, type theories can be seen as domain-specific
languages for reasoning about certain classes of categories. For example, extensional
Martin-Löf type theories correspond to the internal languages of locally cartesian closed
categories.

2.3 Minimalist Foundation

The Minimalist Foundation is a two-level foundation for constructive mathematics
[43, 42]. Its two levels are given by dependent type theories in the style of Martin-Löf
Type Theory, with the following characteristics:

• An intensional level, the Minimal Type Theory (mTT), defined as a theory in
the style of intensional MLTT [49], and intended for program extraction from
constructive proofs;

• An extensional level, defined as an extensional theory [47] with quotients, intended
to support the day-to-day development of mathematics. The extensional level is
interpreted in a quotient model built over mTT.

In the view of its authors [43], a necessary condition for the constructivity of a
foundational theory is the support of a form of program extraction from constructive
proofs, or proofs-as-programs paradigm. In practical terms, this property translates to
the requirement of consistency with the axiom of choice (AC) and the formal Church
thesis (CT).

AC :≡ ∀(x : A) ∃(y : B) (R x y)→ ∃(f : A→ B) ∀(x : A) (R x (f x))

CT :≡ ∀(f : N→ N) ∃(e : N).∀(x : N) ∃(y : N) (T e x y ∧ U y = f x)

where T is the Kleene predicate and U is a function extracting the result of a
terminating computation. MLTT is already known to be consistent with AC, as the result
follows from the usual Brouwer–Heyting–Kolmogorov interpretation of intuitionistic
connectives. One way to prove consistency with CT is to provide the theory with a
Kleene realizability semantics [6]. Unfortunately, it is still an open problem whether
such model construction is possible for intensional MLTT. mTT works around this by
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employing a particular definition of judgmental equality, that does not account for the
usual congruence rules of term constructors, but instead replaces them with a primitive
substitution rule like the following:

Γ, x : A ` t : B Γ ` a = b : A

Γ ` t[a/x] = t[b/x] : B[a/x]

The result is that certain extensionality principles, that would hold in the standard
formulation, are invalidated. In particular, the ξ rule (i.e., the congruence rule for
λ-abstractions) does not hold, and in general computation of terms under binders is
limited. mTT formulated with the substitution rule above is known to support a Kleene
realizability semantics [35].

Normalization The Minimal Type Theory can be interpreted into MLTT, by mapping
propositions to MLTT types via the Curry-Howard, propositions-as-types interpretation.
Since MLTT is normalizing [9], this translation entails normalization for mTT, in the
following negative sense:

Theorem 2. There are no well-typed terms t in mTT such that every reduction sequence
starting from t is infinite.

Proof. Suppose that such term exists. By mTT’s interpretation intoMLTT, t is well-typed
in MLTT, and the infinite reduction starting from t also exists in MLTT, contradicting
the fact that the theory is normalizing.

Under classical reasoning, the theorem above implies normalization in the following
positive sense:

Theorem 3. Assuming classical logic, Theorem 2 implies that for every well-typed term
t, there exists a terminating reduction sequence starting from t.

Proof. From Theorem 2, we get that if t is well-typed, then it is not the case that t has
no normal forms. By the classical principle of double negation elimination (¬¬P → P ),
this means that a normal form exists.

Constructively, only Theorem 2 holds. However, it is quite unsatisfying: what its
statement tells us is that “it cannot be the case that mTT is not normalizing”, which is
not at all the same as telling us why it is normalizing, and how. That is, such a proof
does not provide an algorithmic method to compute the normal form of an arbitrary
well-typed term of mTT. Thus, besides philosophical reasons, a constructive proof of
normalization has very pragmatic motivations: by the computational interpretation of
constructive logic, a proof of normalization corresponds to showing that there exists an
algorithmic method to evaluate well-typed terms to normal form. A concrete, computable
normalization function is essential for type checking, and for computer implementations.
It follows that classical proofs are irrelevant for our goals.

As pointed out in the introduction, constructive normalization for typed calculi with
a CH-weak conversion, like mTT, does not seem to have been investigated much. For
this reason, normalization for mTT is still an open problem.
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2.4 Normalization by Evaluation

In more traditional treatments of typed λ-calculi, decidability of conversion is proved by
establishing confluence and strong normalization for the small-step reduction relation
(see, for example, [30]). This approach works fairly well for some λ-calculi, but does
not scale easily to stronger relations, like η equality, or non-standard ones, like explicit
substitutions [7]. In general, establishing normalization by repeated application of
one-step reductions can be tedious and inefficient.

Normalization by Evaluation (NbE) is a semantic method to prove normalization for
typed λ-calculi [8]. NbE exploits a model construction where the interpretation function
is invertible by an operation called reification. The composition of interpretation and
reification gives rise to a normalization function. In addition to the model construction,
NbE requires to establish the following soundness and completeness properties of the
normalization function nf:

• Completeness: if Γ ` t = s : A, then nf t ≡ nf s;

• Soundness: if Γ ` t : A, then Γ ` t = nf t : A.

Soundness of NbE is usually established by a semantic argument based on logical
relations, rather than the traditional syntactic reasoning using properties of the term
rewriting system. From these properties, we get that convertibility is equivalent to
syntactic identity of normal forms: Γ ` t = s : A ⇐⇒ nf t ≡ nf s. Since identity of
normal forms is decidable, so is convertibility.

2.5 Agda

Agda is a functional programming language and a proof assistant, implementing of
a version of intensional Martin-Löf Type Theory [21]. It is equipped with powerful
constructs such as a predicative hierarchy of universes, inductive-recursive definitions,
and full dependent pattern matching. All mathematical material in this thesis has
been formalized and proof-checked in Agda, and in fact, the following chapters use
an “informal” version of Agda as the metatheory in which definitions and proofs are
developed. Thus, since our metatheory is a constructive type theory, all proofs and
functions given in the following chapters are total and computable by construction.

We now give a brief overview of the relevant aspects of Agda, as well as explain
the notation that will be used for them throughout the thesis. We refer the reader to
[21, 50] and the ufficial documentation [3] for more details.

The first kind of definition that Agda allows is that of an inductive definition. A
type is inductively defined by enumerating its constructors, that basically correspond
to introduction rules for that type. Here is the definition of natural numbers as an
inductive type:

data N : Set where
zero : N
succ : N → N
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Agda is equipped with an infinite hierarchy of universes Set0, Set1, Set2, ..., where
Set ≡ Set0. Every type is defined as a new element of its universe, like N : Set. The
definition above can be written in a more familiar way with inference rules (where we
only specify context extensions, leaving the other assumptions implicit). To stay more
close to the common mathematical convention, we will use the rule-based notation to
specify inductive definitions.

N : Set zero : N
n : N

succ n : N

The other way to define a symbol is to give a function definition. Functions are
defined like in any other typed functional programming language, such as Haskell or ML.
Functions can be defined by pattern matching, as in the following recursive definition of
addition between natural numbers:

_+_ : N → N → N
zero + m = m
succ n + m = succ (n + m)

Whenever a symbol is defined, underscores denote positions for arguments, as in
_ + _ above. Being Agda a dependent type theory, it includes dependent product
types, which are a built-in notion. A Π-type like Π(x : A)B is expressed in Agda as
(x : A)→ B. Agda inherits the propositions-as-types paradigm of intensional Martin-Löf
Type Theory [49], representing logical propositions as types, and proofs as programs
inhabiting the corresponding type. Thus, the type system of Agda provides a highly-
expressive, multi-sorted, constructive higher-order logic. Under this interpretation, a
Π type like (x : A)→ B stands for the universal quantification ∀x : A.B. Implication
A→ B can be simply encoded as a Π type where B does not depend on the proof of
A. We can also define the type Σ of dependent pairs that we have seen in MLTT, as an
inductive record:

record Σ (A : Set) (P : A → Set) : Set where
constructor _,_
field
π1 : A
π2 : P π1

Similarly to other programming languages, Agda records provide a convenient syntax
for simultaneously defining types and providing named accessors to them.1 In this case,
the definition automatically provides accessors π1 : Σ A P → A and π2 : (p : Σ A P )→
P (π1 p), as we would expect from a Σ type. In the rest of the thesis we will often write
Σ(x : A)P as syntax sugar for the Agda type Σ A (λx.P ). Σ types can be used to encode

1Although Agda records are capable of much more than that. Every record gives rise to a (ML-style)
module, so it can also encapsulate arbitrary definitions and proofs, depending on its fields, that are
specialized and brought into scope when the record is instantiated and opened. In addition, Agda
records support coinductive definitions, η rules, and can be used to encode typeclasses via implicits.
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a strong form of intuitionistic existential quantification. In this sense, Σ(x : A)P stands
for the formula ∃x : A.P , whose proof terms are pairs containing a witness a of type A,
and a proof term of type P a. As indicated by the constructor keyword, we use _,_ as
a short-hand syntax for providing pairs inhabiting a Σ type. As an example of use of Π
and Σ in a logical statement, consider the following definition of a proof term for the
intensional axiom of choice (∀x : A,∃y : B.R(x, y)) → ∃f : A → B.∀x : A,R(x, f(x))
for a given binary relation R, which is a theorem in Type Theory [44]:

AC : { A B : Set } { R : A → B → Set }
→ ((x : A) → Σ B (ń y → R x y)) → Σ (A → B) (ń f → (x : A) → R x (f x))

AC h = (ń x → π1 (h x)) , (ń x → π2 (h x))

Inductive definitions are not limited to types, i.e. elements of some universe, but
also allow to define inductive families of types [28]. Consider the definition of the type
Vector A n of lists of elements in A of a fixed length n:

data Vector (A : Set) : N → Set where
nil : Vector A zero
cons : {n : N} → A → Vector A n → Vector A (succ n)

For every type A : Set, the piece of code above inductively defines a type family
Vector A : N→ Set. In Vector A n , A is a parameter and it is fixed for every constructor,
whereas n is an index, and it is specified on a per-constructor basis. We thus say that
the family Vector A is indexed by elements in N. The {n : N} notation in the cons
constructor above stands for an implicit argument. The value of implicit arguments is
automatically inferred by unification.

When the focus of an inductive definition is on the use of the type as a proposition,
with its elements representing proof terms, we sometimes write down the constructors as
labels of inference rules, like in the following inductive definition of ≤ between natural
numbers:

data _≤_ : N → N → Set where
zero-succ : ∀{n} → zero ≤ n
succ-succ : ∀{n m} → n ≤ m → succ n ≤ succ m

n : N
zero ≤ n (zero-succ) n ≤ m

succ n ≤ succ m (succ-succ)

Agda supports dependent pattern matching. This means that pattern matching on
elements of a dependent type may refine the information that is known on the shape of
some other argument, making it evident in the match clause. Consider the following
example:

data Maybe (A : Set) : Set where
just : A → Maybe A
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nothing : Maybe A

maybeHead : {A : Set} → (n : N) → Vector A n → Maybe A
maybeHead .zero nil = nothing
maybeHead .(succ _) (cons x v) = just x

Here, we define maybeHead by pattern matching on the argument of type Vector A n,
and by doing so, we reveal additional information on the shape of another argument, n.
In fact, when the vector is empty, the index must be zero by definition of Vector itself,
thus n is automatically refined to the only possible value, zero (the dot in front of a
pattern means that it is forcibly implied by other patterns to have that and only that
shape). Similarly, when the vector is built with cons, Agda knows that its length is
at least 1, i.e. n must be the successor of some other natural number, so it refines n’s
shape accordingly.

Agda supports induction-recursion [29], a definition scheme allowing the simultaneous
definition of an inductive type and a recursive function on elements of that type.
Induction-recursion allows definitions that are much more difficult to give in a theory
with only inductive types, if not impossible. Universes in dependent type theories are a
typical example of inductive-recursive definitions: we have an inductive type U of codes,
and a function T : U→ Set out of U, giving interpretation of codes in U. The following
is an Agda example of a basic universe with codes for natural numbers and Π types.

mutual
data U : Set where
N : U
Pi : (A : U) → (El A → U) → U

El : U → Set
El N = N
El (Pi A B) = (x : El A) → El (B x)

The identity type can be found in the Agda standard library with the symbol ≡,
and is defined as an inductive family given by a single constructor refl.

data _≡_ {A : Set} : A → A → Set where
refl : {a : A} → a ≡ a

Agda allows, as with any other type, pattern matching on elements of the identity
type, making it easier to write certain proofs involving equations. Here is a proof of the
fact that _ ≡ _ is a congruence w.r.t. any function f .

cong : {A B : Set} {a b : A} → (f : A → B) → a ≡ b → f a ≡ f b
cong f refl = refl

The drawback of allowing unrestricted dependent pattern matching on equality is
that it implies Streicher’s Axiom K [48], also known as “uniqueness of identity proofs”
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(UIP), which states that all proofs of proposional equality are propositionally equal to
refl. This is a problem when trying to use Agda for theories in which UIP does not
hold (such as Homotopy Type Theory), but it shall not a problem in the context of this
thesis.

One aspect of Agda that does not carry over to this document is its somewhat
confusing notation about propositional equality. The = sign is a reserved symbol in
Agda, and it is used in function definitions. Equations introduced with = are, therefore,
definitional. Propositional equality is expressed with the aforementioned identity type,
which is defined with a symbol, ≡, that usually denotes definitional equality or even
syntactic identity in most other settings. In the rest of the thesis, we will use = for
propositional equality, and ≡ or :≡ for definitional equality, with the exception of the
Agda syntax for function definitions, that will retain = in its definitional role.2

2This is unfortunately due to the inability to change the = symbol in the typesetting of Agda
definitions, that are automatically generated from the source code.



Chapter 3

Weak notions of conversion

The standard equational theory of the λ-calculus comprises, in addition to the usual β
rule, several congruence rules, like the ξ rule. However, in some cases weaker theories
are worth consideration.1 One reason is that they have more models. Another is that
simpler notions of reductions make certain rewriting properties easier to prove and
reason about. In this chapter, we look at three weak notions of reduction of λ-terms,
starting from the well-known weak-head reduction, then quickly moving on to define
and study in detail a reduction relation that we call CH-weak reduction, and ending the
chapter with an analysis of weak explicit substitutions. These last two constitute the
subject of the rest of this thesis. The main contribution of this chapter is a recursive
normalization algorithm for a particular syntactic variant of the untyped λ-calculus with
CH-weak reduction, that gives the basis for the type systems introduced Chapter 4.

3.1 Weak-head reduction

Weak-head reduction can be described informally as a variation of β-reduction that
never performs reductions under λ-abstractions. Formally, weak-head reduction is just
standard β-reduction without the ξ rule. The notion of reduction that results corresponds
to the usual process of computation in programming languages, where functions are not
evaluated without their arguments fully provided [31].

(λx.t)s −→ t[s/x]
(β) t −→ r

t s −→ r s
(ν) s −→ r

t s −→ t r
(µ)

For example, the term λx.(λy.y)z that would be reducible under full β-reduction,
is a weak-head normal form, whereas (λx.(λy.y)z)w reduces to (λy.y)z and then to z.
Unfortunately, weak-head reduction is not confluent. Indeed, suppose we have N −→ N ′.
Then

1 We say ‘weak’ in the sense that less equations hold.

19
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(λx.λy.M)N (λx.λy.M)N ′

λy.M [N/x] λy.M [N ′/x]

The term λy.M [N/x] is a normal form, so there is no way to make the diagram
above commute. A known solution to this problem consists of extending weak-head
reduction with a substitution rule. Capture-avoiding substitution allows a restricted
class of contractions to be performed under λs. The result is a new notion of weak
reduction, described in the next section, that can be seen as a well-behaved version of
weak-head reduction.

3.2 Çağman-Hindley Weak Reduction

The Church-Rosser property, that fails to hold in weak-head reduction, can be recovered
by extending the reduction relation with a substitution rule (called σ in [41]):

N −→ N ′

M [N/x] −→M [N ′/x]
(σ)

This rule enables a limited form of computation under binders. For example, the
term λx.(λy.y)z, which is a normal form under weak-head reduction, reduces to λx.z
with the addition of the σ rule, as follows

(λy.y)z −→ y[z/y] ≡ z
(λx.w)[(λy.y)z/w] −→ (λx.w)[z/w]

However, the term λx.(λy.y)x, which would reduce to λx.x under full β-reduction,
is a normal form in this setting. The reason is that reduction under λs is only allowed
via capture-avoiding substitution, but there is no way, for any M , to obtain λx.M from
λx.w and a substitution [M/w], if M contains x free.

Nevertheless, the σ rule is enough to “fix” the broken example of the previous section,
and in general, to allow confluence to be proved. Let us call −→w the reduction relation
given by weak-head reduction plus the substitution rule σ.

(λx.t)s −→w t[s/x]
(β) t −→w r

t s −→w r s
(ν)

s −→w r
t s −→w t r

(µ)

N −→w N
′

M [N/x] −→w M [N ′/x]
(σ)

Then, we have the following result

Theorem 4. The reduction relation −→w is confluent.

Proof. See [41], Theorem 1.
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Despite being an improvement over plain weak-head reduction, the relation −→w has
received limited attention in the literature. One of the first uses of it in a weak λ-calculus
can be found in [32], where Howard defines it under the name of “restricted reduction”,
and uses it in a strong normalization argument. This flavour of weak reduction was later
revisited by Çağman and Hindley [22], who call it combinatory weak reduction. In their
analysis it is shown, as the name suggests, that combinatory weak reduction precisely
represents the λ-calculus analogous of reduction in combinatory logic. As argued in
[22], there are several reasons why one may wish to modify full β-reduction to make it
correspond more closely to combinatory logic. One is to have a simpler rewriting system:
full β-reduction is powerful, but also more complex than that of combinatory logic. As
an example, properties like Church-Rosser or the standardization theorem are easier to
prove in combinatory logic. In [22], it is shown how a combinatory weak relation can be
used to benefit from the advantages of a simpler, combinatory-like reduction relation,
while retaining the conveniences of the λ-syntax.

Çağman and Hindley’s definition of weak reduction is reproduced in Definition 1.
From now on, we call this relation CH-weak reduction to avoid confusion with other
weak notions.

Definition 1. [CH-weak reduction] Let the redex R be a subterm of a term P . Then,
R is a weak redex iff it does not contain free variables that are bound in P . A one-step
CH-weak reduction of P , written −→ch, is one that contracts a weak redex inside P .

For example, the term P ≡ λx.(λy.y)z admits one step of CH-weak reduction by
a contraction of the weak redex (λy.y)z, after which it becomes the normal form λx.z.
Conversely, the term P ≡ λx.(λy.x)z is already in normal form, because the redex
(λy.x)z contains a free variable x that is bound in P , hence it is not weak.

In [22], it is shown that the two weak reductions, namely −→w and −→ch, are indeed
equivalent, and thus represent the same relation. We reproduce the proof of this result
below, since an important part of the following chapter will be about revisiting it in a
typed setting.

Let us first define contexts in the λ-calculus. A λ-context C is a regular term with
holes • in it:

C ::= x | • | C C | λx.C

We write C[M1,M2, ...,Mn] for a context C with n holes, filled by the terms
M1, ...,Mn. We also write C[ ] to denote a context with a single hole. Note that
hole-filling does not correspond to substitution. In particular, hole-filling can capture
free variables.

Lemma 1. If C[ ] is a context that does not bind any free variables in N , and x does
not occur in C[ ], then C[x][N/x] ≡ C[N ].

Proof. See [22], Lemma 4.2.

Theorem 5. The reduction relations −→w and −→cw are equivalent:
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p −→w Q ⇐⇒ p −→ch q

Proof.

(=⇒) By induction on the size of the terms involved. All rules of −→w except for
the substitution rule are present in −→ch. We can then restrict our attention to
substitutions, and consider a reduction of the form

N −→w N
′

M [N/x] −→w M [N ′/x]
(σ)

By inductive hypothesis, N −→ch N
′ by a contraction of a weak redexe. But being

substitution capture-avoiding, every redex that is weak in a term N is also weak
in the term M [N/x] for any M , hence M [N/x] −→ch M [N ′/x] by contraction of
the same weak redex.

(⇐=) We must show that if P reduces to Q by a single contraction of a weak redex,
then P −→w Q. Let R be such weak redex, and R′ the result of its contraction. By
inductive hypothesis, R −→w R

′. Since R is a subterm of P , we have P ≡ C[R] for
some context C, that, being R weak, does not capture any of its free variables. But
similarly, Q ≡ C[R′], since R is the only subterm that changes in the reduction from
P to Q. By Lemma 1, we have that C[R] ≡ C[x][R/x] and C[R′] ≡ C[x][R′/x],
therefore

R −→w R
′

C[x][R/x] −→w C[x][R′/x]
(σ)

that concludes the proof, since P ≡ C[x][R/x] and Q ≡ C[x][R′/x].

A key role in the proof above is played by Lemma 1: it shows us how weak redexes
of a term P can be “pulled out” of it, leaving a placeholder variable in their place. This
allows us to factor a weak contraction into two components, namely the weak redex
involved R, and the “rest” of P that does not change in the contraction, namely C[ ].
These two pieces can then be reassembled via substitution.

The equivalence between these two formulations of CH-weak reduction is at the core
of the technique employed in Chapter 4 and 5 to prove normalization for a typed calculus
with CH-weak conversion. We will see that one formulation gives rise to a more compact
set of rules, so it is ideal for defining a type theory but not to study its metatheory,
whereas the other is less compact but more amenable to a (formalized) metatheoretical
analysis. The correspondence between the two ensures that we can rely on the second
formulation to prove our properties of interest, because these can be shown to hold for
the first one also.
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3.2.1 Weak formulation of the ξ rule

What makes CH-weak reduction particularly subtle is the fact that, despite the ξ rule not
being validated, some limited form of computation under binders is still allowed. In fact,
CH-weak reduction does validate a restricted form of ξ rule, by which some reductions
between λ-abstractions can be expressed by reductions on their bodies. Suppose we
had terms t and s such that t −→ch s. Then, there must be a weak constraction a b
such that C[a] ≡ t and C[b] ≡ s, for some context C[ ]. Suppose x is not free in a and b;
then, a is also weak in λx.C[ ], from which we can conclude λx.C[a] −→ch λx.C[b], that
is just λx.t −→ch λx.s.

The intuition is that to CH-weakly reduce a λ-abstraction λx.t, it is possible to
proceed by structural recursion on the term and CH-weakly reduce its body t, as long as
the abstraction λx does not bind variables involved in any of the contractions performed
to reduce t. Notice that the following restricted ξ rule, that also holds under CH-weak
reduction, does not capture the this intuition, as it is too restrictive:

t −→ s x /∈ (FV(t) ∪ FV(s))

λx.t −→ λx.s

In fact, the rule above does not allow the reduction λx.(λy.y)zx −→ λx.zx, which is
valid under CH-weak reduction. A possible formulation that does capture our intuition
could be the following:

t −→ch s x /∈ FV (rdx(t −→ s))

λx.t −→ch λx.s

where we can imagine rdx(t −→ s) to be the weak redex that gets contracted in the
given reduction step. This rule, however, is awkward: keeping track of the side conditions
is cumbersome even in an informal setting, and more so in a computer formalization. In
addition, the rule also feels wrong: we should be able to express CH-weak reduction
in a direct way, making contractions of non-weak redexes unrepresentable rather than
ruling them our after the fact. We will see in the next section, as well as in the chapters
that follow how to devise a syntax for both λ-terms and definitional equality judgments
where CH-weak reduction can be expressed directly, including the ξ rule above.

3.3 CH-weak normalization

One thing that can be done with a reduction relation is to build an evaluator for it. By
it we mean a function that, given a term, produces its normal form if one exists.2 3

The standard β-conversion relation is a congruence relation, so a recipe for reducing
terms is already implicitly provided in the definition itself. Consider, for example, the
congruence rules for abstraction and application:

2A normal form may not exist, so our evaluator is necessarily a partial function.
3“Evaluation” is usually considered w.r.t. programs, i.e. closed term. Here we use the word in a

broader sense to also include open terms, as synonymous of “normalization”.
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M =β N

λx.M =β λx.N
ξ

M =β N P =β Q

M P =β N Q

What the ξ rule suggests is that, in order to reduce a λ-abstraction, one has to
proceed recursively on its body. Similarly, to reduce an application, we can recursively
evaluate its subterms. In general, with a congruent conversion relation, reducing a term
can be done by inspecting its outermost constructor, and then operating recursively on its
immediate subterms, performing a contraction when a redex is found. Full β-conversion
leads to a fairly simple definition of evaluation by structural recursion on terms.

CH-weak reduction, instead, presents some complications: it is not possible to
evaluate a λ-abstraction by recursion on its body, because ξ does not hold in general.
Nevertheless, as we have seen, some contractions are still possible under λ-abstractions,
and they must be taken into account. In order to build a normalization function, we need
to know how and in which cases to proceed by recursion under binders, and what terms
should be treated as reducible terms (i.e., redexes). In this respect, both definitions of
CH-weak reduction that we have seen in Section 3.2 are not very helpful, because they
make precise what counts as a valid reduction, but not how to mechanically perform
one.

Definition 1 at least tells us what we should look for during normalization, i.e. weak
redexes. We could implement evaluation by recursively traversing the term, contracting
every weak redex that is encountered. Recognizing a weak redex, however, is a non-trivial
task, given their relative nature: whether a subredex R of a term P is weak depends on
the syntactic structure of P .

We observe that to recognize a subterm as a weak redex it suffices to be able to
distinguish, among its free variables, between those that are free everywhere, and those
that are bound somewhere in the enclosing term P , regardless of what P actually is.
We call the first global variables, and the latter local variables. Under this distinction, a
weak redex is easily identifiable as one that is closed w.r.t. local variables, or equivalently,
one in which all free variables are global.

If we base the syntax of our λ-terms on a nameless representation of De Bruijn
indices, then a way to distinguish between global and local variables during evaluation
is to index the evaluation function itself with an additional argument, representing the
number of binders that have been crossed during recursion. Suppose n is such a number;
then, every index ≥ n is a global variable, whereas every other is local. A weak redex is
thus one in which all free De Bruijn indices are ≥ n, i.e. global.

We can implement this indexed CH-weak evaluator for De Bruijn terms in a few
lines of Haskell [33]:

data Term = Idx Int | App Term Term | Lam Term
type Subst = [Term]

sz :: Int -> Int -> Term -> Bool
sz x y (Idx k) = y <= k || k < x
sz x y (Lam t) = sz (succ x) (succ y) t
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sz x y (App t s) = sz x y t && sz x y s

weak :: Int -> Term -> Bool
weak i t = sz 0 i t

idxeval :: Int -> Term -> Subst -> Term
idxeval n (Idx i) s = s !! i
idxeval n (Lam t) s = Lam (idxeval (succ n) t (Idx 0 : shift s))
idxeval n (App t u) s = case idxeval n t s of

Lam t’ | weak n t && weak n u -> eval t’ (idxeval n u s : s)
| otherwise -> App (Lam t’) (idxeval n u s)

t’ -> App t’ (idxeval n u s)

In the code above, terms are either De Bruijn indices Idx n for some index n,
applications App t s for terms t and s, or abstractions Lam t for a body t. As usual
with De Bruijn indices, Lam t is assumed to bind the shallowest index in t. sz x y t
returns True iff all indices in t are either ≥ y or < x. Thus, a redex t is weak under i
binders iff sz 0 i t.4

With an evaluation function like idxeval, a term P can then be CH-weakly evaluated
to normal form by calling the evaluation function on P with an initial index of 0, meaning
that no binders have been crossed and all free variables should be considered global.
This solution is good enough is we limit ourselves to simple evaluation of untyped terms,
but it does not scale well when using it to formalize an entire normalization proof for a
full-scale typed calculus. In fact, every aspect of the proof, from definitions to functions
to proofs would have to be indexed, making the formalization much more difficult to
understand and manage.

A simpler solution comes from the following observation: to CH-weakly evaluate a
term P , we only need to be able to classify its variables into the two possible roles, that
of a global or a local variable. But the role of each variable in P depends uniquely on
the syntactic structure of P itself, and has nothing to do with the particular state of
evaluation that we are in. Moreover, evaluating a term does not alter any of its variables’
role. Notice, in fact, that the only operation that affects terms during evaluation is
β-contraction of a weak redex, which boils down to substitution. Some variables may
disappear from the term as a result of substitution, but the ones that don’t never change
their role. This means that the role of each variable in P is fully known before evaluation,
and can be assigned ahead-of-time. An indexed evaluation function like idxeval enables
us to recompute the role of variables in a redex during evaluation, but this is not needed,
because their role never changes.

We make this idea precise, saying that a variable x has a global role in a term t if it
appears free in t. Conversely, we say that x has a local role in t if it appears in t, but it
is bound somewhere in it.

4shift :: Subst -> Subst is just an auxiliary function that shifts all indices of a substitution to
avoid capture of free De Bruijn indices, and whose definition is not relevant at this point.
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Proposition 1. Let t −→ch s. If x has role r in t, then either it has role r in s, or it is
not present in s at all.

Proof. Let (λy.M)N  M [N/y] be the weak contraction involved in t −→ch s. It is
sufficient to show that if x appears in (λy.M)N with some role, then all of its occurrences
in M [N/y] have the same role.

Suppose x is global in (λy.M)N . Since FV ((λy.M)N) ⊇ FV (M [N/y]), and x is
not bound in M [N/y], every occurrence in M [N/y] must be global.

If x has a local role in the redex, and x 6≡ y, then it appears bound in both terms, so
its role is not affected by the substitution. Otherwise, if x ≡ y, then when substituting
all occurrences of x in M are replaced by N , which either contains x in a local role, or
no occurrences of it.

In what follows we say that a variable x is “locally-free” in a subterm N of M if it
has a local role in M , and it is free in N .

Proposition 2. A redex subterm a of t is weak iff it is closed w.r.t. local variables.

Proof. If a redex is weak, then it does not contain free variables that are bound within t.
But then, it cannot contain local variables, that are bound in t by definition. Conversely,
if a redex does not contain locally-free variables, then all its free variables are also free
in t, hence they cannot be bound within it. This makes the redex a weak redex.

A term can thus be CH-weakly reduced by “tagging” its variables according to their
roles, and then reducing it by recursively traversing its structure, and contracting all
and only those redexes that are weak, i.e. closed w.r.t. local variables. Since variables
with a local role would be syntactically distinguished from those with a global role, the
notion of weak redex in this tagged syntax becomes absolute, i.e. it only depends on the
syntactic structure of subterms.

Let us define an “explicit” syntax that distinguishes between variables with a global
and a local role.

data ETerm = Local Int | Global Int | EApp Term Term | ELam Term

We can define a tag function that tags variables of “implicit” terms, transforming
them into “explicit” terms.

tag :: Int -> Term -> ETerm
tag n (Idx x) = if n <= x then Global x else Local x
tag n (Lam t) = ELam (tag (succ n) t)
tag n (App t s) = EApp (tag n t) (tag n s)

untag :: ETerm -> Term
untag (Global x) = Idx x
untag (Local x) = Idx x
untag (ELam t) = Lam (untag t)
untag (EApp t s) = App (untag t) (untag s)
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We can now just implement a function sz such that sz n t is true whenever all free
indices of t are < n. Then, a term closed w.r.t. local variables is one for which sz 0 t
holds.

sz :: Int -> ETerm -> Bool
sz _ (Global _) = True
sz x (Local k) = k < x
sz x (ELam t) = sz (succ x) t
sz x (EApp t s) = sz x t && sz x s

weak :: ETerm -> Bool
weak = sz 0

CH-weak evaluation then becomes the following:

type Subst = [ETerm]

eval :: ETerm -> Subst -> ETerm
eval (Global x) _ = Global x
eval (Local i) s = s !! i
eval (ELam t) s = ELam (eval t (Local 0 : fmap (shift 1 0) s))
eval (EApp t u) s = case eval t s of

ELam t’ | weak t && weak u -> eval t’ (eval u s : s)
| otherwise -> EApp (Lam t’) (eval u s)

t’ -> EApp t’ (eval u s)

eval’ :: Term -> Term
eval’ = untag . flip eval [] . tag 0

The solution above separates the process of role classification and that of evaluation,
allowing to express both in a cleaner and simpler way. The issue of dealing with the
relative aspect of CH-weak reduction is relegated to where it belongs—in the tagging
function—and moved out of evaluation, that can be expressed in a standard, structurally
recursive fashion.

Another interesting way to look at this is that, whenever we call the tagging function
on a term P to be CH-weakly evaluated, we are effectively generating an entire syntax of
explicit terms specifically tailored to P itself. On such syntax, evaluation can be defined
smoothly since all information on P and its weak redexes is already encoded in the
structure of terms. One could say that we made the notion of weak redex absolute by
making the whole syntax relative. Indeed, redexes in CH-weak reduction are intrinsically
relative, and we did not eliminate that aspect at all. Rather, we made it explicit, and
used it to our advantage.
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3.4 Weak explicit substitutions

Substitution is a central element of the λ-calculus, as β-contraction is defined in terms
of it. However, substitution is usually expressed informally as a meta-level operation,
and it is assumed to be fully applied every time it appears in a reduction. This is not
the case in most implementations of the λ-calculus, for practical reasons. In fact, if the
term M contains many occurrences of the free variable x, then the substitution M [N/x]
produces a term with many copies of N , leading to potential size explosion.

In practical implementation, substitutions are usually delayed and recorded in terms.
In an attempt to bridge the gap between informal treatments of the λ-calculus and
its implementations, Abadi et al. developed the λσ-calculus, a refinement of the λ-
calculus with explicit substitutions [7]. In this setting, substitutions s have a syntactic
representation: given a term M and a substitution s, the syntax t[s] represents a valid
term, i.e. t with the explicit, delayed substitution s, rather than a metalinguistic
operation. We can then express β-contraction as follows:

(λx.M)N −→M [(x,N)]

where (x,N) is syntax for the substitution that replaces x with N , and leaves the
other variables unchanged.

In [41], Lévy and Maranget develop a weak λ-calculus with explicit substitutions,
defined as follows:

M,N ::= x | MN | (λx.P )[s] P,Q ::= x | PQ | λx.P

s ::= (x1,M1), (x2,M2), . . . , (xn,Mn) xi distinct (n ≥ 0)

Here, we use the metavariables P,Q for programs, i.e. constant terms, and M,N
for ordinary terms. s denotes explicit substitutions, which are just lists variable-term
pairs. Terms are formed out of variables, application, and closures (λx.P )[s], i.e. pairs
made of a functional program λx.P and a substitution s assigning terms to its free
variables. Notice that here, unlike in the λσ-calculus, we only use explicit substitutions
for λ-abstractions.

The dynamics of weak explicit substitutions is given as follows. As we can see,
closures are needed because we never push substitutions under λ-abstractions, since
otherwise we would validate the ξ rule.

(λx.P )[s] N −→ P Js[N/x]K
(β) s −→ s′

(λx.P )[s] −→ (λx.P )[s′]
(ξ)

M −→M ′

MN −→M ′N
(ν) N −→ N ′

MN −→MN ′
(µ)

s(x) −→M ′ s′ ≡ s[M ′/x]

s −→ s′
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where J_K is a metatheoretical operation that applies a substitution to a program
until an abstraction is reached:

x JsK ≡ s(x)

(P Q)JsK ≡ P JsK QJsK
(λx.P )JsK ≡ (λx.P )[s]

We can easily translate from explicit substitutions to the standard weak λ-calculus.
Let us consider the operation {_}, defined as follows:

{x} = x

{MN} = {M}{N}
{(λx.P )[s]} = (λx.P )[{s}]
{(x1,M1), . . . , (xn,Mn)} = {M1}/x1, . . . , {Mn}/xn

It can then be shown that reductions in the calculus of explicit substitutions translate
to CH-weak reductions in the standard calculus:

Proposition 3. If M −→M ′ then {M} −→∗w {M ′}.

Proof. See [41].

Going from the standard calculus to explicit substitutions is more difficult. In [41],
the authors consider a translation via maximal free subterms. A subterm Q of a term P
is free whenever P ≡ C[Q] for some context C[_] that does not bind any free variable
in Q. A free subterm is maximal whenever it is not a subterm of another free subterm.
We define the translation operation I as in [41]:

I(x) = x

I(PQ) = I(P )I(Q)

I(λx.P ) = (λx.C[x1, . . . , xn])[(x1, I(P1)), . . . , (xn, I(Pn))]

where P1, . . . , Pn are the maximal free subterms of P . Notice that maximal free
subterms of a term are all disjoint, so that we can use a generalized multi-hole context
notation C[_, . . . ,_] as above. We can show that a reduction in the standard calculus
translates to a reduction with explicit substitutions

Proposition 4. If P −→w P
′, then I(P ) −→M , with {M} = P ′.

Unfortunately, this result does not generalize to the reflexive-transitive closure: it
is not the case that P −→∗w P ′ implies I(P ) −→∗ M with {M} = P ′. Consider the
following reduction of a term P in the standard calculus:

P ≡ (λx.λy.x(λz.z))(λw.w) −→w λy.(λw.w)(λz.z) −→w λy.λz.z
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P ’s translation I(P ) ≡ (λx.λy.xk)[(λz.z)[]/k]((λw.w)[]) with weak explicit substitu-
tions can be reduced as follows:

(λx.λy.xk)[(λz.z)[]/k]((λw.w)[]) −→ (λy.xk)[(λz.z)[]/k, (λw.w)[]/x] ≡M

The term M is a normal form in the calculus of weak explicit substitutions, but
translates to the reducible term {M} ≡ λy.(λw.w)(λz.z) in the standard calculus. The
problem is that the property of Proposition 4 only holds for terms that are images of
the translation function I, i.e. those terms M such that their explicit substitutions only
contain maximal free subterms in {M}. This property ensures that every weak redex
in {M} also appears as a redex in M , so that every possible one-step reduction has a
counterpart in the other calculus. Unfortunately, β-contraction destroys this maximality
property, as shown in the example above, because it may create new free subterms,
and thus new (weak) redexes that did not exist at the moment of translation from
the standard syntax to the explicit one. This also seems to suggest that the problem
may not be necessarily related to this particular “maximal” translation I, but could be
inherent in the structure of the weak explicit substitution calculus.

Why should we care if weak explicit substitutions are not equivalent to CH-weak
reduction? The problem is that we cannot use the explicit calculus to reduce standard
weak terms to CH-weak normal form. An advantage of the explicit substitution calculus
is that it supports an evaluation procedure that is easy to define and formalize, and
that can also be implemented more efficiently that the evaluator of the previous section.
However, since Proposition 4 does not extend to multi-step reductions, normal forms in
the explicit substitution calculus do not necessarily translate to normal forms in the
standard weak λ-calculus.

Nevertheless, weak explicit substitutions are still very interesting, since they share
many of the positive properties of the standard CH-weak λ-calculus, like confluence
[41] and admissible substitution rule, while avoiding some of the drawbacks, like a
normalization procedure complicated by the relative notion of weak redex. We can
further generalize the calculus above to avoid the distinction between “terms” and
“programs”, using explicit substitutions everywhere instead of only on λ-abstractions.
An example is the weak λσ-calculus of [?]:

M,N ::= x | MN | λx.M | M [s] s ::= id | (x,M), s | s1 · s2

Substitutions s are built from identity substitutions and list “cons-ing”, as before, but
now we also have a composition constructor s1 · s2 encoding the effect of the substitution
s1 followed by that of s2. This is needed to define the reduction relation in the case
where terms are applied to several explicit substitutions: t[s1][s2] −→ t[s1 · s2]. In
addition, we have reduction rules to “resolve” composite substitutions, like associativity
(s1 ·s2) ·s3 −→ s1 · (s2 ·s3) and distributivity ((x,M), s1) ·s2 −→ (x,M [s2]), (s1 ·s2). We
do not delve into the details of this calculus now. We will revisit it instead in Chapter
6, where we will use it in a dependently-typed λ-calculus, and specifically a version of
Martin-Löf Type Theory with nameless syntax, full dependent types, and weak explicit
substitutions.



Chapter 4

System T with weak equality
judgments

This chapter and the one that follows present the first main contribution of the thesis,
that is a fully-formalized, constructive proof of normalization for a version of System T,
called System Twk, whose equality judgments correspond to a typed CH-weak conversion
relation. We start by introducing the term syntax and the type system of System Twk.
We then realize that there are aspects of Twk’s definitional equality that complicate
reasoning about it, and in particular that prevent using the normalization procedure for
CH-weak reduction developed in Section 3.3.

We solve these problems by constructing an alternative formulation of System Twk,
called System T ex, that has explicit, syntactic support for expressing CH-weak conversion,
and is thus more amenable to metamathematical analysis. We conclude by showing that
we can establish a precise correspondence between System Twk and T ex, a result that
will be crucial in the proof of normalization for System Twk.

All the contents of this chapter can be found in the formalization [5] under the
directory Syntax/.

4.1 System Twk

We consider System Twk, a variant of Gödel System T, a typed λ-calculus with natural
numbers, primitive recursion, and higher-order functions. The calculus is “weak” in the
sense that is comes with typed equality judgments axiomatizing CH-weak conversion.
Since this thesis was motivated by the problem of normalization for mTT, System Twk’s
formulation of CH-weak equality judgments tries to be as close to mTT’s definition as
possible. In particular, substitution is a total, computable operation in the metalan-
guage, rather that a construct of the object syntax (that is, we do not employ explicit
substitutions); moreover, CH-weak conversion is formulated with a primitive substitution
rule in place of congruence rules, rather than relying on a notion of weak redex. For
this reasons, System Twk can also be seen as a propositional fragment of mTT.

31
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4.1.1 Raw syntax and type system

We employ a hybrid nameless syntax, that uses De Bruijn indices for bound variables
and De Bruijn levels for free variables. This scheme is an example of locally-nameless
representation, as used for example in [53, 24], and adopts the Barendregt convention
according to which free variables (also called parameters) and bound variables should
be syntactically distinguished. The untyped raw syntax of System Twk, Term : Set, is
given by the following grammar.

t, u, z, s ::= Lev n | Idx n | Lam t | t · u | Zero | Succ t | Rec z s t

where n : N. We use the more convenient syntax xn for Lev n and vn for Idx n. We
also write ńt as a more lightweight notation for Lam t.1 Therefore, a term λx.(λy.xy)z
can be expressed in the syntax of System Twk as ń(ń(v1 · v0) · x0). Notice that z is free;
it we were representing it with an index, as in ń(ń(v1 · v0) · v2) for example, we would
not produce a well-scoped term.

We then define Twk types Ty : Set and contexts Ctxt : Set as follows:2

A,B ::= N | A⇒ B Γ ::= � | Γ, A

We write |Γ| for the natural number giving the length of the context Γ.3 Notice
that, since we use a nameless representation for free variables, context are nothing more
that lists of types, with free levels representing locations in these lists. The type system
is shown in Figure 4.1, and includes the inductive definition of the relation _〈_〉7→_
mapping natural numbers, seen as De Bruijn levels, to locations in a context. Thus, an
element of Γ〈n〉7→A is a proof that the Twk type A is contained in the context Γ, at
position n, counting from the left.

Bound variables are represented as indices, thus we need a way to turn levels (i.e.,
free variables) into indices, so that they can become bound by λ-abstractions. We
thus consider a function idx : N→ Term→ Term such that idx n t takes a term t and
replaces its free variable of level n with v0. This is used, for example, in the rule of
λ-introduction.

We write Γ ` t : A for a type judgment, asserting that the term t has type A
under the context Γ mapping assumptions to the free variables of t. 4 We then write
Γ ` t ∼ s : A for definitional equality judgments. As we can see, the relation that is

1One should not confuse the lambda symbol in ńt, that describes a term in the object language System
Twk, with λx.t, that identifies a generic term in a hypothetical λ-calculus, as well as an abstraction in
the metalanguage, which is itself a typed λ-calculus. The distinction should always be clear from the
context. Nevertheless, notice that the first abstraction uses a bolder font, and a nameless representation,
whereas the second has a lighter stroke, and names the abstracted variable. Nameless terms always
belong to the object syntax.

2In the Agda formalization, we use # instead of commas for building contexts.
3In the Agda code, this is given by the function clen.
4Notice that we use the colon symbol for type judgments in both the metalanguage and the object

language. It should always be clear what refers to what; in particular, object judgments are always
written in full, like Γ ` t : A, whereas meta judgments are always given with an implicit context, like
t : A.
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_〈_〉7→_ : Ctxt→ N→ Ty→ Set .

Γ, A 〈 |Γ| 〉7→ A

Γ 〈 n 〉7→ A

Γ, B 〈 n 〉7→ A

_`_:_ : Ctxt→ Term→ Ty→ Set .

Γ 〈 n 〉7→ A

Γ ` xn : A

Γ, A ` t : B

Γ ` ń(idx |Γ| t) : A⇒ B
Γ ` t : A⇒ B Γ ` s : A

Γ ` t · s : B

Γ ` Zero : N
Γ ` t : N

Γ ` Succ t : N
Γ ` z : A Γ ` s : N⇒ A⇒ A Γ ` t : N

Γ ` Rec z s t : A

_`_∼_:_ : Ctxt→ Term→ Term→ Ty→ Set .

Γ, A ` t : B Γ ` s : A

Γ ` ńt · s ∼ t[s] : B
Γ ` z : A Γ ` s : N⇒ A⇒ A Γ ` t : N

Γ ` Rec z s Z ∼ z : A

Γ ` z : A Γ ` s : N⇒ A⇒ A Γ ` t : N
Γ ` Rec z s (S t) ∼ s · t · Rec z s t : A

∆ ` t : A Γ `s σ ∼ τ : ∆

Γ ` lsub t σ ∼ lsub t τ : A

Γ, A ` t : B Γ ` a ∼ b : A

Γ ` t〈|Γ| 7→ a〉 ∼ t〈|Γ| 7→ a〉 : A

+ equivalence rules.

Figure 4.1: System Twk

axiomatized by the rules is CH-weak conversion, in that we have β-contraction, and
recursion. Congruence rules are not present, and instead we have a primitive substitution
rule, that makes us of a function _〈_ 7→ _〉 : Term→ N→ Term→ Term replacing a
term for a given level.

4.1.2 Weakening over levels

Judgments of System Twk are considered under a certain context of assumptions. In
several occasions, given some derivation of a typed entity, we will need to consider the
same entity under a weakened version of the original context. One of the main advantages
of using De Bruijn levels to represent free variables is that they make weakening very
cheap, since they require no shifting to be performed in the term whatsoever.

Lemma 2. For all ∆ : Ctxt, if Γ〈n〉7→A, then Γ,∆〈n〉7→A.

Proof. Straightforward induction on ∆.

Theorem 6. For all ∆ : Ctxt, if Γ ` t : A, then Γ,∆ ` t : A.

Proof. By induction on the typing derivation. The only interesting case is when the
conclusion introduces a level. Then, we apply Lemma 2. The other cases are immediate
applications of the inductive hypothesis.
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4.1.3 Substitution over levels

Substitution over levels is implemented as a straightforward recursive function over
terms.

_〈_ 7→_〉 : Term → N → Term → Term

Lev x 〈 n 7→ a 〉 with x ?
= n

Lev x 〈 n 7→ a 〉 | yes p = a
Lev x 〈 n 7→ a 〉 | no ¬p = Lev x
Idx x 〈 n 7→ a 〉 = Idx x
Lam t 〈 n 7→ a 〉 = Lam (t 〈 n 7→ a 〉)
(t · s) 〈 n 7→ a 〉 = t 〈 n 7→ a 〉 · s 〈 n 7→ a 〉
Zero 〈 n 7→ a 〉 = Zero
Succ t 〈 n 7→ a 〉 = Succ (t 〈 n 7→ a 〉)
Rec z s t 〈 n 7→ a 〉 = Rec (z 〈 n 7→ a 〉) (s 〈 n 7→ a 〉) (t 〈 n 7→ a 〉)

In the sections that follow, we will sometimes use t〈a/n〉 as an alternate notation for
t〈n 7→ a〉.

4.1.4 Weakening over indices

In order to implement operations on bound variables, such as β-reduction, we need to
define substitution on De Bruijn indices also. Since the value of indices depends on
their position relative to binders, we need some form of shifting operation to ensure
that indices always denote the intended variable even when their context or position is
changed due to substitution. We implement these shiftings by weakening operations.
We consider three kinds of weakening, represented as constructors of an inductive type
Wk : Set:

w ::= Id | Up w | Skip w

These constructors have the following meaning:

• Id: the identity weakening. It has no effect;

• Up w: increases all indices by 1, and then applies the weakening w;

• Skip w : skips the index at the shallowest level (index 0), applying the weakening
w to the rest.

The informal meaning of weakening constructors is even more clear from the following
definition of weakening on De Bruijn indices:

wk-var : N → Wk → N
wk-var x Id = x
wk-var x (Up w) = suc (wk-var x w)
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wk-var zero (Skip w) = zero
wk-var (suc x) (Skip w) = suc (wk-var x w)

We now define weakening for general terms. Lev levels are ignored, whereas Idx
indices are weakened according to wk-var. To weaken a λ-abstraction ńt, we proceed
recursively on its body t. However, the index 0 in t represents the abstracted variable,
which is not free in ńt, hence we must skip it by wrapping the weakening term in a Skip.
The other constructors are treated with a straightforward recursive call.

wk : Term → Wk → Term
wk (Free x) w = Free x
wk (Bound x) w = Bound (wk-var x w)
wk (Lam t) w = Lam (wk t (Skip w))
wk (t · s) w = wk t w · wk s w
wk Zero w = Zero
wk (Succ t) w = Succ (wk t w)
wk (Rec z s t) w = Rec (wk z w) (wk s w) (wk t w)

It what follows, we sometimes write t ↑ for wk t (Up Id). We can define composition
of weakenings, as the following total operation.

_·w_ : Wk → Wk → Wk
w ·w Id = w
w ·w Up w’ = Up (w ·w w’)
Id ·w Skip w’ = Skip w’
Up w ·w Skip w’ = Up (w ·w w’)
Skip w ·w Skip w’ = Skip (w ·w w’)

As one would expect, we get the following lemma

Lemma 3. For all w,w′ : Wk, t : Term, wk (wk t w) w′ = wk t (w ·w w′).

Proof. By straightforward induction on t. See Syntax.Raw.Renaming.wk-comp.

4.1.5 Substitution over indices

We use parallel substitutions that simultaneously operate on all indices of a term. Here,
shifting of De Bruijn indices is needed in order to properly implement capture-avoiding
substitution. In particular, all indices must be shifted by one position whenever the
substitution is pushed under a binder, otherwise all indices at value 0 would be captured
by the binder. Therefore, our definition considers an additional constructor of weakened
substitutions, in addition to the usual list-forming constructors. We define the inductive
type Subst : Set as follows

σ ::= Id | σ, t | σ · w

These constructors have the following intuitive meaning:
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• Id : the identity substitution. It has no effect;

• σ, t : extension of a substitution σ with a term t;

• σ · w : weakening of a substitution. It applies the substitution sigma to the term,
and then weakens the result with w.

To apply a substitution to an index, we just use it to select the term with the
corresponding location in the substitution.

sub-var : N → Subst → Term
sub-var x Id = Bound x
sub-var x (σ · w) = wk (sub-var x σ) w
sub-var zero (σ , t) = t
sub-var (suc x) (σ , t) = sub-var x σ

Substitution on terms is mostly a straightforward recursion. In the case of ńt, we
proceed by recursion on the body t, recalling that the index 0 should not be affected
by the substitution. To do this, we consider the extended substitution (σ · Up Id), v0,
that has the effect of leaving the index 0 untouched, while lifting all indices of σ by
one so that no variables get captured by Lam. Consider the following general function
performing this extension an arbitrary number n : N of times

shift : N → Subst → Subst
shift zero σ = σ
shift (suc n) σ = shift n σ · Up Id , Bound 0

Letting sh :≡ shift 1, we have

sub : Term → Subst → Term
sub (Free x) σ = Free x
sub (Bound x) σ = sub-var x σ
sub (Lam t) σ = Lam (sub t (sh σ))
sub (t · s) σ = sub t σ · sub s σ
sub Zero σ = Zero
sub (Succ t) σ = Succ (sub t σ)
sub (Rec z s t) σ = Rec (sub z σ) (sub s σ) (sub t σ)

We will use t[s] as a shorthand for sub t (Id, s), that simply substitutes s for the
index 0 in t. We also write t[w, a] for sub t (Id · w, a), whenever it is clear from the
context that w is a weakening.

Whereas right-composition between substitutions and weakenings is supported by a
constructor of Subst, left-composition can be expressed in terms of right-composition, as
shown by the following operation:

_w·_ : Wk → Subst → Subst
w w· Id = Id · w
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w w· (σ · w’) = (w w· σ) · w’
Id w· (σ , t) = σ , t
Up w w· (σ , t) = w w· σ
Skip w w· (σ , t) = w w· σ , t

With it, we can define composition of substitutions as a total operation, just as we
did for weakenings.

_·s_ : Subst → Subst → Subst
σ ·s Id = σ
σ ·s (τ · w) = (σ ·s τ) · w
Id ·s (τ , x) = τ , x
(σ · w) ·s (τ , t) = σ ·s (w w· (τ , t))
(σ , t) ·s (τ , s) = (σ ·s (τ , s)) , sub t (τ , s)

We thus get the following lemma

Lemma 4. For all σ, τ : Subst, t : Term, sub (sub t σ) τ = sub t (σ ·s τ).

Proof. By induction on t. See Syntax.Raw.Substitution.sub-comp.

Using the above representation for substitution is convenient for certain parts of the
formalization, but in many cases it is too “intensional”. For example, it is clear that
sub t σ = sub t (σ · Id), because σ and σ · Id denote essentially the same substitution,
although not so as mere terms of type Subst. We formalize this concept of equality of
substitutions with the relation _ ≈s _ ∈ Subst→ Subst→ Set, defined as follows

σ ≈s τ :≡ (x : N)→ sub-var x σ = sub-var x τ

that is, two substitutions are equal whenever they are point-wise equal, meaning that
they assign syntactically equal terms to equal variables. It is straightforward to see that
the relation is an equivalence, and also a congruence w.r.t. substitution constructors.
But most importantly, we get the following general lemma:

Lemma 5. If t : Term, σ, τ : Subst, and σ ≈s τ , then sub t σ = sub t τ .

Proof. By induction on t. See Syntax.Raw.Substitution.eq-sub.

4.2 System Tex with Explicit Weak Equality Judgments

The next step to prove normalization for System Twk is to define an algorithmic method
to evaluate Twk terms to normal form. In Section 3.3, we observed that under CH-weak
reduction, variables assume two distinct roles, and shown that making this distinction
syntactically explicit leads to a simple, structurally recursive definition of evaluation.

Unfortunately, the results of Section 3.3 cannot be applied directly to System Twk.
First of all, the formal system does not support in a native way the distinction between
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variable roles. Retrofitting such support would require the addition of awkward side-
conditions to the rules of the calculus, and it is very likely to lead to a confused and
overly-complicated formalization. But most importantly, the conversion relation that
arises from Twk’s equality judgments is not a congruence, since it does not validate the
ξ rule.

The absence of congruence rules complicates the metamathematical analysis of
equality judgments, because the corresponding equality does not play well with many
definitions and proofs made by induction on (well-typed) terms. To illustrate the
difficulty that may arise, consider a sketched attemp at showing soundness of NbE
(Section 2.4), where the normalization function nf is defined by structural recursion on
terms:

Γ ` t : A =⇒ Γ ` t ∼ nf t : A

We proceed by induction on the derivation. Consider the case where t is a λ-
abstraction, so that

Γ, A ` t : B

Γ ` ńt : A⇒ B

Since nf (ńt) ≡ ń(nf t), we have to show that Γ ` ńt ∼ ń(nf t) : A ⇒ B. By
inductive hypothesis, we know that Γ, A ` t ∼ nf t : B. We would like to deduce
Γ ` ńt ∼ ń(nf t) : A→ B from that, but we cannot, because that would require the ξ
rule.

We observe that the definition of judgmental equality of Twk is inadequate to establish
certain metamathematical properties defined over the inductive structure of terms, and in
particular when reasoning about normalization. We therefore employ a type assignment
approach, and extract a type system from the tagged syntax of Section 3.3, that we
call System T ex. This calculus makes the details of CH-weak reduction that we care
about explicit in the syntactic structure of judgments; in particular, it provides built-in
support for reasoning about variable roles, and allows to enforce that computation rules
only apply to weak redexes.

The raw syntax of untyped terms is exactly the same as System Twk, in the sense
that we employ a hybrid nameless scheme with both De Bruijn levels and indices. The
crucial difference is that now we do not use them to distinguish between free and
bound variables, but between variables with global role and variables with local role. In
particular, we use the constructor Lev of De Bruijn levels to represent variables with a
global role, whereas Idx of De Bruijn indices is used for variables with a local role. We
stress the fact that roles are orthogonal to the status of being free/bound; for example,
a free variable may be either global or local, hence be represented by either indices or
levels, unlike in System Twk, where free variables are always represented by levels.

Type judgments of System T ex are of the form Γ :: ∆ ` t : A, as shown in Figure 4.2.
As before, we use the relation _〈_〉7→_ to locate free levels in a context. But in addition,
we have another, analogous relation _[_]7→_, mapping De Bruijn indices to locally-free
assumptions. What is immediately evident is the use of a double context Γ :: ∆, keeping
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_[_]7→_ : Ctxt→ N→ Ty→ Set

Γ, A [ 0 ]7→ A

Γ [ n ]7→ A

Γ, B [ succ n ] 7→ A

_::_`_:_ : Ctxt→ Ctxt→ Term→ Ty→ Set

Γ〈n〉7→A
Γ :: ∆ ` xn : A

∆[n]7→A
Γ :: ∆ ` vn : A

Γ :: ∆, A ` t : B

Γ :: ∆ ` ńt : A⇒ B

Γ :: ∆ ` t : A⇒ B Γ :: ∆ ` s : A
Γ :: ∆ ` t · s : B Γ :: ∆ ` Zero : N

Γ :: ∆ ` t : N
Γ :: ∆ ` Succ t : N

Γ :: ∆ ` z : A Γ :: ∆ ` s : N⇒ A⇒ A Γ :: ∆ ` t : N
Γ :: ∆ ` Rec z s t : A

Figure 4.2: System T ex

track of free variables with a global and local role, respectively. We sometimes call the
two contexts globally-free context and locally-free context. Double contexts in typing
judgments allow us to enforce a precise discipline over the presence (or, really, absence)
of locally-free variables, and by consequence, over the presence of weak redexes. In
particular, it is easy to see that in the class of well-typed redexes, weak redexes are
exactly those typeable under an empty locally-free context Γ :: �. In fact, the only way
for a term t to be typeable in such context is to be closed w.r.t. local variables.

Another aspect of System T ex is the presence of typed one-step reduction judgments,
written as Γ :: ∆ ` t −→ s : A and defined in Figure 4.3. Unlike System Twk, the
typed conversion relation of T ex is not defined directly, but it is expressed as the
equivalence closure of one-step reduction. This formulation makes it easier to establish
the correspondence between Twk and T ex, as shown in Section 4.3. Nevertheless, this
choice is not restrictive in any way, since all rules expressed in Figure 4.3 for one-step
reduction are admissible when conversion is used instead:

Lemma 6.

1. If Γ :: ∆, A ` t ∼ s : B, then Γ :: ∆ ` ńt ∼ ńs : A→ B;

2. If Γ :: ∆ ` t ∼ s : N, then Γ :: ∆ ` Succ t ∼ Succ s : N;

3. If Γ :: ∆ ` r ∼ r′ : A→ B and Γ :: ∆ ` s ∼ s′ : A, then Γ :: ∆ ` r · s ∼ r′ · s′ : B;

4. If Γ :: ∆ ` z ∼ z′ : A, Γ :: ∆ ` s ∼ s′ : N→ A→ A, and Γ :: ∆ ` t ∼ t′ : N, then
Γ :: ∆ ` Rec z s t ∼ Rec z′ s′ t′ : A.

Proof. By laborious but straightforward induction on derivations. See the module
Syntax.Typed.Equality.Properties for details.
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4.2.1 Computation and congruence rules

The syntax of System T ex gives us the means to express CH-weak contractions in a
precise manner. We do so by definiting computation rules so that they only apply to
redexes that are weak, namely that are provably closed w.r.t. local variables. Consider,
for example, the β-reduction rule:

Γ :: �, A ` t : B Γ :: � ` s : A

Γ :: ∆ ` Lam t · s −→ t[s] : B

The premises of the rule provide evidence that both ńt and s are derivable in an
empty context of locally-free variables. By construction of the calculus, this is only
possible when the two terms are closed w.r.t. local variables, which implies that ńt · s
is a weak redex. The conclusion is established under an arbitrary locally-free context
∆, to ensure admissibility of weakening. All computation rules are defined in a similar
way. As a consequence, we can characterize a reduction of the form Γ :: ∆ ` t −→ s : A
intuitively as one where all contracted redexes are weak, and similarly for an equality
Γ :: ∆ ` t ∼ s : A.

The expressive double contexts also enable a definition of reduction and equality
judgments as a congruence relation, and where CH-weak conversion follows the inductive
structure of terms. To see how, consider a reduction between two λ-abstractions.

Γ :: ∆ ` ńt −→ ńs : A⇒ B

One issue with the standard definition of CH-weak reduction (Section 3.2) is that
it not only rules out the standard ξ rule, but it also makes very difficult to express a
restricted form of ξ rule that, as discussed in Section 3.2.1, does hold under CH-weak
conversion.

This issue is not present in System T ex, and the restricted ξ rule can be expressed
directly. To do so, it is sufficient to consider the abstracted variable as part of the
locally-free context when proving the premise. This has the effect of ruling that variable
out of any redex that will be contracted within the derivation, by construction of the
computation rules.

Γ :: ∆, A ` t −→ s : B

Γ :: ∆ ` ńt −→ ńs : A⇒ B

4.2.2 Weakening and substitution

We will consider well-typed weakenings, defined in Figure 4.4. A judgment of the form
Γ `r w : ∆ denotes a well-typed weakening w that acts on well-typed terms under a
locally-free context ∆, and renames their indices so that they can be typed under a new
context Γ.

Lemma 7. Let Θ :: ∆ ` t : A and Γ `r w : ∆. Then, Θ :: Γ ` wk t w : A is derivable.

Proof. By induction on the derivation of t. See Syntax.Typed.Typed.`wk.
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_::_`_−→_:_ : Ctxt→ Ctxt→ Term→ Term→ Ty→ Set

Γ :: �, A ` t : B Γ :: � ` s : A

Γ :: ∆ ` ńt · s −→ t[s] : B
(β)

Γ :: ∆ ` z : A Γ :: ∆ ` s : N⇒ A⇒ A Γ :: ∆ ` t : N
Γ :: ∆ ` Rec z s Z −→ z : A

Γ :: ∆ ` z : A Γ :: ∆ ` s : N⇒ A⇒ A Γ :: ∆ ` t : N
Γ :: ∆ ` Rec z s (Succ t) −→ s · t · (Rec z s t) : A

Γ :: ∆, A ` t −→ s : B

Γ :: ∆ ` ńt −→ ńs : A⇒ B
(ξ) Γ :: ∆ ` t −→ s : N

Γ :: ∆ ` Succ t −→ Succ s : N

Γ :: ∆ ` s : A
Γ :: ∆ ` t −→ t′ : A⇒ B
Γ :: ∆ ` t · s −→ t′ · s : B

Γ :: ∆ ` t : A⇒ B
Γ :: ∆ ` s −→ s′ : A

Γ :: ∆ ` t · s −→ t · s′ : B

Γ :: ∆ ` z −→ z′ : A Γ :: ∆ ` s : N⇒ A⇒ A Γ :: ∆ ` t : N
Γ :: ∆ ` Rec z s t −→ Rec z′ s t : A

Γ :: ∆ ` z : A Γ :: ∆ ` s −→ s′ : N⇒ A⇒ A Γ :: ∆ ` t : N
Γ :: ∆ ` Rec z s t −→ Rec z s′ t : A

Γ :: ∆ ` z : A Γ :: ∆ ` s : N⇒ A⇒ A Γ :: ∆ ` t −→ t′ : N
Γ :: ∆ ` Rec z s t −→ Rec z s t′ : A

_::_`_∼_:_ : Ctxt→ Ctxt→ Term→ Term→ Ty→ Set

Γ :: ∆ ` t −→ s : A
Γ :: ∆ ` t ∼ s : A

∼−→ Γ :: ∆ ` t : A
Γ :: ∆ ` t ∼ t : A

∼refl

Γ :: ∆ ` s ∼ t : A
Γ :: ∆ ` t ∼ s : A

symm∼ Γ :: ∆ ` t ∼ s : A Γ :: ∆ ` s ∼ r : A
Γ :: ∆ ` t ∼ r : A

trans∼

Figure 4.3: Definitional reduction and equality for System T ex
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Γ `r Id : Γ
∆ `r w : Γ

∆, A `r Up w : Γ

∆ `r w : Γ

∆, A `r Skip w : Γ, A

Θ :: Γ `s Id : Γ
Θ :: Γ `s σ : ∆ Θ :: Γ ` t : A

Θ :: Γ `s σ, t : ∆, A

∇ `r w : ∆ Θ :: ∆ `s σ : Γ
Θ :: ∇ `s σ · w : Γ

Figure 4.4: Well-typed weakenings and substitutions on De Bruijn indices

As with weakenings, we will also consider well-typed parallel substitutions on indices.

Lemma 8. Let Θ :: ∆ ` t : A and Θ :: Γ `s σ : ∆. Then, Θ :: Γ ` sub t σ : A is
derivable.

Proof. By induction on the derivation of t. See Syntax.Typed.Typed.`sub.

Finally, we consider substitutions over De Bruijn levels.

Lemma 9. If Γ :: ∆ ` t : A and Γ :: � ` a ∼ b : A, then Γ :: ∆ ` t〈|Γ| 7→ a〉 ∼ t〈|Γ| 7→
b〉 : A.

Proof. By induction on the derivation of t. See Syntax.Typed.MetaSubstitution.`sub.

4.3 Correspondence between System Twk and System T ex

Before moving on to normalization, it is important to see how the two weak versions
of System T that we just defined relate to each other. A first correspondence relates
typing derivations. Inference rules for type judgments are essentially the same in the
two calculi, apart from indices in System T ex, that may denote free variables in the
locally-free context. When we restrict to free levels only, the two calculi produce the
same well-typed terms.

Lemma 10. Γ :: � ` t : A ⇐⇒ Γ ` t : A

Proof. Straightforward induction of derivations.

A much more interesting correspondence pertains definitional equality. Consider
a derivation of the form Γ ` t ∼ s : A, that witnesses a typed CH-weak conversion
between the terms t and s. As we learned in Section 3.2, this is equivalent to saying
that the conversion only involves weak redexes, that is, redexes that have all their free
variablese in Γ, so that no one is bound somewhere in t or s. But the same conversion
can be expressed in the explicit calculus as Γ :: � ` t ∼ s : A, by the very meaning of
double contexts. Therefore, we have the following correspondence:
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Γ ` t ∼ s : A ⇐⇒ Γ :: � ` t ∼ s : A

Notice that the right-to-left implication can be strengthened, in the sense that
Γ,∆ ` t ∼ s : A ⇐= Γ :: ∆ ` t ∼ s : A holds. The opposite is not true, because the
variables in ∆, that are free in the first judgment and therefore allowed in any contracted
redex, would appear locally-free in the second judgment, and they would be instead
ruled out of any contraction.

We prove the correspondence by addressing one implication at a time.

4.3.1 Γ ` t ∼ s : A =⇒ Γ :: � ` t ∼ s : A

The left-to-right direction is relatively straightforward: every derivation of a judgment
Γ ` t ∼ s : A uses one among computation, substitution, and equivalence rules, by
definition of the calculus. We have shown that the substitution rule on levels is admissible
in the explicit calculus (Lemma 9), which means that every rule application used to
derive the left judgment can be simulated in the explicit calculus (up to trivial De Bruijn
indeces/levels readjustments), thus deriving the same equation. The actual proof is a
straightforward induction on derivations, and it is not reproduced here. We refer the
reader to the module Syntax.Typed.Correspondence.ImplicitToExplicit for details.

4.3.2 Γ ` t ∼ s : A⇐= Γ :: � ` t ∼ s : A

Proving the right-to-left implication is more involved, since now is not the case that
every rule application on the explicit derivation can be simulated in the implicit calculus.
The obstacle is, obviously, the ξ rule, that does not have a direct counterpart in the
implicit calculus (indeed, this is the reason we developed an alternative calculus in the
first place.)

To prove the implication, we have to show that there exists a systematic way to
express an explicit derivation in terms of inference rules that do have a direct counterpart
in the implicit calculus, namely computation, substitution, and equivalence rules. The
proof is, in its essence, very similar to what is done in Theorem 5 for the untyped case.
We first focus on reductions, showing that any derivation of Γ :: ∆ ` t −→ s : B can be
transformed into some derivation of Γ,∆ ` t ∼ s : B. The proof then easily extends to
the full conversion relation.

Consider a derivation π of the one-step reduction Γ :: ∆ ` t −→ s : B. Such reduction
must involve a weak contraction a b of a weak redex a that gets contracted in t. By
construction, a is closed w.r.t. local variables, so it surely does not contain any of those
that are bound in t. Thus, just as we did in the untyped case, we can express t as a
factor of two components, namely the subterm a and the rest of t, a context C[ ] with
a single hole, such that C[a] ≡ t and C[b] ≡ s. We can then rewrite the reduction as
Γ :: ∆ ` C[a] −→ C[b] : B, since a is the only subterm of t that changes in the reduction.

The term a is a contracted redex, so π must contain a subderivation πab : Γ :: ∆,∇ `
a −→ b : A for some ∇ and A, established with a computation rule. The rest of π does
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not contain any other contractions, but must be composed of congruence rules that
simply follow the structure of C[ ], pushing assumptions to the locally-free context.

Γ :: ∆ ` C[a] −→ C[b] : B

π

πab
Γ :: ∆,∇ ` a −→ b : A

We can imagine to extract the subtree πab from π, leaving a placeholder variable x
in its place. Clearly, x must be of the same type of a and b. Moreover, since a is a weak
redex, both and b must be derivable in an empty locally-free context. We make this
official by putting the placeholder variable x, standing for a and b, in the free context,
thus extending Γ to Γ, A, and putting x ≡ x|Γ|. Intuitively, what remains of π is a
derivation π′ of Γ, A :: ∆ ` C[x|Γ|] : B.

Γ :: ∆ ` C[x|Γ|] : A
π′

Γ, A〈|Γ|〉7→A
Γ, A :: ∆,∇ ` x|Γ| : A

At this point, we are almost done. Since the locally-free context is not relevant in
the derivation of Γ :: ∆,∇ ` a −→ b : A, we can safely replace it with another one,
hence obtaining a derivation of Γ :: ∆ ` a −→ b : A. Now, we can apply the substitution
rule to get the following derivation

Γ, A :: ∆ ` C[x|Γ|] : B Γ :: ∆ ` a −→ b : A

Γ :: ∆ ` C[x|Γ|]〈a/|Γ|〉 −→ C[x|Γ|]〈b/|Γ|〉 : B

Just as in Lemma 1, it’s easy to see that C[x|Γ|]〈a/|Γ|〉 ≡ C[a] ≡ t and, similarly,
that C[x|Γ|]〈b/|Γ|〉 ≡ C[b] ≡ s. The conclusion of the rule is therefore the reduction
that we started with, namely Γ :: ∆ ` t −→ s : B, but expressed with substitution and
computation rules alone.

We have informally shown how to factor a derivation of a reduction Γ :: ∆ ` t −→
s : B into two objects, namely a derivation of C[x|Γ|] for some C[ ], and a derivation of
a −→ b, that can be combined to produce the original reduction, using syntax and rules
that have a direct counterpart in the implicit calculus. The following lemma formalizes
the argument above, which is then used in Theorem 7 to finally prove the result, with
a minor difference: instead of defining contexts C[ ] and then proving that C[a] ≡ t
and that C[x|Γ|]〈a/|Γ|〉 ≡ C[a], we just consider a term C such that C〈a/|Γ|〉 ≡ t, that
corresponds to providing C[ ] with its hole already filled by x|Γ|.
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Lemma 11. For all derivations of a typed reduction Γ :: ∆ ` t −→ s : A, there exist
terms C, a, b and a type ty such that

• Γ, ty :: ∆ ` C : A is derivable;

• Γ ` a ∼ b : ty is derivable;

• C〈a/|Γ|〉 ≡ t;

• C〈b/|Γ|〉 ≡ s.

Proof. By induction on the derivation. We consider a couple of cases, starting with
β-reduction:

Θ :: �, A ` t : B Θ :: � ` s : A

Θ :: Γ ` ńt · s −→ t[s] : B

Let a ≡ t, b ≡ s. Clearly Θ :: � ` ńt : A → B is derivable, so by Lemma 10 we
have Θ ` ńt : A⇒ B and Θ ` s : A, hence Θ ` ńt · s ∼ t[s] : B. Moreover, let ty ≡ B
and C ≡ x|Γ|. Then, clearly Θ, ty :: ∆ ` x|Γ| : B, as well as (x|Γ|)〈a/|Γ|〉 ≡ a ≡ t, and
similarly for s.

Consider now the ξ rule.

Θ :: Γ, A ` t −→ s : B

Θ :: Γ ` ńt −→ ńs : A⇒ B

By inductive hypothesis, there are a, b, ty such that Γ ` a ∼ b : ty is derivable;
moreover, Γ, ty :: ∆, A ` C : B is derivable for some C, and we have C〈a/|Γ|〉 ≡ t and
C〈b/|Γ|〉 ≡ s. But then, Γ, ty :: ∆ ` ńC : A ⇒ B is derivable by λ-introduction, and
(ńC)〈a/|Γ|〉 ≡ ń(C〈a/|Γ|〉) ≡ ńt, and similarly for ńs.

See the full proof in Syntax/Typed/Correspondence/ExplicitToImplicit.agda.

Theorem 7. If Γ :: � ` t ∼ s : A is derivable, then Γ ` t ∼ s : A is derivable.

Proof. By induction on the derivation. We distinguish four possible rule applications
used to derive the conclusion.

• Reflexivity. Then, there must be a derivation of Γ :: � ` t : A. By Lemma 10, this
implies Γ ` t : A, hence the conclusion by reflexivity in the implicit calculus.

• Symmetry and transitivity. By induction hypothesis and symmetry in the implicit
calculus.

• Reduction.

Γ :: � ` t −→ s : A
Γ :: � ` t ∼ s : A
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By Lemma 11, there exist terms C, a, b and a type ty such that Γ, ty :: � ` C : A
and Γ ` a ∼ b : ty are derivable, and C〈a/|Γ|〉 ≡ t, C〈b/|Γ|〉 ≡ s. By Lemma 10,
we have Γ, ty ` C : A, hence we can apply the substitution rule to get

Γ, ty ` C : A Γ ` a ∼ b : ty

Γ ` C〈a/|Γ|〉 ∼ C〈b/|Γ|〉 : A

that is Γ ` t ∼ s : A by hypothesis.

4.3.3 Comments

CH-weak conversion can be expressed more faithfully, and in much more detail in the
explicit framework of System T ex, albeit with a heavier and less standard syntax. System
Twk, on the other hand, achieves a syntactically simpler formulation, at the expense of
expressivity, preciseness, and control over weak equality. The previous section shows that
the explicit syntax is no more powerful that the implicit one, as one step of reduction in
System T ex can be expressed as a single instance of substitution in System Twk. This
suggests that we could think of the implicit calculus as an abstraction over the explicit
one, with the substitution rule abstracting over several low-level details that are instead
left explicit in System T ex.



Chapter 5

Normalization of Weak System T

In this chapter, we provide a constructive normalization proof for System Twk. We
proceed by first establishing normalization by evaluation for System T ex, from which the
normalization theorem follows. We then transfer the result to System Twk by exploiting
the correspondence between the two calculi, shown at the end of the previous chapter.

All the contents of this chapter can be found in the formalization [5] under the folder
Semantics/, in addition to Syntax/.

5.1 Normalization by Evaluation for System T ex

To normalize System T ex, we will employ the method of untyped Normalization by
Evaluation, as described in [8]. The main ingredient is represented by an evaluation
function, interpreting untyped λ-terms into the semantics. We will use a model of
normal forms, thus it is crucial to understand and formalize the concept of (weak) redex
and normal form in the setting of System T ex.

5.1.1 Weak redexes and normal forms

Weak redexes are just redexes that are closed w.r.t. local variables. To define this, we
first give the inductive definition of a relation Sz : N→ Term→ Set, such that Sz n t
holds whenever all free indices in t are < n.

Sz n (Lev x)

x ≤ n
Sz (suc n) (Idx x)

Sz (suc n) t

Sz n (Lam t)
Sz n t Sz n s

Sz n (t · s)

Sz n Zero
Sz n t

Sz n (Succ t)
Sz n z Sz n s Sz n t

Sz n (Rec z s t)

A term t is then closed w.r.t. local variables, i.e. any De Bruijn index, whenever
Sz 0 t holds: the only possible way to have all indices below 0 is to have none. The Sz
relation is decidable:

Lemma 12. For all n : N and t : Term, Sz n t is decidable.

47
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Proof. By induction on t. See Syntax.Raw.Term.decSz.

We can observe a connection between well-typed terms under a certain locally-free
context Γ and terms of a certain “size” of De Bruijn indices.

Lemma 13. If Γ :: ∆ ` t : A, then Sz |Γ| t.

Proof. By induction on the derivation. See Syntax.Typed.Typed.tyClosed.

We can now formally define what it means to be a (weak) redex, as well as a normal
form. We define the inductive family B-Redex : Term→ Term→ Set of β-redexes, and
N-Redex : Term→ Term→ Term→ Set of Rec-redexes as follows:

Sz 1 t Sz 0 s
B-Redex (Lam t) s

Sz 0 z Sz 0 s
N-Redex z s Zero

Sz 0 z Sz 0 s Sz 0 t
N-Redex z s (Succ t)

Notice that our characterization of well-typed weak redexes as those redexes that are
typeable under an empty locally-free context is sound. In fact, Lemma 13 ensures that
those redexes are such that the predicate Sz 0 holds, as required by the definition above.

We are now ready to define normal forms. We do so by giving a mutual definition of
the inductive families Nf : Term→ Set of normal terms and Ne : Term→ Set of neutral
terms.1

Nf t
Nf (Lam t) Nf Zero

Nf t
Nf (Succ t)

Ne t
Nf t

Ne t Nf s Sz 0 t Sz 0 s
Ne (t · s)

Nf t Nf s ¬Sz 0 t
Ne (t · s)

Nf t Nf s Sz 0 t ¬Sz 0 s
Ne (t · s)

Nf z Nf s Ne t Sz 0 z Sz 0 s Sz 0 t
Ne (Rec z s t)

Nf z Nf s Nf t ¬Sz 0 z
Ne (Rec z s t)

Nf z Nf s Nf t Sz 0 z ¬Sz 0 s
Ne (Rec z s t)

Nf z Nf s Nf t Sz 0 z Sz 0 s ¬Sz 0 t
Ne (Rec z s t)

Neutral terms were introduced in [13] to denote stuck terms, and in particular
elimination forms whose computation is blocked by a variable (or another neutral term)
in recursive position, like in the application x t. In our setting, we need to extend the
notion of neutral terms beyond the standard one, because there are strictly more cases
in which CH-weak reduction can be blocked. In particular, in addition to every neutral
term of the full β-reduction, we have all non-weak redexs, that is, elimination forms
where Sz 0 t does not hold for at least one component t.2

This distinction between weak and non-weak redexes inevitably makes the definition
of CH-weak normal forms slightly more complicated than the usual one for full β-
reduction. For this reason, it may not be obvious that the predicate Nf we just defined

1In the definition of neutral terms, we make use of a type ¬Sz. ¬Sz n t is exactly the same as
¬(Sz n t), only given as an inductive definition, so that it can be pattern matched.

2A trivial example of non-weak redex is (ńv1)Zero
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does really identify CH-weak normal forms. To verify this, we first need to formalize
what it means to be a non-reducible term, which means that we must formally define
the untyped notion of CH-weak reduction. We do so by inductively defining the binary
relation _ −→ch _ : Term→ Term→ Set as follows

B-Redex (ńt) s

ńt · s −→ch t[s]
(β)

t −→ch t
′

ńt −→ch ńt′
(ξ)

t −→ch t
′

t · s −→ch t
′ · s

(ν)
s −→ch s

′

t · s −→ch t · s′
(µ)

Rec z s Zero −→ch z Rec z s (Succ t) −→ch s · t · (Rec z s t)

t −→ch t
′

Succ t −→ch Succ t′
z −→ch z

′

Rec z s t −→ch Rec z′ s t
s −→ch s

′

Rec z s t −→ch Rec z s′ t

t −→ch t
′

Rec z s t −→ch Rec z s t′

We can now characterize normal forms, i.e. terms t such that Nf t holds, in the
following way

Theorem 8. Let t : Term. If Nf t, then there exists no s such that t −→ch s;

Proof. By induction on the proof of Nf t and t −→ch s for some s.
See Syntax.Evaluation.Conversion.ifNf.

5.1.2 Semantic domain and interpretation

Normalization by Evaluation is a semantic method that works by interpreting the syntax
into a suitable model, whose semantic values stand for representations of normal forms.
One possible choice, that we will use for System T ex, is a syntactic model of normal
forms. In this setting, semantic values clearly stand for normal forms (they literally are),
and reification is essentially the identity function. Semantic values are given by the type
Σ(t : Term)(Nf t) of terms in normal form.

The evaluation function of Section 3.3 takes untyped terms as input, and produces
normal forms as output, so it is a perfect candidate for the interpretation function.
We denote this function by J_K : Term → Env → Env → Σ(t : Term)(Nf t), which,
according to its signature, should take as input a term t and two environments, that is,
maps assigning semantic values to globally-free and locally-free variables, respectively.
However, notice that variables with global role do not interact in any way with evaluation;
substitution is always performed on local variables, and the only context that changes
(for example, when normalizing under a binder) is the locally-free one. Variables with
global role end up being essentially constant terms. We can simplify things and really
treat them as constants, thus removing the need for an environment in the interpretation
function.

Locally-free variables, instead, do need an environment. These variables are repre-
sented with De Bruijn indices, so we should expect the same shifting operations that
are needed for regular substitution to be needed for environments also. In fact, since
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semantic values are just regular terms (in normal form), we can avoid repeating ourselves
and just represent environments as regular substitutions, for which we have already
defined and formalized all the shifting and weakening operations that we need.

Finally, notice that having Σ(t : Term)(Nf t) as return type of J_K would require
annoying packing and unpacking of the Σ-type, as well as force us to provide proofs
of Nf t for every t produced, whenever the function is used in recursive position. This
additional syntactic noise would end up cluttering the actual algorithm at the core of
the interpretation function. What we can do is to simply return terms, that is, define
interpretation as a function of type Term→ Subst→ Term, and then prove a posteriori
that every result of interpretation is indeed a normal term.

The following is a sketch of interpretation function, mutually defined with semantic
application and recursion. These are in turn defined according to our informal un-
derstanding of CH-weak reduction: if the term is a redex, check whether it is a weak
one. If so, perform a step of reduction, and proceed evaluating the result; otherwise,
produce a neutral term. Semantic application and recursion make use of three functions
dec-B-Redex, dec-N-Redex-Z, and dec-N-Redex-S, that decide whether the redex under
inspection is weak.

J_K : Term → Subst → Term
J Free x K ρ = Free x
J Bound x K ρ = sub-var x ρ
J Lam t K ρ = Lam (J t K (sh ρ))
J t · s K ρ = J t K ρ • J s K ρ
J Zero K ρ = Zero
J Succ t K ρ = Succ (J t K ρ)
J Rec z s t K ρ = rec (J z K ρ) (J s K ρ) (J t K ρ)

_•_ : Term → Term → Term
Lam t • s with dec-B-Redex t s
(Lam t • s) | inj1 x = J t K (Id , s)
(Lam t • s) | inj2 y = Lam t · s
t • s = t · s

rec : Term → Term → Term → Term
rec z s Zero with dec-N-Redex-Z z s
rec z s Zero | inj1 _ = z
rec z s Zero | inj2 _ = Rec z s Zero
rec z s (Succ t) with dec-N-Redex-S z s t
rec z s (Succ t) | inj1 x = z • s • rec z s t
rec z s (Succ t) | inj2 y = Rec z s (Succ t)
rec z s t = Rec z s t

The definition above is conceptually correct, but it is readily rejected by Agda’s
termination checker, and for very good reasons: the function is defined on untyped
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terms, which clearly do not always have a normal form.3 The three definitions above
give rise to partial operations. We are working in a strongly-normalizing metatheory,
which means that all functions must be total. However, it is still possible to express
partial functions, by encoding their graph as an inductively-defined functional relation.
We mutually define the relations

J_K_↘_ : Term→ Subst→ Term→ Set
_•_↘_ : Term→ Term→ Term→ Set

rec_·_·_↘_ : Term→ Term→ Term→ Term→ Set

starting with the inductive definition of application and recursion:

B-Redex (Lam t) s JtK (Id, s) ↘ a

Lam t • s ↘ a
(•B)

Ne (t · s)
t • s ↘ t · s (•Ne)

N-Redex z s Zero
Rec z · s · Zero ↘ z

(rZ)

s • t ↘ f f • a ↘ b
N-Redex z s (Succ t) Rec z · s · t ↘ a

Rec z · s · Succ t ↘ b
(rS)

We now need to define J_K_↘_. Notice that, according to the sketched definition
above, the result of interpreting a term t under an environment ρ produces exactly the
same value4 that we would get if we first applied ρ as a substitution to t, and then
interpreted the result in the identity environment. That is

JtK ρ = Jsub t ρK Id

Interpreting under the identity environment is the same as evaluating open terms to
normal form. Evaluation is a partial function that depends only on the term that needs
to be evaluated, and can be defined as an inductive relation Eval_↘_ : Term→ Term→
Set. We can then avoid introducing environments altogether, and express interpretation
as substitution, followed by evaluation

JtK ρ ↘ a :≡ Eval (sub t ρ) ↘ a

With this trick, we get to reuse a lot of lemmas on the sub function to prove properties
of interpretation. The graph of evaluation is inductively defined as follows:

Eval vx ↘ vx Eval xx ↘ xx Eval Zero ↘ Zero

Eval t ↘ t′

Eval Succ t ↘ Succ t′
Eval t ↘ t′

Eval ńt ↘ ńt′

3Consider the archetypal diverging combinator Ω ≡ (λx.xx)(λx.xx), which diverges under full
β-reduction, as well as CH-weak reduction.

4although it may not be equivalent from a complexity point of view.
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Eval t ↘ t′ Eval s ↘ s′ t′ • s′ ↘ a

Eval t · s ↘ a

Eval z ↘ s′ Eval s ↘ s′

Eval t ↘ t′ Rec z′ · s′ · t′ ↘ a

Eval Rec z s t ↘ a

We can see that these relations indeed define functional relations:

Lemma 14. For all terms t, s, z, a, b, the following hold

1. If t • s ↘ a and t • s ↘ b, then a = b;

2. If Rec z · s · t ↘ a and Rec z · s · t ↘ b, then a = b;

3. If Eval t ↘ a and Eval t ↘ b, then a = b;

4. If JtK ρ ↘ a and JtK ρ ↘ b, then a = b.

Proof. Points 1–3 are shown by mutual induction on the proof of the relation. See •-fun,
rec-fun, and Eval-fun in module Syntax.Evaluation.Properties. Point 4 follows
immediately from point 3.

Moreover, evaluation interacts with normal forms as one would expect:

Lemma 15. For all z, s, t, a : Term,

1. If Nf t, Nf s, and t • s ↘ a, then Nf a holds;

2. If Nf z, Nf s, Nf t, and Rec z · s · t ↘ a, then Nf a holds;

3. If Eval t ↘ a, then Nf a holds;

4. If Nf t holds, then Eval t ↘ t.

Proof. Points 1–3 are shown by induction on the proof of the relation. See nfApp, nfRec,
and nfEval in module Syntax.Evaluation.Properties. Point 4 is proved by induction
on the proof of Nf t. See Syntax.Evaluation.Properties.nfSelf.

The following lemmas formalize the intuitive fact that evaluation does not create
new free indices.

Lemma 16.

1. If Sz n t, Sz n s, and t • s ↘ a, then Sz n a;

2. If Sz n z, Sz n s, Sz n t, and Rec z · s · t ↘ a, then Sz n a;

3. If Sz n t and Eval t ↘ a, then Sz n a.

Proof. By mutual induction on the proof of the application, recursion, and evaluation
relations. See •-Tm, rec-Tm, and Eval-Tm in module Syntax.Evaluation.Properties
for the details.
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and it is compatible with weakening:

Lemma 17. Let w : Wk. Then, the following hold

1. If t • s ↘ a, then wk t w • wk s w ↘ wk a w;

2. If Rec z · s · t ↘ a, then Rec wk z w · wk s w · wk t w ↘ wk a w;

3. If Eval t ↘ a, then Eval wk t w ↘ wk a w.

Proof. All points proved by mutual induction on the proof terms. See the module
Syntax.Evaluation.Properties.

Finally, we can establish several ways in which evaluation commutes with substitution.

Lemma 18.

1. For all t, s, a, b : Term and n : N, if Eval sub t (shift n (Id, a)) ↘ b and Eval s ↘ a,
then Eval sub t (shift n (Id, s)) ↘ b;

2. For all t, a, b, σ, if Eval t ↘ a and Eval sub t σ ↘ b, then Eval sub a σ ↘ b;

3. For all t, a, b, σ, σ′, if Eval sub t σ ↘ b and Eval sub t (σ ·s σ′) ↘ a, then
Eval sub b σ′ ↘ a;

4. For all t, a, b, σ, if Eval t ↘ a and Eval sub a σ ↘ b, then Eval sub t σ ↘ b;

5. For all t, a, b, σ, σ′, if Eval sub t σ ↘ a and Eval sub a σ′ ↘ b, then Eval sub t (σ ·s
σ′) ↘ b.

Proof. By tedious but straightforward induction on terms and proofs of the evaluation
relation. See Syntax.Evaluation.Properties.sub-comm2 for the first point, and the
module Syntax.Evaluation.SubSwap for the rest.

5.2 Subset model and completeness of NbE

Completeness of NbE amount to showing that if two well-typed terms are definitionally
equal, then their interpretation produces equal semantic values, according to the notion
of equality of the particular model. We will continue with the syntactic model of normal
forms described in the previous section, refining it into a subset model, that is, one
where syntactic types are interpreted as suitable “subsets” of all the normal forms. 5

Semantic equality in this model of normal forms is syntactic identity. In our setting,
completeness of NbE will imply that evaluation is terminating on well-typed terms, and
that definitionally equal terms have the same normal form.

5Subsets are usually not a primitive notion in intentional type theory, including our metatheory
(hence the quotation marks). Rather, the “subset” of a type A is represented as a predicate P : A→ Set
such that P x is inhabited for all x : A belonging to the subset P .
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5.2.1 Semantic types

As discussed in the previous section, we simply consider terms as the result of interpre-
tation. However, we shall be a little more clear, at least typographically, and distinguish
between the type of semantic values D as produced by evaluation, and that of syntactic
terms Term. Nevertheless, D :≡ Term.

Evaluation is a partial operation, i.e., there are terms t for which it is not possible
to find a term a and environment ρ such that JtK ρ ↘ a holds. This is not only for the
presence of diverging terms among the untyped λ-terms, but also because of potentially
bogus arguments. For example, Zero • Zero ↘ a does not hold for any instantiation of
a, because Zero · Zero is not a valid application, at least from a typed perspective.

We then follow [8] and strengthen our syntactic model, by identifying “subsets”
of values on which application and recursion are well-defined and terminating, called
semantic types.

Definition 2 (Semantic type). A semantic type is a predicate A : D→ Set such that

1. For all d : D, if A d then Nf d;

2. For all e : D, if Ne e then A e.

That is, elements of a semantic type are is normal form. Moreover, all neutral forms
inhabit any semantic type. From now on, we sometimes write a ∈t A to say that a
is element of the semantic type A, i.e., that A a holds. Moreover, we sometimes use
P(D) as an informal abbreviation for D → Set.6 We now define a semantic type for
each syntactic type, starting from natural numbers. The semantic type Nat : D→ Set is
inductively defined as follows7:

Nat Zero
Nat d

Nat (Succ d)
Ne e
Nat e

In fact, the natural numbers for which recursion is well-defined and terminating
are precisely neutral terms, and numerals produced by Zero and finite applications of
of the successor. It is easy to see that Nat does indeed define a semantic type. The
function type is a little bit more involved. We first need to define a relation on semantic
applications belonging to a semantic type. Let f, a : D and B : D→ Set. Then

f • a ∈t B :≡ Σ(b : D)(b ∈t B ∧ f • a ↘ b)

Thus, givenA,B : D→ Set, we define the semantic function space (A → B) : D→ Set
as follows

A → B :≡ λf.Nf f ∧ (∀{a w} → a ∈t A → wk f w • a ∈t B)

6Recall that a function from D to Set can be viewed as a subset of D. Hence, it makes sense to
consider D→ Set as the subset space of D.

7In the Agda code, this is instead called NatP.
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that is, A → B is the subset of all terms that are in normal form, and such that
given an argument in A, their semantic application to it is well-defined, terminating,
and produces a result in B. The weakening on f makes the subset model very similar to
a Kripke model, and is needed to enable weakening of arbitrary semantic values.

Observe that A → B is a semantic type whenever A and B are. In fact, if f ∈t A → B,
then Nf f holds by definition. Moreover, if Ne f , then f ∈t A → B because then f · a is
a neutral term for any a ∈f A, hence f • a ↘ f · a holds for the neutral term f · a, that
is an element of B by definition of semantic type.

Let rec_·_·_ ∈t _ : D→ D→ D→ P(D)→ Set be the analogous of _•_ ∈t _ for
recursion, defined as follows:

rec z · s · t ∈t A :≡ Σ(d : D)(d ∈t A ∧ Rec z · s · t ↘ d)

then, we prove the following properties of semantic types:

Lemma 19. For all semantic types A,B,

1. If f : A → B, and a : A, then f • a ∈t B;

2. If z : A, s : Nat→ A→ A, and t : Nat, then rec z · s · t ∈t A.

Proof. Point 1 follows almost immediately from the definition of A → B and its elements.
To prove point 2, we discriminate on the decidable predicate N-Redex z s t.

• Case Rec z s t is a redex, and t ≡ Zero. Then Rec z · s · Zero ↘ z, and z ∈t A
by hypothesis.

• Case Rec z s t is a redex, and t ≡ Succ n for some n. By inductive hypothesis,
we have p : rec z · s · n ∈t A, and by point 1 of this lemma, we have
q : s • n ∈t (A → A). Again, by point 1, we have r : π1 q • π1 p ∈t A. Putting
it all together, we get Rec z · s · Succ n ↘ π1 r, and we conclude.

• Case Ne (Rec z s t). Then Rec z s t ∈t A by definition of semantic type.

5.2.2 Completeness of typing judgments

We interpret syntactic types T : Ty as semantic types. In particular, we define J_Kt :
Ty → P(D) as JNKt = Nat and JA ⇒ BKt = JAKt → JBKt. Given a syntactic type A,
the elements of JAKt can be lifted according to arbitrary weakenings. The Kripke-like
definition of the semantic function space is crucial for this proof to go through.

Lemma 20. For all A : Ty, w : Wk, d : D, if d ∈t JAKt then wk d w ∈t JAKt.

Proof. By induction on A. See Semantics.Completeness.Type.SemTy.liftD.
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Just as semantic types are subsets of terms, we also interpret contexts Γ : Ctxt
as subsets of substitutions, precisely those that map free indices to values of the
corresponding semantic type. We define the interpretation of contexts as the inductive
family J_Ks : Ctxt → Subst → Set. Similarly to semantic types, we sometimes write
ρ ∈s JΓKs for JΓKs ρ.

ρ : Subst
J�Ks ρ

cId
ρ ∈s JΓKs d ∈t JAKt

JΓ, AKs (ρ, d)
cCons

ρ ∈s JΓKs
JΓKs (ρ · w)

cWk

We now define what it means for two terms t, s of type T to have equal interpretations
as elements of a semantic type A.

Definition 3. Terms t, s : Term have equal interpretations as elements of semantic type
A under an environment ρ : Subst, written JtK ' JsK ρ ∈t A, whenever there exists d : D
such that JtK ρ ↘ d, JsK ρ ↘ d, and d ∈t A.

In other words, JtK ' JsK ρ ∈t A holds whenever both t and s have normal forms, and
these normal forms are the same. We can now prove the following semantic counterparts
of System T ex typing and conversion rules.

Lemma 21.

1. If (a : JAKt → JtK ' Jt′K (ρ · w, a) ∈t JBKt), then JńtK ' Jńt′K ρ ∈t JA⇒ BKt;

2. If JńtK ' JńtK ρ ∈t JA ⇒ BKt, JsK ' JsK ρ ∈t JAKt, Sz 1 t, and Sz 0 s, then
Jńt · sK ' Jt[s]K ρ ∈t JBKt;

3. If ∆ [n]7→ A and ρ ∈s J∆Ks, then JvnK ' JvnK ρ ∈t JAKt;

4. If JtK ' Jt′K ρ ∈t JNKt, then JSucc tK ' JSucc t′K ρ ∈t JNKt;

5. If JtK ' Jt′K ρ ∈t JA⇒ BKt and JsK ' Js′K ρ ∈t JAKt,
then Jt · sK ' Jt′ · s′K ρ ∈t JBKt;

6. If JzK ' Jz′K ρ ∈t JAKt, JsK ' Js′K ρ ∈t JN ⇒ A ⇒ AKt, and JtK ' Jt′K ρ ∈t JNKt,
then JRec z s tK ' JRec z′ s′ t′K ρ ∈t JAKt;

7. If JzK ' JzK ρ ∈t JAKt, JsK ' JsK ρ ∈t JN⇒ A⇒ AKt,
then JRec z s tK ' JzK ρ ∈t JAKt;

8. If JzK ' JzK ρ ∈t JAKt, JsK ' JsK ρ ∈t JN ⇒ A ⇒ AKt, JtK ' JtK ρ ∈t JNKt, and
Sz 0 z, Sz 0 s, Sz 0 t, then JRec z s (Succ t)K ' Js · t · Rec z s tK ρ ∈t JAKt.

Proof. We reproduce here the proof of only the first three points. See the module
Semantics.Completeness.Type.Lemmata for the full details.

1. JAKt is a semantic type, so v0 ∈t JAKt. Hence, by hypothesis, we have JtK '
Jt′K sh ρ ∈t JBKt. This means that there exist d : D such that JtK sh ρ ↘ d,
Jt′K sh ρ ↘ d, hence we have JńtK ρ ↘ ńd, and Jńt′K ρ ↘ ńd.
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It is left to show that ńd ∈t JA⇒ BKt. Nf (ńd) follows from Nf d, which in turn
follows from Lemma 15. We now have to show that for any a : D, w : Wk, if
a ∈t JAKt then wk (ńd) w • a ∈ap JBKt. Let w and a be such that a ∈t JAKt. We
proceed by case analysis on the decidable proposition B-Redex (wk (ńd) w) a.

• Case B-Redex (wk (ńd) w) a holds.
By Lemma 17, from JtK sh ρ ↘ d ≡ Eval sub t (sh ρ) ↘ d we have
Eval sub t (sh ρ · Skip w) ↘ wk d (Skip w).
By hypothesis, JtK ' Jt′K (ρ ·w, a) ∈t JBKt, thus we have JtK (ρ ·w, a) ↘ d′ ≡
Eval sub t (ρ · w, a) ↘ d′, for some d′ ∈t JBKt.
By equality of substitutions and Lemma 18, we get
Eval sub (wk d (Skip w))(Id, a) ↘ d′. But wk (ńd) w ≡ ń(wk d (Skip w)), so
wk (ńd) w • a ↘ d′. This yields a proof of wk (ńd) w • a ∈ap JBKt.
• Case B-Redex (wk (ńd) w) a does not hold. Then wk (ńd) w · a is a neutral

term, so it is an element of JBKt by definition of semantic type.

2. By point 4 of this lemma, we have Jt · sK ' Jt · sK ρ ∈t JBKt, which means that
Jńt · sK ρ ↘ d ≡ Eval sub (ńt) ρ · sub s ρ ↘ d for some d ∈t JBKt.

By induction on the proof of this evaluation, we must have Eval sub (ńt) ρ ↘ ńt′

from Eval sub t (sh ρ) ↘ t′, as well as Eval sub s ρ ↘ s′, for some t′, s′ : D, such
that ńt′ • s′ ↘ d holds. We distinguish the two possible derivations for this
semantic application.

• Case •B. Then, it must be the case that Eval sub t′ (Id, s′)↘ d. But then from
this evaluation, in addition to Eval sub t (sh ρ) ↘ t′ and Eval afsub s ρ ↘ s′,
we get Jt[s]K ρ↘ d by Lemma 4 and Lemma 18. Recalling that Jńd ·sK ρ↘ d,
we conclude.
• Case •Ne. Then, ńt′ · s′ is a neutral redex, which means that either Sz 1 t′ or

Sz 0 s′ must be false. But Sz 1 t and Sz 0 s hold by assumption, and so do
Sz 1 t′ and Sz 0 s′ by Lemma 16., leading to a contradiction. The conclusion
follows by ex falso quodlibet.

3. By induction on the proof of ρ ∈s J∆Ks.

• Case cId is impossible, since otherwise we would have Γ = �, and � [n] 7→ A is
not provable;
• Case cCons. Then ρ ≡ (ρ′, d) for ρ′ ∈s J∆Ks and d ∈t JAKt.
Then, Γ, B [n] 7→ A for some B. We proceed by case analysis on this.

– Case Γ, A [0] 7→ A. Since Eval d↘ d by Lemma 15, we have Jv0K ρ′, d↘ d.
Hence, Jv0K ' Jv0K ρ′, d ∈t JAKt.

– Case Γ, B [suc n′] 7→ A for some n′ : N, so that Γ [n′] 7→ A. By inductive
hypothesis, Jvn′K ' Jvn′K ρ′ ∈t Jd′Kt for some d′ ∈t JAKt. But then
Jv(suc n′)K ' Jv(suc n′)K (ρ′, d) ∈t Jd′Kt.
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• Case cWk. Then ρ ≡ ρ′ · w. By inductive hypothesis, JvnK ' JvnK ρ′ ∈t JAKt,
meaning that we have JvnK ρ′ ↘ d for some d ∈t JAKt. By Lemma 17, we
have JvnK ρ′ · w ↘ wk d w, and by Lemma 20, we have wk d w ∈t JAKt.

We now define semantic typing judgments in the following way:

∆ |= t : A :≡ ∀{ρ : Subst} → ρ ∈s J∆Ks → JtK ' JtK ρ ∈t JT Kt

Notice that we only consider environments for the locally-free context, since global
variables are treated as constants during evaluation, and therefore do not need an
interpretation of their context. We can now prove completeness of the semantics w.r.t.
typing judgments.

Theorem 9. For all t : Term, A : Ty, and Γ,∆ : Ctxt, if Γ :: ∆ ` t : A, then ∆ |= t : A.

Proof. By induction on the typing derivation, and application of Lemma 21. We consider
the interesting case of λ-introduction. See the module Semantics.Completeness.Rule
for the full details.

Γ :: ∆, A ` t : B

Γ :: ∆ ` ńt : A⇒ B

Let ρ ∈s J∆Ks. We have to show that JńtK ' JńtK ρ ∈t JA ⇒ BKt. By inductive
hypothesis, ∆, A |= t : B, that is, for all ρ′ ∈s J∆, AKs we have JtK ' JtK ρ′ ∈t JBKt.

Let w : Wk, and a : D such that a ∈t JAKt. Then, (ρ · w, a) ∈s J∆, AKs, hence
JtK ' JtK (ρ · w, a) ∈t JBKt by inductive hypothesis. By Lemma 21, this implies
JńtK ' JńtK ρ ∈t JA⇒ BKt.

5.2.3 Completeness of reduction and equality judgments

We define semantic equality judgments in the following way

∆ |= t ∼ s : A :≡ ∀{ρ : Subst} → ρ ∈s J∆Ks → JtK ' JsK ρ ∈t JAKt

Similarly to typing judgments, we restrict our attention to the locally-free context.
We can now prove completeness of the semantics w.r.t. reduction and equality judgments:

Theorem 10. For all t, s : Term, A : Ty, and Γ,∆ : Ctxt, the following hold

1. if Γ :: ∆ ` t −→ s : A, then ∆ |= t ∼ s : A;

2. if Γ :: ∆ ` t ∼ s : A, then ∆ |= t ∼ s : A.

Proof. Point 1 is proved by induction on the derivation, using Lemma 21. Point 2 follows
easily by induction on the derivation, Theorem 9, and symmetry and transitivity of the
relation J_K ' J_K ρ ∈t JAKt for all ρ,A.
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Corollary 2. For all Γ, A, t, s,

1. If Γ :: ∆ ` t : A, then t has a normal form;

2. If Γ :: ∆ ` t ∼ s : A, then t and s have the same normal form.

Proof. Point 1 follows from Theorem 9. Point 2 follows from Theorem 10.

In concrete terms, this corollary means that we can define a metatheoretical normal-
ization function nf, that is therefore total and computable, with the following type:

nf : Γ :: ∆ ` t : A→ Term

Notice how the function takes the whole proof of well-typedness of t as argument,
from which is evident that normalization is only totally defined on well-typed System
T ex terms. Then, completeness of NbE means that for well-typed terms p : Γ :: ∆ ` t : A
and q : Γ :: ∆ ` t : A, the conversion Γ :: ∆ ` t ∼ s : A implies nf p = nf q.

5.3 Kripke logical relations and soundness of NbE

Soundness of NbE is the statement that well-typed terms are provably convertible with
their normal forms, that is, it corresponds to the following implication:

(p : Γ :: ∆ ` t : A)→ Γ :: ∆ ` t ∼ nf p : A

To prove this statement we rely on the definition of a suitable Kripke logical relation.
Logical relations are families of relations defined by induction on types. Kripke logical
relations [36] are additionally indexed by a set of worlds together with an accessibility
relation, in the sense of Kripke semantics. In our case, these roles are played by contexts
Ctxt and context extension (weakening). In particular, if a relation holds in the context
∆, it also holds in every ∇ such that ∇ `r w : ∆ for some w.

Our logical relation is _ :: _ ` _ R© _ : _ : Ctxt→ Ctxt→ Term→ D→ Ty→ Set,
and relates well-typed terms with semantic values. The idea is to define the relation
in such a way that Γ :: ∆ ` t R© a : A implies Γ :: ∆ ` t ∼ a : A. It then remains to
prove that every well-typed term is logically related to its interpretation in the semantics
(i.e., just its normal form). This result is generally called fundamental lemma of logical
relations, and in our case immediately implies soundness of NbE.

We now proceed to define the logical relation. Just like we did for semantic types in
Section 5.2, we first define relations for each syntactic type A : Ty separately, telling
us what it means for syntactic terms and semantic values to be logically-related at
type A. In the case of natural numbers, this simply means convertibility. We define
NatRel : Ctxt→ Ctxt→ Term→ D→ Set as follows:

Γ :: ∆ ` n ∼ Zero : N
NatRel Γ ∆ n Zero

Γ :: ∆ ` n ∼ Succ n′ : N NatRel Γ ∆ n′ m
NatRel Γ ∆ n (Succ m)
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Ne e Γ :: ∆ ` n ∼ e : N
NatRel Γ ∆ n e

Thus, a term n is related to Zero or to a neutral term if it is convertible to it, whereas
it is related to Succ m if it converts to some successor Succ n′ such that n′ is related
to m. Note that, by looking at this definition, it seems like we could just have put
NatRel Γ ∆ n m :≡ Γ :: ∆ ` n ∼ m : N. However, we need the additional requirement
that terms be related, and thus convertible, to semantic values m for which recursion is
well-defined (that is, either numerals or neutral forms), otherwise it is not clear how to
prove the second point of Lemma 27, showing that logical relations are preserved by
recursion.

The logical relation at a function type A⇒ B is such that, given relations RA and
RB telling how to relate terms and values at type A and B, it tells us how to relate
functional terms and values at type A ⇒ B. Thus, suppose RA, RB : Ctxt → Ctxt →
Term→ D→ Ty→ Set. Then, we inductively define the relation FunRel on type A⇒ B
as follows:

Γ :: ∆ ` t ∼ ńt′ : A⇒ B
∀{∇ w s a b} → ∇ `r w : ∆→ RA Γ ∇ s a→ JdK (Id · w), a ↘ b→ RB Γ ∇ (sub t′ ((Id · w), s)) b

FunRel A B RA RB Γ ∆ t (ńd)

Ne e Γ :: ∆ ` t ∼ e : A⇒ B
FunRel A B RA RB Γ ∆ t e

That is, we say that a term t is related to a semantic value ńd if t is convertible
to some ńt′ such that for any term s and value a related at type A, the results of
substituting into the bodies t′ and d are related at type B. Since these substitutions
model β-reductions, what this means is that t and ńd are related as functions of type
A⇒ B when they map related inputs to related outputs. Notice that, as customary in
Kripke semantics, we consider the relation between inputs and outputs of functional
terms in an arbitrary extended context ∇. This setup is crucial to be able to prove that
the logical relation is Kripke, i.e. that is preserved by context extensions. On the other
hand, t is related to a neutral term e if it is convertible to it.

We are now ready to define the logical relation, by induction on syntactic types, and
using the specialized definition for each case:8

_::_`_ R©_:_ : Ctxt → Ctxt → Term → D → Ty → Set
Θ :: Γ ` t R© a : N = NatRel Θ Γ t a
Θ :: Γ ` t R© a : (A ⇒ B) =

FunRel A B (_::_`_ R©_: A) (_::_`_ R©_: B) Θ Γ t a

Traditionally, logical relations on function spaces have a simpler definition, that in
our setting would translate to the following:

8In the definition of the logical relation, _ :: _ ` _ R© _ : A is Agda notation for a partially applied
function, whose inputs are represented by the underscored parts.
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Γ :: ∆ ` r R© f : A⇒ B :≡ ∇ `r w : ∆→ Γ :: ∇ ` s R© a : A→ f • a↘ b→ Γ :: ∇ ` r · s R© b : B
(5.1)

This is a purely behavioural characterization of functions, as simply those terms that
map related arguments to related results. Unfortunately, our calculus is too intensional,
and we need the additional specification that functional terms in the semantics are
related with functional terms in the syntax. This is what we achieve with the definition
above, that requires terms t related to functional values ńd to be themselves convertible
to functions, i.e. Γ :: ∆ ` t ∼ ńt′ : A ⇒ B. Without this additional requirement, we
would not be able to prove Lemma 23, as we further explain after its proof. A similar
trick is used in Pagano’s PhD thesis [51], for the same reasons.

A first property of logical relations is that they are compatible with judgmental
equality, as shown in Lemma 22. We clearly also have compatibility with semantic
equality, which is just identity of normal forms; thus, the property trivially follows by
substitutivity of propositional equality.

Lemma 22. If Γ :: ∆ ` t ∼ t′ : A and Γ :: ∆ ` t′ R© a : A, then Γ :: ∆ ` t R© a : A.

Proof. By induction on A, and subsequently on the proof of the logical relation. See
Semantics.Soudness.LogicalRelation.∼preservation.

The main result that we want to obtain from our definition of logical relations is
that related objects are convertible:

Lemma 23. If Γ :: ∆ ` t R© a : T then Γ :: ∆ ` t ∼ a : T .

Proof. By induction on T and on the logical relation. We report the most interesting
case of T ≡ A ⇒ B, with the logical relation derived by ⇒- R©-Lam. By hypothesis,
Γ :: ∆ ` t ∼ ńt′ : A ⇒ B and Γ :: ∆, A ` t′ R© d : B for some t′, d. By inductive
hypothesis we have Γ :: ∆, A ` t′ ∼ d : B, but then

Γ :: ∆ ` t ∼ ńt′ : A⇒ B

Γ :: ∆, A ` t′ ∼ d : B

Γ :: ∆ ` ńt′ ∼ ńd : A⇒ B
(ξ)

Γ :: ∆ ` t ∼ ńd : A⇒ B
∼trans

Now, suppose we defined the logical relation on function types as in 5.1, and wanted
to prove that Γ :: ∆ ` r R© f : A ⇒ B implies Γ :: ∆ ` r ∼ f : A ⇒ B. We have
no choice but to use the inductive hypothesis on Γ :: ∇ ` r · s R© b : B, which comes
from hypothesis for a suitable instantiation of ∇, w, s, a, b, and somehow try to conclude
Γ :: ∆ ` r ∼ f : A ⇒ B. The only possibility is to use Γ :: ∆, A ` v0 R© v0 : A to get
Γ :: ∆, A ` wk r (Up Id)·v0 ∼ wk f (Up Id)·v0 : B, and then Γ :: ∆ ` ń(wk r (Up Id)·v0) ∼
ń(wk f (Up Id) · v0) : A ⇒ B by ξ. At this point, we are stuck, and the proof cannot
proceed. If we had the η-rule, that with De Bruijn indices would be defined as
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Γ :: ∆ ` ń(wk t (Up Id) · v0) ∼ t : A⇒ B
(η)

we could use it to successfully conclude Γ :: ∆ ` r ∼ f : A ⇒ B from Γ :: ∆ `
ń(wk r (Up Id) · v0) ∼ ń(wk f (Up Id) · v0) : A⇒ B. However, we do not have the η-rule
in System T ex allowing us to turn every functional term into a λ-abstraction, so we have
to bake it into the definition of the logical relation, and explicitly require that related
functional terms are always convertible to λ-abstractions.

The following lemma establishes that weakening is an accessibility relation for the
Kripke logical relation:

Lemma 24. If ∇ `r ∆ and Γ :: ∆ ` t R© a : T , then Γ :: ∇ ` wk t w R© wk a w : T .

Proof. By induction on T and the logical relation.
See Semantics.Soudness.LogicalRelation.kripke.

Moreover, we have that terms are related to neutral values whenever they are
convertible to them.

Lemma 25. If Ne e and Γ :: ∆ ` t ∼ a : T , then Γ :: ∆ ` t R© e : T .

Proof. By straightforward induction on T . See Semantics.Soudness.LogicalRelation.allNe.

The fact that logically-related terms are well-typed follows indirectly from the
definition:

Lemma 26. If Γ :: ∆ ` t R© a : T , then Γ :: ∆ ` t : T .

Proof. By induction on T and the logical relation.

Finally, we can show application and recursion for logical relations

Lemma 27.

• If Γ :: ∆ ` r R© f : A ⇒ B, Γ :: ∆ ` s R© a : A, and f • a ↘ b, then
Γ :: ∆ ` r · s R© b : B.

• If Γ :: ∆ ` z R© sz : A, Γ :: ∆ ` s R© ss : N⇒ A⇒ A, Γ :: ∆ ` n R© sn : N, and
Rec sz · ss · sn ↘ a, then Γ :: ∆ ` Rec z s n R© a : A.

Proof. Both proved by induction on the logical relation, respectively that on r for
the first point and on ppn for the second point. We reproduce the significant part
of the first point below. See Semantics.Soudness.LogicalRelation.appLemma and
Semantics.Soudness.LogicalRelation.rekk for the full details.

Consider the case where f • a ↘ b has been derived by •B. Then, f ≡ ńd for some
d, and Γ :: ∆ ` r R© f : A⇒ B must have been derived by ⇒- R©-Lam.

Since ńd · a is a weak redex, we know that Sz 1 d and Sz 0 a. But by Lemma 23,
Γ :: ∆, A ` t′ ∼ d : B and Γ :: ∆ ` s ∼ a : A. We therefore get Sz 1 t′ and Sz 0 s, that
imply Γ :: A ` t′ : B and Γ :: � ` s : A.
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Since Γ :: ∆ ` r ∼ ńt′ : holds by hypothesis, we can conclude the following:

Γ :: ∆ ` r ∼ ńt′ :
Γ :: ∆ ` s : A

Γ :: ∆ ` s ∼ s : A
Γ :: ∆ ` r · s ∼ ńt′ · s : B

Γ :: A ` t′ : B Γ :: � ` s : A
Γ :: ∆ ` ńt′ · s ∼ t′[s] : B

(β)

Γ :: ∆ ` r · s ∼ t′[s] : B

By Lemma 22, it now suffices to show Γ :: ∆ ` t′[s] R© b : B. Since ńd • a ↘ b holds
by β-reduction, we must have JdK Id, a ↘ b. Moreover, by hypothesis of having used
⇒- R©-Lam, we know that for any ∇, w, s′, a′, b′, having ∇ `r w : ∆,Γ :: ∇ ` s′ R© a′ :
A, JdK Id · w, a′ ↘ b′ implies Γ :: ∇ ` t′[Id · w, s′] R© b′ : B. Thus, since ∆ `r Id : ∆ and
Γ :: ∆ ` s R© a : A is assumed, we get Γ :: ∆ ` t′[Id, s] R© b : B.

5.3.1 Logical relation on substitutions

Before proving the fundamental lemma of logical relations, we must address substitutions,
which in our case also serve as environments of semantic values. In particular, we define
a logical relation _ :: _ `s _ R© _ : _ : Ctxt → Ctxt → Subst → Subst → Ctxt → Set
between substitutions σ and environments ρ such that σ and ρ are related whenever
they are point-wise related, that is, they assign related objects to the same De Bruijn
indices.

As with terms, we give the relation as an inductive definition, so that we can reveal
the syntactic structure of the substitutions involved in the relation by performing case
analysis of the proof of the relation.

Γ :: ∆ `s σ : � ρ : Subst
Γ :: ∆ `s σ R© ρ : � (�r)

Γ :: ∆ `s σ R© ρ : ∇ Γ :: ∆ ` t R© a : A

Γ :: ∆ `s σ, t R© ρ, a : ∇, A (#r)

Θ :: Γ `s σ R© ρ : ∆ ∇ `r w : Γ

Θ :: ∇ `s σ · w R© ρ · w : ∆
(wr)

Lemma 28. If Γ :: ∇ `s σ R© ρ : ∆, then Γ :: ∇ `s σ : ∆.

Proof. By induction on the proof of the relation.

Let us define the identity substitution idsub : Ctxt → Subst as the substitution
mapping all variables of a context to themselves.

idsub Γ :≡ shift |Γ| Id

We can see that the identity substitution and environment are logically-related.

Lemma 29. For all ∆ : Ctxt, we have Γ :: ∆ `s idsub ∆ R© idsub ∆ : ∆.

Proof. By induction on ∆ and straightforward application of Lemma 25.
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5.3.2 Soundness of NbE

To support the proof of the fundamental lemma of logical relations below, we first show
that the logical relation on substitutions and environments means what it is supposed
to mean, i.e. that they logically-related substitutions and environments map the same
De Bruijn index to related values. We do so in the following lemma, which generalizes
this statement by considering it under an arbitrary well-typed weakening to achieve a
sufficiently strong inductive hypothesis.

Lemma 30. If Γ [n] 7→ A, Eval wk (sub-var n ρ) w ↘ a, Θ :: ∆ `s σ R© ρ : Γ, and
∇ `r w : ∆, then Θ :: ∇ ` wk (sub-var n σ) w R© a : A.

Proof. By induction on the proof of Θ :: ∆ `s σ R© ρ : Γ. We consider the case
# R©, when n ≡ 0 and Γ′, A [0] 7→ A for some Γ′. Then, σ ≡ (σ′, t), ρ ≡ (ρ, b) for
some σ′, ρ′, t, b, and Eval wk b w ↘ a. Then, Θ :: ∆ ` t R© b : A by hypothesis, and
Θ :: ∇ ` wk t w R© wk b w : A by Lemma 24. Since wk b w is a normal form, then
Eval wk b w ↘ wk b w, both by Lemma 15, so we deduce wk a w = a′ by functionality
of evaluation and conclude Θ :: ∆ ` t R© a : A.

See Semantics.Soundness.Soundness.varFundamental for the full details.

We are now ready to show the fundamental lemma of logical relations, namely that
every well-typed term is logically-related to its interpretation in the semantics.

Lemma 31. [Fundamental lemma] If Θ :: Γ ` t : T , Θ :: ∆ `s σ R© ρ : Γ, and JtK ρ ↘ a,
then Θ :: ∆ ` sub t σ R© a : T .

Proof. By induction on the derivation of t. We show the most interesting case, where
T ≡ A⇒ B. Thus, we have t ≡ ńt′ and d : D such that

Θ :: Γ, A ` t′ : B
Θ :: Γ ` ńt′ : A⇒ B

Jt′K sh ρ ↘ d

Jńt′K ρ ↘ ńd

meaning that we have to show Θ :: ∆ ` ń(sub t sh σ) R© ńd : A ⇒ B. This can
be done by ⇒- R©-Lam. Nf d follows from Lemma 15. It remains to show that for all
∇, w, s, a, b such that ∇ `r w : ∆, Θ :: ∇ ` s R© a : A, and JdK Id · w, a ↘ b, we have
Θ :: ∇ ` sub (sub t′ (sh σ))(Id · w, s) R© b : B.

Let us assume such ∇, w, s, a, b. By definition of the logical relation on substitutions,
we get Θ :: ∇ `s σ · w, s R© ρ · w, a : Γ, A. Moreover, by Jt′K sh ρ ↘ d, JdK Id · w, a ↘ b,
and Lemma 18, we get Jt′K ρ · w, a ↘ b. Hence, by inductive hypothesis we get
Θ :: ∇ ` sub t′ (σ · w, s) R© b : B, with which we conclude since sub (sub t′ (sh σ))((Id ·
w), s) = sub t′ ((σ · w), s) by equality of substitutions.

Theorem 11. [Soundness of NbE] If p : Γ :: ∆ ` t : A, then Γ :: ∆ ` t ∼ nf p : A.

Proof. By completeness, JtK idsub ∆↘ nf p. By Lemma 31, Γ :: ∆ ` sub t (idsub ∆) R© nf p :
A, which is just Γ :: ∆ ` t R© nf p : A since idsub ∆ is an identity substitution. By
Lemma 23, we get Γ :: ∆ ` t ∼ nf p : A.
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5.4 Normalization for System Twk

We are finally ready to conclude the chapter with the normalization result for System Twk.
In particular, we will show in Theorem 13 below that for any well-typed System Twk term
t, there exists a definitionally equal term t′ such that Nf t′. We know from Theorem 8
that the predicate Nf correctly identifies System T ex normal forms. However, this tells
us nothing about the weak reduction relation of System Twk. For Theorem 13 to really
correspond to normalization for Twk, we have to prove that Nf also correctly identifies
normal forms according to Twk’s reduction relation. The informal proof of equivalence
of the two untyped formulations (Theorem 5) suggests that this should indeed be the
case. We proceed to establish this result formally. The following definitions and lemmas
can be found in the formalization at the module Syntax.Evaluation.Conversion. We
start with the definition of Twk’s reduction relation _ −→w _ in its untyped, nameless
form.

ńt · s −→w t[s]
(β)

a −→w b

t〈n 7→ a〉 −→w t〈n 7→ b〉 (σ)

Rec z s Zero −→ch z Rec z s (Succ t) −→ch s · t · (Rec z s t)

where all terms are always considered closed w.r.t. De Bruijn indices, since in Twk

they are only used for bound variables. We begin by observing that the substitution
rule (σ) is admissible in CH-weak reduction, if we generalize to its reflexive-transitive
closure.

Lemma 32. If a −→∗ch b, then t〈n 7→ a〉 −→∗ch t〈n 7→ b〉.

Proof. By induction on t.

We get the following result as an immediate consequence:

Lemma 33.

1. If t −→w s, then t −→∗ch s.

2. If t −→w s and t 6= s, then there exists r such that t −→ch r.

Proof. The first point is proved by induction on the proof of t −→w s. The (β) case is
immediate. The (σ) case relies on Lemma 32. The second point relies on the first, and
case analysis on its result.

The second point of the lemma above establishes the fact that “true” one-step
reductions in −→w imply one-step reductions in −→ch. Notice that we need the extra
condition t 6= s to ensure that we are actually dealing with one-step reductions. This is
because t −→w t is always derivable via (σ), by performing substitution over a variable
that is not free in t.

Theorem 12. If Nf t, then there exists no s such that t 6= s and t −→w s.
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Proof. Suppose we had t −→w s for some s such that s 6= t. By Lemma 33, we must
have t −→ch r for some r. But then, we reach absurdity by Theorem 8.

Notice again the condition t 6= s, since t −→w t is always derivable, even if t is a
normal form. Having established that Nf does indeed also identify System Tw normal
forms, we can proceed with the Normalization theorem.

Theorem 13. [Normalization] If Γ ` t : A, then there exists t′ : Term such that Nf t′,
and Γ ` t ∼ t′ : A.

Proof. By Lemma 10, we have a proof p : Γ :: � ` t : A, so Γ :: � ` t ∼ nf p : A follows
by Theorem 11. Let t′ ≡ nf p. Then Nf t′ follows by Lemma 15, and Γ ` t ∼ t′ : A
follows from Theorem 7.

A direct corollary of normalization is decidability of conversion.

Corollary 3 (Decidability of conversion). If Γ ` t : A and Γ ` s : A, then Γ ` t ∼ s :
A ∨ ¬(Γ ` t ∼ s : A).

Proof. By Lemma 10, we have p : Γ :: � ` t : A and q : Γ :: � ` s : A, as well as
Γ :: � ` t ∼ nf p : A and Γ :: � ` s ∼ nf q : A by Theorem 11. We proceed by case
analysis on the syntactic equality of the two normal forms, namely nf p = nf q, which is
decidable.

• Case nf p = nf q. Then Γ :: � ` t ∼ nf p : A. We conclude Γ :: � ` t ∼ s : A by
symmetry and transitivity, and Γ ` t ∼ s : A by Theorem 7.

• Case ¬(nf p = nf q). Then ¬(Γ ` t ∼ s : A). In fact, suppose Γ ` t ∼ s : A were
true. Then Γ :: � ` t ∼ s : A, and by completeness of NbE we have JtK Id ↘ d,
JsK Id ↘ d for some d : D. But JtK Id ↘ nf p and JsK Id ↘ nf q hold by hypothesis,
so nf p = d = nf q by functionality of interpretation, contradicting our hypothesis.



Chapter 6

Dependent types

In this chapter, we address weak reduction in the context of dependent types. We begin
by observing that the “explicit” construction that we have employed for System T requires
particular care in order to be adapted to a dependently-typed setting. Investigating these
issues is left for future work. In the rest of the chapter, instead, we turn our attention
to another weak notion of reduction, i.e. weak explicit substitutions. In particular, we
describe the second main contribution of this thesis, namely the definition of a version of
Martin-Löf Type Theory with large elimination and weak explicit substitutions, and a
fully-formalized proof of untyped Normalization by Evaluation. We conclude by arguing
that, despite weak explicit substitutions not being equivalent to CH-weak conversion (as
shown in Chapter 3), they exhibit most of its desirable properties, while being much
easier to formalize and reason about.

6.1 Implicit-explicit correspondence and dependent types

The proof of normalization for CH-weak reduction shown in the previous chapters relies
on the ability to perform an extraction operation that pulls a weak redex out of a term,
in a type-preserving way. In the context of simple types, like in System T, this extraction
can be shown without too many complications, since types do not depend on terms and
therefore are not affected by the extraction. In a dependent type theory, the type T
of a term t may depend on the internal syntactic structure of t itself, so extracting a
subterm a from t does not necessarily yield a term of the same type. Suppose we had
the following derivation

Γ :: ∆ ` C[a] −→ C[b] : B

π

πab
Γ :: ∆,∇ ` a −→ b : A

and we wanted to perform the factorization into C[x|Γ|] and a −→ b, as we did in

67
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Chapter 4. Then, we would expect to obtain something like the following

Γ :: ∆ ` C[x|Γ|] :???
π′

x|Γ|

but now we are left to determine what the type of C[x|Γ|] should be. The type B of
C[a] and C[b] may depend on a and b, hence when extracting a from C[a] (and similarly
for C[b]), the type of the resulting term C[x] must be altered accordingly. It is not yet
clear how to do this in a systematic way.

6.2 MLTTwk: Martin-Löf Type Theory with weak explicit
substitutions

CH-weak normalization is challenging to formalize and prove normalizing even in a
simply-typed setting, given some aspects like a relative notion of redex, and the reliance
on the metalinguistic substitution operation for expressing any kind reduction step.
With dependent types, types may depend on terms, and moreover typing and equality
judgments are mutually defined. It is not too difficult to imagine how these characteristics
of dependent type theories may be a sounce of additional complication when considering
then in the context of CH-weak reduction. It thus seems reasonable to ask ourselves
whether there could be alternative notions of reduction that exhibit the same properties
that are appreciated in CH-weak equality (like confluence), but that are more amenable
to (formalized) metatheoretical analysis. In conclusion of Chapter 3, we argued that
a good candidate for this is represented by weak explicit substitutions. In the rest of
this chapter we study this notion of reduction in more detail, considering it in the
context of dependent types. We do so with the definition of MLTTwk, a formulation of
Martin-Löf Type Theory with weak explicit substitutions, and a fully-formalized proof
of normalization [4]. The calculus appears to be original, or at least the author is not
aware, at the time of writing, of other versions of MLTT with specifically weak explicit
substitutions. Abel et al. [9, 8] use explicit substitutions extensively in their treatment
of NbE, but always for the stronger βη conversion. [25] use explicit substitutions in the
simply-typed case. Altenkirch and Chapman [12] also employ weak explicit substitutions
in the simply-typed case, and formalize big-step normalization for intrinsic syntax. Our
definition of MLTTwk can be seen as an adaptation of their calculus to full dependent
types, albeit we use extrinsic syntax instead.1

Our goal here is to test weak explicit substitutions in the context of a λ-calculus
with full dependent types. We thus consider a minimal theory, in order not be distracted

1A presentation of a system is intrinsic when terms are defined in an inherently well-typed form, i.e.
terms are well-typed by construction. Extrinsic syntax, on the contrary, is given by first defining raw,
untyped pre-terms, and then defining inference rules that assign types to them.
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with details that are less relevant at the moment. We include dependent products and
one universe. The universe is empty, but it still allows non-trivial computation at the
type level via large elimination, so the theory is strong enough to be relevant for our
analysis.

Within dependent type theories, terms and types have the same status, so it is
convenient to define them as part of the same syntactic category. Unlike in System
Twk, we do not distinguish between global and local variables, thus we only include De
Bruijn indices for variables, both free and bound. In addition, we have a constructor
for dependent products Π, as well as the usual λ-abstraction and application as its
introduction and elimination forms. Lam t is intended to bind the first index in t,
whereas Π A B binds the first index in B. We also employ a universe a la Russell, and
use the same syntax for both proper types and their codes inhabiting the universe.

We main difference from the previous chapters and from more traditional definitions
of MLTT is the use of explicit substitutions, given by the type Subst : Set. Since these
are part of the term language, we define them mutually with terms Term : Set.

t, u,A,B ::= Var | Lam t | t · u | U | Π A B | t[σ]

σ, τ ::= Id | σ, t | ↑ | σ · τ

Explicit substitutions are defined like in [8], which in turn follows [7]. The constructors
of substitutions play a similar role to those of System Twk. In particular, we still have Id
for the identity substitution, and σ, t for the extension of σ with an additional term t. The
major difference is that now we have composition of substitutions as a constructor, rather
than as a metatheoretical operation. As a consequence, we only have the constructor ↑,
which shifts all indices in a term by 1, for weakening. In fact, ↑ and composition are
enough to derive all the other constructors of System Twk. We also follow [12, 51] and
encode De Bruijn indices out of a base constructor Var standing for the 0-th index, and
liftings ↑, so that Var · ↑n stands for the n-th index, where ↑n ≡ ↑ · . . . · ↑ n times.

Since substitutions are part of the syntax, their effect on terms is not given by a
metalinguistic operation, but it is provided definitionally in the judgment of the theory.
In particular, the substitution rules for types and terms hold definitionally, rather
than as a lemma. Figure 6.1 shows the inductive definition of judgments regarding
contexts, types and terms, together with their equality. In particular, type and term
equality judgments show how explicit substitutions propagate throught term constructors.
The weak charater of the theory is achieved by two things: first, we do not include
congruence rules for terms with binders, i.e. λ-abstractions and Π types. Second, the
substitution-propagation rules are defined so that substitutions are never pushed under
binders, that is, we do not allow further propagation of σ in (ńt)[σ] and (ΠAB)[σ]. Since
substitution is “blocked” for these terms, we always consider them together with an
additional substitution whenever we want to substitute some arguments in place of their
bound variable. An example of this is given by the (β) rule, which considers functional
terms (ńt)[σ] for some σ, and implements β-contraction by just extending σ with the
argument.
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Figure 6.2 shows substitution and substitution equality judgments, which tell us
when a substitution is well-typed, and when two well-typed substitutions are equal.
These last rules can be seen as an axiomatixation the substitution equality considered for
System Twk, and implement basic equations like congruence, composition, and identity
elimination. This definition of explicit substitutions is fairly standard, and closely follows
other implementations with dependent types and nameless syntax, like [8, 10]. We refer
the reader to these references for a more detailed treatment of explicit substitutions in a
similar setting.

6.3 Normalization by Evaluation for MLTTwk

In this section, we establish normalization for MLTTwk by instantiating untyped nor-
malization by evaluation. The proof is essentially an adaptation of [8] to weak explicit
substitutions, and of the previous Chapter to dependent types. Therefore, in the sec-
tions that follow, we mainly focus the details that are unique to MLTTwk, referring
the interested reader to the references and the Agda formalization [4] for the complete
picture.

6.3.1 Normal forms

We now give an inductive definition of normal forms of MLTTwk. As before, we define a
predicate Nf : Term→ Set of normal terms mutually with a predicate Ne : Term→ Set
of neutral terms. Terms with an applied explicit substitution can always be reduced by
propagating the substitution on the subterms, with the exception of ń and Π. Hence,
for example, (ńt)[σ] is a normal form, whenever σ is in normal form. Consequently, we
need to define what it means for a substitution to be in normal form. We do so with a
predicate Nfs : Subst→ Set.

Ne e
Nf e

Nfs σ
Nf ((ńt)[σ])

Nfs σ
Nf ((Π A B)[σ]) Nf U

Ne (Var[↑n])
Ne e Nf d
Ne (e · d) Nfs (Id· ↑w)

Nfs σ Nf a
Nfs (σ, a)

6.3.2 Semantic domain

We now define the type of semantic values, that will represent the result of evaluation.
The semantics must include closures, that is, syntactic terms together with environments
assigning a semantic value to every free variable, since these give rise to normal forms.
We define values d : D, neutral values e : Dne, and environments of values ρ : Env by the
following mutually-inductive definition.

d ::= DU | ńClo t ρ | ΠClo A B ρ | DNe e
e ::= Lev n | NeApp e d
ρ ::= ε | ρ, d
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`_ : Ctxt→ Set

` �
` Γ Γ ` A
` Γ, A

_`_ : Ctxt→ Term→ Set

` Γ
Γ ` U

Γ ` A : U
Γ ` A

Γ ` A Γ, A ` B
Γ ` Π A B

Γ ` A ∆ `s σ : Γ

∆ ` A[σ]

_`_:_ : Ctxt→ Term→ Term→ Set

Γ ` A
Γ, A ` Var : A[↑]

Γ, A ` t : B

Γ ` ńt : Π A B

Γ ` r : (Π A B)[σ] Γ ` s : A[σ] Γ `s σ : ∆

Γ ` r · s : B[σ, s]

Γ ` t : A Γ ` A ∼ B
Γ ` t : B

Γ ` t : A ∆ `s σ : Γ

∆ ` t[σ] : A[σ]

_`_∼_ : Ctxt→ Term→ Term→ Set

Γ ` A ∼ B : U
Γ ` A ∼ B

∆ `s σ : Γ

∆ ` U[σ] ∼ U
Γ ` A ∆ `s σ : Γ ∇ `s τ : ∆

Γ ` A[σ][τ ] ∼ A[σ · τ ]

Γ ` A ∼ B ∆ `s σ ∼ τ : Γ

∆ ` A[σ] ∼ B[τ ]
Γ ` A

Γ ` A[Id] ∼ A

plus equivalence rules

_`_∼_:_ : Ctxt→ Term→ Term→ Term→ Set

Γ ` t : B ∆ ` s : A[σ] ∆ `s σ : Γ

∆ ` (ńt)[σ] · s ∼ t[σ, s] : B[σ, s]
(β)

Γ ` s ∼ s′ : A[σ]
Γ ` t ∼ t′ : (Π A B)[σ]

Γ :: ∆ ` t · s ∼ t′ · s′ : B[σ, s]

Γ ` t ∼ s : A Γ ` A ∼ B
Γ ` t ∼ s : B

Γ ` t ∼ s : A ∆ `s σ ∼ τ : Γ

∆ ` t[σ] ∼ s[σ] : A[σ]

∆ ` s : A[σ]
∆ ` r : (Π A B)[σ]

∇ `s τ : ∆
∆ `s σ : Γ

∇ ` (r · s)[τ ] ∼ r[τ ] · s[τ ] : B[σ · τ, s[τ ]]

Γ ` t : A
∇ `s τ : ∆
∆ `s σ : Γ

∇ ` t[σ][τ ] ∼ t[σ · τ ] : A[σ · τ ]

Γ ` t : A
Γ ` t[Id] ∼ t : A

Γ ` t : A[σ] Γ `s σ : ∆

Γ ` Var[σ, t] ∼ t : A[σ]

plus equivalence rules

Figure 6.1: MLTTwk: term judgments
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_ `s _ : _ : Ctxt→ Subst→ Ctxt→ Set

Γ `s Id : Γ

Γ `s σ : ∆ Γ ` t : A[σ]

Γ `s σ, t : ∆, A
Γ `s σ : ∆ ∇ `s τ : Γ

∆ `s σ · τ : ∆
Γ ` A

Γ, A `s ↑ : Γ

_ `s _ ∼ _ : _ : Ctxt→ Subst→ Subst→ Ctxt→ Set

∆ `s σ : Γ

∆ `s σ · Id ∼ Γ :

∆ `s σ : Γ

∆ `s Id · σ ∼ Γ :

∆ `s σ ∼ τ : Γ ∆ ` t ∼ s : A[σ]

∆ `s σ, t ∼ τ, s : Γ, A

∆ `s σ : Γ ∆ ` t : A[σ]

∆ `s ↑ · (σ, t) ∼ σ : Γ

Γ4 `s σ3 : Γ3 Γ3 `s σ2 : Γ2 Γ2 `s σ1 : Γ1

Γ4 `s (σ1 · σ2) · σ3 ∼ σ1 · (σ2 · σ3) : Γ1

Γ `s τ : Γ′

Γ′ `s σ : ∆ Γ′ `s t : A[σ]

Γ `s (σ, t) · τ ∼ (σ · τ), t[τ ] : ∆, A

Γ `s σ ∼ σ′ : ∆ Γ ` t ∼ t′ : A[σ]

Γ `s σ, t ∼ σ′, t′ ∼ ∆, A :

Γ1 `s σ ∼ σ′ : Γ2 Γ3 `s τ ∼ τ ′ : Γ1

Γ3 `s σ · τ ∼ σ′ · τ ′ : Γ2

Γ ` A
Γ, A `s Id· ↑, v0 ∼ Id : Γ, A

plus equivalence rules

Figure 6.2: MLTTwk: substitution judgments
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We do not need to test semantic values for “closeness” anymore. Thus, we follow [8]
and use De Bruijn levels for variables in the semantics, avoiding the need to implement
liftings and weakenings for semantic values, because levels do not change their value
under context extensions.2As before, we sometimes write xn as a shorthand for Lev n.

We mutually define the relations

J_K _ ↘ _ : Term→ Env→ D→ Set
J_Ks _ ↘ _ : Subst→ Env→ D→ Set

_•_↘_ : D→ D→ D→ Set

Representing, respectively, the interpretation of terms and substitutions, and partial
application between semantic values.

JtK (ρ, a) ↘ b

ńClo t ρ • a ↘ b
(•B) e : Dne d : D

e • d ↘ NeApp e d
(•Ne)

JIdKs ρ ↘ ρ
(sId)

JtK ρ ↘ a
JσKs ρ ↘ ρ′

Jσ, tKs ρ ↘ (ρ′, a)
(sCons)

JσKs ρ′ ↘ ρ′′

JτKs ρ ↘ ρ′

Jσ · τKs ρ ↘ ρ′′
(sComp)

J ↑ Ks (ρ, a) ↘ ρ
(sUp)

JVarK (ρ, a) ↘ a
(eVar)

JńtK ρ ↘ ńClo t ρ
(eLam)

JtK ρ ↘ a
JsK ρ ↘ b a • b ↘ c

Jt · sK ρ ↘ c
(eApp)

JΠ A BK ρ ↘ ΠClo A B ρ
(ePi)

JUK ρ ↘ DU
(eU)

JσKs ρ ↘ ρ′ JtK ρ′ ↘ a

Jt[σ]K ρ ↘ a
(eSub)

We define the following reification functions by mutual recursion on values, neutral
values, and environments. Reification returns the syntactic term corresponding to a
given semantic object. Since we are using De Bruijn levels for values, whose meaning is
context-dependent, we need to index reification by some natural number indicating the
number of assumptions that we are under, so that we can correctly translate each level
to the corresponding index.

wks : N → Subst
wks zero = Id
wks (suc n) = wks n · ↑

2Recall that we already exploited this property of De Bruijn levels in System Twk. In fact, we used
levels to represent free variables so that weakening could be implemented straightforwardly, without
syntactic alterations to terms.
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mutual
reify : N → D → Term
reify n (DNe x) = reifyNe n x
reify n (ńClo t ρ) = Lam t [ reifyEnv n ρ ]
reify n (ΠClo A B ρ) = (Π A B) [ reifyEnv n ρ ]
reify n DU = U

reifyNe : N → Dne → Term
reifyNe n (Lev x) = Var [ wks (n - suc x) ]
reifyNe n (NeApp e x) = reifyNe n e · reify n x

reifyEnv : N → Env → Subst
reifyEnv n E = wks n
reifyEnv n (e , x) = reifyEnv n e , reify n x

The goal of reification is to extract normal forms from semantic values. To this end,
we now show that semantic values indeed reify to terms in normal form.

Lemma 34. For any d : D, e : Dne, ρ : Env, and n : N, the following hold

1. Nf (reify n d);

2. Ne (reifyNe n e);

3. Nfs (reifyEnv n ρ).

Proof. By mutual induction on d, e, ρ. See Semantics.Domain.D-is-Nf,
Semantics.Domain.Dne-is-Ne, and Semantics.Domain.Env-is-Nfs.

6.3.3 Completeness of NbE

We now revisit the subset model used for System T ex, and adapt it to dependent
types. We again consider type-theoretic subsets A : D → Set, and we say that A is
a semantic type whenever A e holds for any e : Dne. We do not need to ensure that
elements of a semantic type reify to normal forms (like in [8]), because this is true for
any semantic value (Lemma 34). We define the semantic dependent product space in
a similar way to the function space for System T ex. Thus, given A : P(D) and and
B : ∀{a} → a ∈t A → P(D), we put

Π A B :≡ λf.(∀{a} → (p : a ∈t A)→ f • a ∈t (B a))

where _ •_ ∈t _ is defined as in SystemT ex. Notice that the definition of semantic
Π is actually simpler than T ex’s: since we are using De Bruijn levels in the semantics,
we do not have to accomodate for arbitrary weakenings.

We now define the valid semantic interpretation of small and large syntactic types.
To this end, we inductively define semantic universes U and T that are semantic types
themselves, and classify values standing for valid codes for types. Simultaneously, we
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define the extension functions ElU : ∀{A} → A ∈t U → P(D) and ElT : ∀{A} → A ∈t
T → P(D) mapping valid type codes to semantic types.3

In what follows, we use the abbreviation below for interpretation into a semantic
type A : D→ Set:

JtKρ ∈t A :≡ Σ(a : D)(JtK ρ ↘ a ∧ a ∈t A)

as well as the following shorthand, defined from projections on the Σ type in the
obvious way:

inSemTy : (p : JtKρ ∈t A)→ π1 p ∈t A

Then, we define semantic universes as the following inductive families U ,T : D→
Set. Notice that we explicitly write down the proof terms of the inference rules below,
since they are pattern-matched on by the extension functions.

e : Ne A
uNe e : U A

ElU : ∀{A} → A ∈t U → P(D)

ElU (uNe _) = isDne

where isDne : D→ Set is such that isDne (DNe _) = >, and ⊥ otherwise.

ρ : Env pA : JAKρ ∈t T
pB : ∀{a} → a ∈t ElT pA → JBK(ρ, a) ∈t T

tPi pA pB : T (ΠClo A B ρ)

p : T ∈t U

injU p : T T tU : T DU

ElT : ∀{A} → A ∈t T → P(D)

ElT (injU x) = ElU x

ElT (tPi pA pB) = Π (ElT (inSemTy pA)) (ElT ◦ inSemTy ◦ pB)

ElT tU = U

We define the interpretation of type values into semantic types, J_Kt_ : Term →
Env→ P(D), as follows

JAKt ρ :≡ λd.Σ(T : D)(JAK ρ ↘ T ∧ Σ(p : T ∈t T )(d ∈t ElT p))

together with convenient shorthands, defined from projections on the Σ type in the
obvious way:

inTy : (p : d ∈ JAKt ρ)→ π1 p ∈t T inTm : (p : d ∈t JAKt ρ)→ d ∈t ElT (inTy p)

The relations on equal terms of a semantic type are defined like in the simply-typed
case, as follows

3This mutual definition is an example of induction-recursion. See Section 2.5.
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JtK ' JsK ρ ∈t A :≡ Σ(r : Term)(r ∈t A ∧ JtK ρ ↘ r ∧ JsK ρ ↘ r)

JtK ' JsK ρ ∈t JAKt :≡ JtK ' JsK ρ ∈t JAKtρ

We also define the following convenience functions, by projection on the Σ type in
the obvious way

inEqTy : (p : JtK ' JsK ρ ∈t JAKt)→ π1 ((π1 ◦ π2) p) ∈t T

inEqTm : (p : JtK ' JsK ρ ∈t JAKt)→ π1 p ∈t ElT (inEqTy p)

However, now J_Ks_ : Ctxt→ Env→ Set identifies subsets of environments, rather
than substitutions:

J�Ks ε
(cEmpty)

ρ ∈s JΓKs a ∈t JAKt ρ
JΓ, AKs (ρ, a)

(cExt)

Substitutions are evaluated to environments of semantic values. Since now we have
definitional equality judgments between substitutions, we need to define what is means
for two substitutions to be semantically equal elements of a subset S : Env → Set of
environments:

JσK ' JτK ρ ∈s S :≡ Σ(ρ : Env)(ρ ∈s S ∧ JtK ρ ↘ r ∧ JsK ρ ↘ r)

In order to prove completeness of NbE, we shall define semantic counterparts of type
and equality judgments:

|= � :≡ > |= (Γ, A) :≡|= Γ ∧ (Γ |= A)

Γ |= A :≡ ∀{ρ} → ρ ∈s JΓKs → JAK ' JAK ρ ∈t T

Γ |= A ∼ B :≡ ∀{ρ} → ρ ∈s JΓKs → JAK ' JBK ρ ∈t T

Γ |= t : A :≡ Γ |= A ∧ (∀{ρ} → ρ ∈s JΓKs → JtK ' JtK ρ ∈t JAKt)
Γ |= t ∼ s : A :≡ Γ |= A ∧ (∀{ρ} → ρ ∈s JΓKs → JtK ' JsK ρ ∈t JAKt)
∆ |=s σ : Γ :≡ ∀{ρ} → ρ ∈s J∆Ks → JσK ' JσK ρ ∈s JΓKs
∆ |=s σ ∼ τ : Γ :≡ ∀{ρ} → ρ ∈s J∆Ks → JσK ' JτK ρ ∈s JΓKs

We can now prove the following completeness results:

Theorem 14.

1. If ` Γ, then |= Γ;

2. If Γ ` A, then Γ |= A;

3. If Γ ` t : A, then Γ |= t : A;

4. If Γ ` A ∼ B, then Γ |= A ∼ B;
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5. If Γ ` t ∼ s : A, then Γ |= t ∼ s : A.

Proof. All points proved by mutual induction on derivations.
See the module Semantics.Completeness.Rule.

Since we are working in a constructive type theory as our metatheory, all implications
in Theorem 14 give rise to total, computable functions. By abuse of notation, we indicate
these by the overloaded symbol L_M : Γ ` J → Γ |= J , where J is one among the
available typing and substitution judgments.

To show completeness of NbE, we first define identity environments:

idenv : Ctxt→ Env
idenv � = ε

idenv (Γ, A) = (idenv Γ · ↑) , DNe x|Γ|

Lemma 35. If ` Γ, then idenv Γ ∈s JΓKs.

Proof. By induction on the proof of ` Γ, and application of Theorem 14.

We call idenvp : ` Γ → idenv Γ ∈s JΓKs the proof term for Lemma 6.3.3. We now
define the normalization functions nf-ty : ` Γ→ Γ ` A→ Term and nf-tm : ` Γ→ Γ `
t : A → Term, by interpreting well-formed types and well-typed terms in the model
under the identity environment, extracting the semantic value, and reifying it to a term
under the same context Γ.4

nf-ty {Γ} p q :≡ reify |Γ| (π1 (LqM (idenvp c)))
nf-tm {Γ} p q :≡ reify |Γ| ((π1 ◦ π2) (LqM (idenvp c)))

Corollary 4 (Completeness of NbE). Let c : ` Γ, pA : Γ ` A, pB : Γ ` B, qt : Γ ` t : A,
qs : Γ ` s : A be well-formed types and well-typed terms. Then, the following hold

1. If Γ ` A ∼ B, then nf-ty c pA = nf-ty c pB;

2. If Γ ` t ∼ s : A, then nf-tm c qA = nf-tm c qB.

Proof. By Theorem 14 and functionality of the evaluation relation.

In showing completeness, we could also derive the proof terms for ` Γ etc. using
inversion lemmas from equality judgments. Indeed, this is exactly what we do in the
formalization. However, for this presentation we choose to be particularly explicit, to
achieve better clarity.

4In the definition of the normalization functions, {Γ} means that the context is treated as an implicit
argument, whose value is inferred automatically by Agda via unification. See Section 2.5 for details.
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6.3.4 Kripke logical relations and soundness of NbE

We now establish soundness of NbE with a Kripke logical relation between well-typed
terms and their interpretation in the semantics, just like we did for System T ex in
Chapter 5. The formalization of the contents of this section can be found under the
folder Semantics/Soundness/ in [4]. Logical relations are defined by induction on types;
however, we are in a dependent type theory where terms and types are in the same
syntactic category, so there is no a priori notion of “type” on which to do induction on.
Instead, we can rely on the notion of type values A ∈t U and A ∈t T , that is, values
corresponding to well-formed type codes in the semantics. We thus define two classes of
logical relations, for small and large types respectively, by induction on (the proof of
membership of) type values in their respective type universe.

_ ` _ rU _ : Ctxt→ Term→ {A : D} → A ∈t U → Set
_ ` _ rT _ : Ctxt→ Term→ {A : D} → A ∈t T → Set

_ ` _ : _ rU _ 3 _ : Ctxt→ Term→ Term
→ ∀{a A} → (p : A ∈t U )→ a ∈t ElU p→ Set

_ ` _ : _ rT _ 3 _ : Ctxt→ Term→ Term
→ ∀{a A} → (p : A ∈t T )→ a ∈t ElT p→ Set

Therefore, Γ ` T rU p for p : A ∈t U means that the syntactic type T is logically-
related to a type value A in the semantic universe U . Similarly for T . Whereas,
Γ ` t : T rU p 3 q with p : A ∈t U and a ∈t ElU p means that the syntactic term t
of type T is logically-related to the semantic value a belonging to the semantic type
associated to the type value A, belonging to the semantic universe U . Similarly for T .

When defining the logical relation for dependent products, we have to enforce the
same condition on related values as we did in Section 5.3 for function types, namely
that we are relating λ-abstractions in the syntax with λ-abstractions in the semantics.
We also need to impose a similar condition on type values corresponding to Π types, i.e.
we have to enforce that types related to semantic Π types are convertible to Π in the
syntax.

As with System Twk, the logical relations will be Kripke logical relations, with
contexts as the set of possible worlds, and weakening as the accessibility relation. To
this aim, we define weakenings _ `r _ : _ : Ctxt → Subst → Ctxt → Set as special
forms of substitutions, precisely those formed out of repeated ↑ shifts:

Γ `r Id : Γ
∆ `r w : Γ

∆, A `r w · ↑: Γ

The actual Agda definition of the dependently-typed logical relations and all its
cases is quite complex, and reproducing it here in inference rule form would produce an
overly-complicated definition, that would risk obfuscating its underlying meaning. For
this reason, we give the relations below in a more informal, list-like way:
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Definition 4 (Logical relations).

1. Γ ` T rU uNe e iff ∀{∆ w} → ∆ `r w : Γ→ ∆ ` T [w] ∼ reifyNe |∆| e;

2. Γ ` T rT injU x iff Γ ` T rU x;

3. Γ ` T rT tU iff Γ ` T ∼ U;

4. Γ ` R rT (tPi {A} {B} {ρ} pA pB) iff there are ∆, σ such that

(a) Γ ` R ∼ (Π A B)[σ];

(b) For all ∇, w such that ∇ `r w : Γ, then ∇ `s σ · w ∼ reifyEnv |∇| ρ : ∆;

(c) For all ∇, w such that ∇ `r w : Γ, p : a ∈t ElT (inSemTy pA)), and ∇ ` s :
A[σ · w] rT inSemTy pA 3 p, then ∇ ` B[σ · w, s] rT inSemTy (pB p);

5. Γ ` t : T rU uNe e 3 p iff p : isDne a for some a : D, and for all ∆, w such that
∆ `r w : Γ,

(a) ∆ ` T [w] ∼ reifyNe |∆| e;

(b) ∆ ` t[w] ∼ reify |∆| a : T [w].

6. Γ ` t : T rT injU x 3 p iff Γ ` t : T rU x 3 p;

7. Γ ` t : T rT tU 3 p iff p : a ∈t U for some a : D, and

(a) Γ ` T ∼ U;

(b) Γ ` t rU p;

(c) For all ∆, w such that ∆ `r w : Γ, ∆ ` t[w] ∼ reify |∆| a : U

8. Γ ` r : R rT (tPi {A} {B} {ρ} pA pB) 3 p iff p : f ∈t (tPi {A} {B} {ρ} pA pB)
for some f : D and

(a) f ≡ ńClo t ρ, and there are ∆, σ such that

i. Γ ` R ∼ (Π A B)[σ];
ii. Γ ` r ∼ (ńt)[σ] : R;
iii. For all ∇, w such that ∇ `r w : Γ, then ∇ `s σ · w ∼ reifyEnv |∇| ρ : ∆;
iv. For all ∇, w such that ∇ `r w : Γ, q : a ∈t ElT (inSemTy pA)), and
∇ ` s : A[σ · w] rT inSemTy pA 3 q, then ∇ ` t[σ · w, s] : B[σ ·
w, s] rT inSemTy (pB p) 3 (π2 ◦ π2) (p q).

(b) f ≡ DNe e, and for all ∆, w such that ∆ `r w : Γ, we have ∆ ` r[w] ∼
reifyNe |∆| e : R[w].
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Just like in the previous chapter, the fundamental lemma will be shown w.r.t.
substitutions and environment providing terms and values replacing the free variables of
the input term, that must be point-wise related. We thus define the following relation
between a substitution σ and an environment ρ on a context ∆ of free variables, or
rather, between σ, ρ, and a proof of ρ ∈s J∆Ks.

_ `s _ : _ R© _ : Ctxt→ (∆ : Ctxt)→ Subst
→ {ρ : Env} → ρ ∈s J∆Ks → Set

� `s Id : � R© cEmpty

Γ ` t : A[σ] rT inTy q 3 inTm q
p : ρ ∈s J∆Ks q : a ∈t JAKt ρ Γ `s σ : ∆ R© p

Γ `s (σ, t) : ∆, A R© cExt p q

p : ρ ∈s J∆Ks
Γ `s σ : ∆ R© p ∇ `r w : Γ

∇ `s σ · w : ∆ R© p

p : ρ ∈s J∆Ks
Γ `s σ : ∆ R© p Γ `s τ ∼ σ : ∆

∇ `s τ : ∆ R© p

Before proving the fundamental theorems, we need to establish some properties of
logically-related types, terms, and substitutions.

Lemma 36. Let p : X ∈t T , e : Dne, and Γ ` t : T a well-typed term be such that for
any w,∆ and weakening ∆ `r w : Γ, we have

1. ∆ ` T [w] ∼ reify |∆| X;

2. ∆ ` t[w] ∼ reifyNe |∆| e : T [w].

Then Γ ` t : T rT p 3 q, where q : a ∈t ElT p which exists by definition of semantic
type.

Proof. By induction on p.

We can also show that logical relations are preserved by judgmental equality (they
are also trivially preserved by semantic equality, since that is simply syntactic identity).

Lemma 37. Let p1 : X ∈t U , p2 : Y ∈t T , q1 : a ∈t ElU p1, q2 : b ∈t ElT p2 for some
X,Y, a, b. Then

1. If Γ ` A rU p1 and Γ ` A ∼ B, then Γ ` B rU p1;

2. If Γ ` A rT p2 and Γ ` A ∼ B, then Γ ` B rT p2;

3. If Γ ` t : ArU p1 3 q1, Γ ` A ∼ B, and Γ ` t ∼ s : A, then Γ ` s : B rU p1 3 q1;

4. If Γ ` t : ArT p2 3 q2, Γ ` A ∼ B, and Γ ` t ∼ s : A, then Γ ` s : B rT p2 3 q2.
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Proof. By induction on p1, p2 and case analysis on the proof terms of the logical relations.
See Semantics.Soundness.LogicalRelation.Preservation.

We now prove that the logical relations are indeed Kripke, in the sense that they are
preserved by context extensions Γ `r w : ∆.

Lemma 38. Let p1 : X ∈t U , p2 : Y ∈t T , q1 : a ∈t ElU p1, q2 : b ∈t ElT p2 for some
X,Y, a, b. Then

1. If Γ ` A rU p1 and ∆ `r w : Γ, then ∆ ` B[w] rU p1;

2. If Γ ` A rT p2 and ∆ `r w : Γ, then ∆ ` B[w] rT p2;

3. If Γ ` t : A rU p1 3 q1 and ∆ `r w : Γ, then ∆ ` s[w] : B[w] rU p1 3 q1;

4. If Γ ` t : A rT p2 3 q2 and ∆ `r w : Γ, then ∆ ` s[w] : B[w] rT p2 3 q2.

Proof. By induction on the proof of logical relations. See the module Semantics.Soundness.LogicalRelation.Kripke.

The fundamental meaning that we want to attach to logical relations is that a
syntactic term t is related to a semantic value a whenever t is convertible to the
reification of a from the semantics back to the syntax. We can show that this is indeed
the case:

Lemma 39. Let p1 : X ∈t U , p2 : Y ∈t T , q1 : a ∈t ElU p1, q2 : b ∈t ElT p2 for some
X,Y, a, b. Then, for any ∆, w such that ∆ `r w : Γ, we have

1. If Γ ` A rU p1, then ∆ ` A[w] ∼ reify |∆| X;

2. If Γ ` A rT p2, then ∆ ` A[w] ∼ reify |∆| Y ;

3. If Γ ` t : A rU p1 3 q1, then ∆ ` t[w] ∼ reify |∆| a : A[w];

4. If Γ ` t : A rT p2 3 q2, then ∆ ` t[w] ∼ reify |∆| b : A[w];

Proof. By induction on p1, p2 and case analysis on the proof terms of the logical relations.
See Semantics.Soundness.LogicalRelation.Conversion.

To show the fundamental lemmas, we define the following validity judgments for
well-formed types, well-typed terms, and well-typed substitutions. These have the types

_ |= _〈_〉 : (Γ : Ctxt)→ (T : Term)→ Γ ` T → Set
_ |= _ : _〈_〉 : (Γ : Ctxt)→ (t : Term)→ (T : Term)→ Γ ` t : T → Set
_ |=s _ : _ : Ctxt→ Subst→ Ctxt→ Set

and are defined as follows:
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Γ |= T 〈x〉 :≡ (p : ρ ∈s JΓKs)→ ∆ `s σ : Γ R© p→ ∆ ` T [σ] rT (π1 ◦ π2) LxM
Γ |= t : T 〈x〉 :≡ (p : ρ ∈s JΓKs)→ ∆ `s σ : Γ R© p

→ ∆ ` t[σ] : T [σ] rT (inEqTy ◦ π2) LxM 3 (inEqTm ◦ π2) LxM
Γ |= γ : Θ :≡ (p : ρ ∈s JΓKs)→ (p′ : ρ′ ∈s JΘKs)

→ ∆ `s δ : Γ R© p→ JγKs ρ ↘ ρ′ → ∆ `s γ · δ : Θ R© p′

Notice that the first two validity judgments are proof-relevant, in the sense that they
consider types and terms together with a proof of well-formedness/typedness. This is
because the logical relations mention the semantic values that result from evaluation,
which is only known to be terminating for well-formed types/well-typed terms. We are
finally ready to establish the fundamental lemma of logical relations:

Lemma 40. [Fundamental lemma]

1. If p : Γ ` T , then Γ |= T 〈p〉;

2. If p : Γ ` t : T , then Γ |= t : T 〈p〉;

3. If ∆ `s σ : Γ, then ∆ |=s σ : Γ.

Proof. By induction on the derivation. We refer the interested reader to the module
Semantics.Soundness.Soundness for the details.

Consider now the identity substitution assigning every free variable of a context of
assumptions to itself, defined as follows

idsub : Ctxt→ Subst
idsub � = Id
idsub (Γ, A) = (idsub Γ · ↑), v0

We can see that idsub does indeed construct an identity substitution, and moreover
that it is logically-related to identity environments.

Lemma 41. Let c : ` Γ. Then,

1. Γ `s idsub Γ : Γ, and Γ `s idsub Γ ∼ Id : Γ;

2. Γ `s idsub Γ : Γ R© idenvp c.

Proof. Both points proved by induction on the proof of ` Γ. The second point then uses
the first, as well as Lemmas 40, 39.

We are now ready to establish soundness of NbE, as a corollary of the fundamental
lemmas, and the properties of identity substitutions and environments.

Theorem 15 (Soundness of NbE). Let c : ` Γ, p : Γ ` A, q : Γ ` t : A. Then
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1. Γ ` A ∼ nf-ty c p;

2. Γ ` t ∼ nf-tm c q : A.

Proof. By application of Lemma 40 on the identity substitution and environment,
followed by Lemma 39 to establish conversion of the semantic values with the reified
normal forms. See Semantics.Soundness.Soundness.soundness-ty and
Semantics.Soundness.Soundness.soundness-tm for the details.

As a direct corollary of soundness and completeness of NbE we get decidability of
judgmental equality, that in the case of a dependent type theory like MLTTwk is a crucial
result, since it is required for deciding type checking.

Corollary 5 (Decidability of judgmental equality). Let c : ` Γ, pA : Γ ` A, pB : Γ ` B,
qt : Γ ` t : A, qs : Γ ` s : A be well-formed types and well-typed terms. Then,

1. Γ ` A ∼ B is decidable;

2. Γ ` t ∼ s : A is decidable.

Proof. By soundness and completeness of NbE, we have that Γ ` A ∼ B ⇐⇒
nf-ty c pA = nf-ty c pB, and similarly Γ ` t ∼ s : A ⇐⇒ nf-tm c qA = nf-tm c qB.
Syntactic identity of normal forms, which are just elements of type Term, is decidable,
therefore so is convertibility.
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Chapter 7

Conclusion

7.1 Summary of the contributions and future work

This thesis gives an analysis of a selected class of weak notions of reductions for typed
λ-calculi, particularly with regards to constructive proofs of normalization. The work
was motivated by the open normalization problem of mTT, a theory with CH-weak
conversion. Unlike other weak relations, like weak-head reduction, CH-weak reduction
does allow certain terms to be reduced under binders, what we call weak redexes after
[22]. Moreover, the definition of weak redex is relative, since it depends on what term
we are considering the redex a subterm of. These aspects make proving normalization
for calculi with CH-weak reduction particularly challenging.

In the first part of the thesis we address and solve the normalization problem for a
version of System T with CH-weak conversion as typed equality judgments, called System
Twk, by providing a fully-formalized proof of normalization by evaluation. The proof
method is novel, and relies on the construction of an “explicit calculus” where certain
aspects of CH-weak reduction that are made evident into the syntax of judgments. This
allows to express CH-weak computation rules, as well as all congruence rules for term
constructors, in a direct way. Moreover, our work appears to be the first constructive
analysis of normalization for a typed λ-calculus with CH-weak reduction.

In the second part of the thesis, we address weak reduction in the context of dependent
types. We first consider CH-weak reduction, and observe that certain lemmas that are
crucial to establish normalization for System Twk are complicated by the presence of
dependent types. For this reason, in the rest of Chapter 6 we consider another weak
conversion relation, weak explicit substitutions, as an alternative to CH-weak conversion
in the definition of dependent type theories with weak notions of equality. We do so
by providing an original formulation of Martin-Löf Type Theory with weak explicit
substitutions, and give a full-formalized proof of normalization by evaluation for the
calculus.

With respect to CH-weak reduction, weak explicit substitutions are more convenient
from the point of view of both term rewriting and computer formalization. Weak
explicit substitutions have an intuitive equational theory, that just amounts to pushing
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substitutions around. No metalinguistic operations are involved, which means that less
lemmas have to be shown. Their weak character is given by the fact that substitutions
are never pushed under binders, which additionally simplifies their definition. Moreover,
explicit substitutions are closer to actual machine implementations of the λ-calculus,
that usually rely on nameless syntax and delayed substitutions [7], so they lead to a
cleaner, in addition to more concise, formalization.

As we have shown in Chapter 3, weak explicit substitutions are weaker than CH-weak
conversion, in the sense that strictly less equations hold. Nevertheless, they still exhibit
the good properties that set CH-weak reduction apart from weak-head reduction, namely
admissible substitution rules (which hold by definition) and confluence, while showing
none of the problems, namely a relative notion of redex and a reduction behaviour that
is at odds with the lack of congruence rules.

Given the advantages of weak explicit substitutions over CH-weak conversion, it
makes sense to consider the possibility of reformulating mTT or part of in terms of
them. Let us call this hypothetical reformulation mTTex. Then, there are a couple of
things to consider in order to convince ourselves that mTTex is a good candidate for the
intensional level of the Minimalist Foundation:

• The extensional level of the Minimalist Foundation is interpreted onto the inten-
sional one via a quotient model Q(mTT) built from mTT. To be able to use mTTex

as an alternative formulation of the intensional level, we must ensure that the
quotient model Q(mTTex) built from it is sufficient for the extensional level to be
interpreted onto. This hypothesis seems plausible, since although mTTex and mTT
are not equivalent, they should be w.r.t. the quotient model construction, since
there equality of functions is extensional, and thus differences in the intensional
presentation of functional terms matter less;

• mTTex must admit a Kleene realizability model in order to be compatible with
the proofs-as-programs paradigm [42]. Weak explicit substitutions give rise to
an equational theory than is contained in the CH-weak conversion of mTT, so it
should be possible to give an interpretation of mTTex into mTT, via the obvious
translation that just takes terms of mTTex and performs all suspended explicit
substitutions inside of them via the usual meta-theoretic substitution operation of
mTT. This would provide a model of mTTex in mTT, from which we would get
Kleene realizability semantics for mTTex.

We thus see two possible directions for future work in the Minimal Type Theory:

• We could continue the development of the theory of dependently-typed weak
explicit substitutions, with the goal of integrating them into mTT. The previous
chapter seems to suggest that weak explicit substitutions do play well with full
dependent types, albeit we only considered an empty universe. It should be
possible to extend the proof with a non-empty universe closed under dependent
products and other type formers. Employing explicit substitutions in the Minimal
Type Theory requires further analysis, as discussed above.
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• Another possible direction is to continue with the meta-theoretical study of CH-
weak conversion, in the context of dependent types and eventually mTT. One
possibility is to find a way to adapt the “explicit” type system construction used
with System T to dependent types. Once normalization is proved for MLTT with
CH-weak conversion and one universe, it should be possible to extend the result
to mTT, since the underlying notion of reduction is identical.

Another opportunity for future developments regards the efficient implementation
of CH-weak normalization. The normalization function that we defined in Chapter 3,
although convenient for our purposes, is computationally demanding: every time a redex
is encountered, the whole term has to be fully traversed to check for the absence of
locally-free variables. Moreover, every β-contraction is performed fully, via an operation
of substitution that again involves a full traversal of terms at every step of reduction. The
efficient implementation of reduction in the λ-calculus is a non-trivial task, and usually
relies on calculi with sharing and explicit substitutions. According to our knowledge,
it is still not known how to give a formulation of CH-weak reduction with explicit
substitutions that is equivalent to the implicit one, in such a way that the first can be
used to compute normal forms of the second.

7.2 Related work

In addition to the already discussed CH-weak reduction, several works in the literature
address other weak reduction strategies for the λ-calculus, particularly in connection
with types and normalization. In [45], Per Martin-Löf gives a particular formulation of
his Intuitionistic Type Theory—that includes a primitive substitution rule like mTT and
System Twk—and proves normalization by a model construction. However, functional
terms are not given as λ-abstractions, but as combinator constants. Hence, the notion
of reduction that results corresponds to weak-head reduction rather than CH-weak
reduction, since substitution never operates under binders. In [37, 38], Kesner et al.
study weak-head reduction in the context of intersection types and call-by-need reduction
strategies. In [34], Hyland and Ong construct a PCA of strongly-normalizing λ-terms
as a basis for a general method to prove strong normalization for various type theories.
The notion of equality in the PCA is a weak conversion relation similar to CH-weak
conversion, that only contracts closed redexes. In [11], Akama introduces a translation
from λ-terms to combinators, so that a term is strongly-normalizing under strong β
reduction if and only if its translation is strongly-normalizing under the weak conversion
of combinatory logic.

The proofs of normalization shown in this work are based on Normalization by
Evaluation. NbE was first employed by Martin-Löf in [45] for his combinatory theory,
although not under this name. The method was later rediscovered in [18] in the context
of the simply-typed λ-calculus with η equality. Coquand and Dybjer [25] later revisited
some of the ideas of [45], and formalized NbE for combinators and a λ-calculus with
weak-head reduction using a model construction inspired by the categorical notion of
glueing. A technique that is similar to NbE is big-step normalization, as proposed by
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Altenkirch and Chapman in [12]. A major difference of big-step normalization is that it
is entirely first-order, unlike many definitions of NbE that instead require a metatheory
where higher-order functions are a primitive notion.

In this thesis, we use Normalization by Evaluation in its untyped variant, as described
in [8]. Essentially, untyped NbE is a semantic argument for normalization that amounts
to defining a normalization function on the raw, untyped syntax, and then proving
it correct and terminating via a complete model construction. A drawback is that
evaluation is thus inevitably partial, therefore it does not have a primitive definition
in Type Theory, and must be given as a functional relation, or via the Bove-Capretta
method [20]. An advantage of untyped NbE is that it can be defined ignoring many
details of typing that do not affect the reduction behaviour of raw terms. For this reason,
untyped NbE scales particularly well to dependent types and impredicative systems [8].
Nevertheless, there have been recent developments towards the successful formalization
of a fully-typed NbE for dependent type theories with intrinsic syntax [14].

7.3 Formalization

All the mathematical content of this thesis has been formalized and proof-checked with
the Agda programming language and proof assistant. A release of this formalization is
available on Github at the repositories [5, 4]. Tarballs of the source code [2, 1] can be
downloaded directly from the urls
https://github.com/fsestini/nbe-weak-systemt/archive/v1.0.tar.gz and https:
//github.com/fsestini/nbe-mltt-wes/archive/v1.0.tar.gz.
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