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Abstract

Functional Programming brings with it the promise of highly-declarative code, efficient, parallelisable
execution, modularity and reusability. This promise has already materialised in multiple fields of
application. Yet when it comes to programming with effects —common in interactive software—
sticking to a purely functional style, and obtaining all the benefits of doing so, is arguably much
harder.

Writing interactive software comprises a wide range of subproblems, such as describing both static
and dynamic user interfaces, connecting them to the rest of the program, or keeping both in
synchrony while minimising data propagation and keeping response time low.

These and other related concerns have been explored by the functional programming community,
and proposals to address them abound. However, the lack of multiple examples of large real-world
applications has limited the understanding of the impact of those solutions at a larger scale.

In this text I explore the area of interactive application programming in functional languages,
presenting what I consider to be the most relevant open problems, together with a review of the
existing literature. A narrower selection of open problems is then identified, and I propose a possible
way to address them. Finally, I describe what I have done already, what remains to be completed,
and a potential plan for my PhD studies that includes a draft outline of my thesis.
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Chapter 1

Introduction

This document explores programming software with Graphical User Interfaces (GUIs) in purely
functional languages. Programming software with Graphical User Interfaces (GUIs) is known to be
hard [Mye93|, irrespectively of the programming paradigm.

Ideally, one would like to write GUI applications that are well-structured and easy to reason about,
visually appealing and computationally efficient. There is often a trade-off to be made between
these objectives, and both imperative and functional solutions find difficulties achieving all three.

Limitations of imperative GUI programming

GUI applications are often large and intrinsically complex, with many inter-related elements [Mye93].
This complexity lies both in the application domain and in common usability features, such as
being able to cancel long operations (which requires concurrency, critical regions, and undoing
partially-applied transactions) and undo-redo (with potentially unbounded memory requirements).
Users expect these features, but they are orthogonal to the main problem addressed by the program.
Due to this complexity, both structuring GUI application code well and reasoning about it are
hard [God07, Bur92, [Hei05, MHO06l Dij71, KWLMO09, [FLSR10] and of particular importance.

GUI programs are inherently stateful. This is true as applications interact with the outside world
(input/output) and because they keep internal state, reacting differently to the same user action
depending on previous history.

In imperative programming, this state is implicit, and functions can have side effects and affect
the internal application state in any way. GUI toolkits—libraries used to present interactive visual
elements, like windows and buttons—have a logic of their own, often loosely defined and lacking
precise operational semantics. Reasoning about the application requires that programmers keep
mental track of how the state changes along execution, for which a deep understanding of the
potential side effects of each function, GUI-related or not, is necessary.

These GUI toolkits also present one further problem: reacting to user input is done by associating
certain computations to specific widgets and events. This results in programs broken up in multiple
inter-related parts, an event-oriented programming style [NS79] that inverts control [FS97] p. 36-37]
and is hard to reason about [Mye91].



To address modularity and structural concerns, multiple GUI application architectures have been
suggested. The widely-used’? Model-View-Controller [KPT 88| splits the application into a Model
(problem abstraction), a View (User Interface) and a Controller (keeps model and view in synchrony
and executes effectful operations). For efficiency and visualisation reasons®, the controller “tries” to
update only minimal parts of the view, for which it needs to know which specific parts of the model
change with each operation. This results in poor separation of concerns (SoC), an error-prone style
and codebases that grow quadratically with every new feature or UT element?.

To address the problems of MVC and similar architectural patterns, languages have incorporated
the idea of listening to changes in data structures [GHJIV95] p. 326], giving controllers the option
to define separate event handlers to update the view when the model changes. This results in less
code duplication and smaller codebases, but it requires manually installing and handling even more
callbacks®.

Reactive Programming [CR96, [BDS96] takes this approach one step further by ubiquitously using
objects with change listening capabilities. Some implementations promote a more declarative
programming style by eliminating the need to install callbacks manually and by allowing users to
apply functions that operate on “plain” values onto reactive objects that encapsulate such values.

The Functional approach to GUI programming

As one reads the above, the potential benefits of Functional Programming (FP) become apparent.
Abstracting features in orthogonal solutions that can be composed and combined freely seems like
the kind of advantage FP might provide. Referential transparency enables equational reasoning
and subsequent program transformation, while strong, static type systems can provide substantial
compile-time guarantees. Efficient parallelisation with no worries about deadlocks or rolling back
unfinished transactions is part of the promise of this paradigm [HMPJHO05|.

There are dozens of Functional libraries to implement GUIs. As will be seen in the following,
low-level bindings to existing GUI toolkits provide competitive efficiency and a visually appealing
appearance, but impose an imperative programming style. High-level, pure, compositional widget
toolkits bring ease of reasoning and static guarantees, but have higher maintenance costs, impose
an unnatural visual appearance, and may not always scale well in terms of efficiency and/or code
modularity.

Functional Languages make state explicit and require that we pass it around as we modify it,
always in the right order. Abstractions like monads [Mog91] [Wad92l [PTW93| simplify such code by
making state-passing implicit and guaranteeing its linearity. This, however, results in an imperative
programming style which is difficult to reason about [FLM™09|, to parallelise [RAQ9, p. 309], to

L«After reading this guide, you will know: [..] The basic principles of MVC (Model, View, Controller)”,
http://guides.rubyonrails.org/getting_started.html (on October 23, 2014).

Z“Django is a MTV framework”, https://docs.djangoproject.com/en/dev/faqg/general/ (on October 23, 2014).

3Full screen refreshes produce noticeable flickers.

4 GUI applictions have synchronisation invariants between the model and the view. Several widgets may reflect
the same part of the internal model. Delegating model-to-view updates to view-to-model event handlers means that
each widget’s event handler needs to propagate changes also in model-to-view direction to keep all other widgets in
synchrony, duplicating code. If we add one more widget synchronised with the same part of the model, all other
widgets need to keep that new widget in synchrony, and the event handlers of the new widget need to do the same for
all others widgets, resulting in quadratic growth.

5In languages like Java, up until version 7, callbacks require the definition of an interface and an anonymous
Object, a notoriously verbose hindrance.
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optimise (both manually and by the compiler), and suffers from the kinds of modularity concerns
described earlier.

An alternative approach is to define a functional abstraction for reactive processes that facilitates
reasoning and specifying data dependencies, and leverages the responsibility of linearising state.
Functional Reactive Programming addresses reactive application concerns by defining reactive,
dynamic programs as collections of inter-dependent time-varying values or signals. Data dependencies
and relations among signals are specified upon signal creation. As cyclic dependencies are extremely
common in GUI programs [SymO06], this results in loops that pose signal initialisation problems [FX07]
and modularity concerns (section . Efficient implementation of FRP has traditionally been a
concern, and is still an active area of research.

As will be detailed in chapter 2] there exist proposals to implement GUI toolkits directly in functional
languages, with pure, declarative APIs and well-defined semantics. This approach can be extremely
expensive, it does not adapt well to today’s requirements, and is not flexible enough, due to the
following reasons.

GUI toolkits are notoriously large® and, despite the similarities, each Operating System promotes
its own library. A toolkit that covers most, if not all, of users’ needs would encompass a very large
codebase. To obtain a natural appearance, implementing several such toolkits, one per platform,
would only exacerbate such costs.

One of the most challenging aspects of GUI software is designing the graphical interfaces them-
selves [Mye93]. Domain experts tend to prefer visual tools to create GUIs [VicI1], which can then
be loaded by the program during runtime’ —with minimal static guarantees®- or converted into
code and compiled with the rest of the application?.

When GUIs are constructed programmatically, adapting to changing conditions requires extra code
that removes, adjusts and introduces interactive elements, connecting them to the rest of the program
and manually handling callbacks. Analysing how new elements interact with the existing ones can
be extremely hard. On the other hand, mobile platforms, for instance, can automatically load and
apply a new GUI specifications from XML files during runtime to adapt to new conditions, such as
when users switch from portrait mode to landscape mode. This results in programs that are easier
to adapt to new devices and environments, and in code that is less error-prone.

Outline

The rest of the report is structured as follows. Chapters [2 and [3] introduce functional solutions for
GUI programming and FRP respectively, covering the current state of the art, related research and
outlining existing problems. Chapter [4 describes a proposal to address the aforementioned concerns,
lists open problems, drafts a thesis outline and lists contributions to date. Appendix [A] contains an
article co-authored with Henrik Nilsson and presented at TFP 2014.

6See footnote [6] on page [15]

7See http://developer.android.com/guide/topics/ui/declaring-layout.html

8Tools such as the Android SDK generate a table of unique identifiers, one per GUI widget, so that basic mistakes
—misspellings— can be avoided. Accessing widgets that have been removed, however, is not detected in compile time.

9See, for instance, https://launchpad.net/gladex.


http://developer.android.com/guide/topics/ui/declaring-layout.html
https://launchpad.net/gladex
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Chapter 2

GUI programming in Functional
Languages

This chapter examines existing solutions for GUI and multimedia programming from a functional
perspective, from the imperative and low-level implementations to the abstract and high-level.
While much of the discussion revolves around Graphical User Interfaces, the most common way
of bidirectional human-computer interaction, many of the ideas are applicable to other forms of
communication, including networking and other forms of multimedia.

There are dozens of papers and implementations of Functional GUI programming, only a subset of
which are presented here. The text aims at brevity, hopefully introducing just enough detail to help
understand existing open problems and the motivation to focus on the issues proposed in chapter [4]
Functional Reactive Programming has a broader scope than just Graphical User Interfaces and will
be explored separately in chapter

2.1 Imperative Multimedia in Functional Languages

Input/Output in functional languages is often performed using libraries written in C/C++, accessible
via a Foreign Function Interface [RM92] [Sex87] as effectful computations. Many of those underlying
libraries work at a very low-level, such as Hewiid [P14a)], used to access Wiimote devices, and
OpenGL [GL], a 3D graphics library. Functional bindings usually do minimal work, limited to basic
type conversions and calls to C code, resulting in low-level APIs that resemble the underlying C
interface.

In functional languages one can store and pass around effectful computations as first-class values.
Custom control structures can therefore be defined using higher-order functions. This can be
exploited to provide further abstractions to write declarative, succinct effectful code, using monads,
functors and applicative functors [PJW93| [MP08], which together with their associated laws, enable
some forms of equational reasoning [SA07, [GH11l [HFO0S].

However, without further abstractions, large programs that do Input/Output tend to look imperative.
The strict execution order of the effectful computations imposes sequential thinking and a need to
mentally track the implicit program state, which makes reasoning hard [Bac7§|. As an example,
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regard the following code taken from the world state-updating function of the Haskell game Raincat .
It makes use of the aforementioned abtractions (mapM_ on line 40), yet there is no clear, easy way to
write it more declaratively, even with applicative functors.

25 | gameDraw :: IORef WorldState -> IO ()
gameDraw worldStateRef = do

worldState <- readIORef worldStateRef
Nxt.Graphics.begin

30
let (cameraX, cameraY) = MainPanel.cameraPos

— (mainPanel worldState)
Nxt.Graphics.worldTransform 0.0 0.0

35 -- draw background
Nxt.Graphics.drawTexture 0.0 0.0

— (MainPanel.backgroundTexture

— (mainPanel worldState))

— (1.0::GLdouble)
Nxt.Graphics.worldTransform cameraX camerayY
-- draw foreground

40 mapM_

— A\ ((x, y), tex) ->

— Nxt.Graphics.drawTexture x y tex

— (1.0::GLdouble))

— (levelBackgrounds $ levelData $

— curLevel worldState)

The need for GUIs

Graphical User Interfaces let users discover applications progressively, instead of having to read
lengthy manuals before running the program for the first time. This is the result of two factors:
designing friendly applications and having standard interfaces.

To provide such standard behaviour, developers use libraries that implement sets of interactive
elements, which can be composed into larger and more complex ones. Examples of such libraries are
Gtk+ [GTK], wxWidgets [WX] and Qt [QT]. Interactive GUI elements have properties that govern
their behaviour and appearance, and associated events. Developers can modify the properties and
install event handlers to execute custom computations when, for instance, a button is depressed or
the user focuses on it. As an example, the following code builds a simple one-window application
with a button that has an icon and a label?, and installs an event handler (line 10) to print a text
when the button is clicked:

Thttps://github.com/styx/Raincat/blob/master/src/Game/GameGraphics.hs
?http://code.haskell.org/gtk2hs/docs/tutorial/Tutorial_Port/chap4-1.xhtml
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1 import Graphics.UI.Gtk

main :: I0 ()
main = do
5 initGUI
window <- windowNew
set window [windowTitle := "Pix",
containerBorderWidth := 10]
button <- buttonlNew
10 onClicked button (putStrLn "buttongclicked")
box <- labelBox "info.xpm" "cool_ button"

containerAdd button box
containerAdd window button
widgetShowAll window

15 onDestroy window mainQuit
mainGUI
labelBox :: FilePath -> String -> I0 HBox
labelBox fn txt = do
20 box <- hBoxNew False 0
set box [containerBorderWidth := 2]

image <- imageNewFromFile fn

label <- labelNew (Just txt)
boxPackStart box image PackNatural 3
25 boxPackStart box label PackNatural 3
return box

Code that uses these GUI libraries feels as imperative [OGS08|, p. 522-527] as the one presented earlier.
Event-driven architectures [NS79| result in inversion of control [FS97, p. 36-37], leading to difficulty
reasoning about programs [Mye91]. Design patterns such as Model-View-Controller [KP'88| move
too much logic into the controller, whose codebase grows quadratically® with new features and leads
to what is informally known as “callback hells” [Edw09, p. 2].

Reasoning about the behaviour of GUI toolkits is equally hard. Widget properties are not plain
mutable variables: modifying a property does not guarantee that reading from it at any point
afterwards will return the last value written to it, even in the absence of user interaction?. The
semantics of GUI toolkits are often poorly defined, mainly consisting of their own implementations.
Furthermore, many of these libraries (including Gtk and Wx) are not thread-safe. GUI functions
must be called from the main (UI) thread, controlled by the toolkit itself [GML]. Applications
that need to remain in control of the execution loop or do background work must explicitly handle
concurrency, making the code even more complex.

On the bright side, the resulting functional code is not substantially worse than its C/C++ equivalent,
and sometimes can be better, even when part of it is imperative [Hea08|]. The performance can be
comparable to that obtained using imperative languages [LGPA13] [Swe99| [Pet10], making low-level
bindings the preferred choice for CPU-demanding multimedia.

Some functional GUI implementations try to define an intermediate layer that wraps the underlying
effects. We can distinguish between the purely functional solutions, which render functional code

3See footnote [l on page
4For one, the admissible ranges of property values may be smaller than the type can accomodate. For another,
animated components may change in size and position, regardless of user interaction.
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and will be explored in the next section, and the monadic ones. Examples of the latter include
TkGofer [CVMOI7, [VSS96] and Haggis [FJ95]. TkGofer implements a GUI toolkit and window
manager on top of Tcl/Tk. It is powerful and low-level enough to accommodate other more abstract
toolkits, such as Fudgets [CH93|. Haggis is substantially simpler, but makes use of concurrent access
to shared memory to implement asynchronous Uls. In both cases, the GUI code is monadic.

Summary

Using bindings to existing GUI toolkits one can applications that adhere to a standard look and
feel, without a substantial performance loss. However:

e Problem 1.1: Interaction with GUI toolkits imposes an imperative style, an event-oriented
structure and concurrency, making reasoning and abstracting harder.

e Problem 1.2: GUI toolkits keep part of the application’s state in a separate layer, out of the
programmer’s control. The Uls’ operational semantics are not formally defined.

2.2 Purely functional GUI solutions

One possible solution to the problems outlined in the previous section is to define a Functional
APIT to model the domain of interest. Such an API does not need to resemble the underlying
bindings: an evaluation function can traverse the pure data structures and do the dirty work,
projecting the changes onto the screen or other devices. Multiple libraries follow this approach, such
as Diagrams [Yor08|, Chart [Doc06] and Gloss [Lip10]. Contrary to the imperative case, this kind
of code looks declarative, compositional and abstract. The following illustrative example of purely
functional Gloss code |Lip12] uses combinators like Translate and Pictures to build animations
from smaller and simpler ones:

4 main = animate (InWindow "machina" (800, 600) (10, 10))
black frame

frame time

= Scale 0.8 0.8

$ Rotate (time * 30)
10 $ mach time 6

mach t 0 = leaf
mach t d
= Pictures
15 [ leaf
, Translate 0 (-100)
$ Scale 0.8 0.8
$ Rotate (90 + t x 30)
$ mach (t * 1.5) (d - 1)
20
, Translate 0 100
$ Scale 0.8 0.8
$ Rotate (90 - t x 30)
$ mach (t * 1.5) (d - 1) 1]
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Functional GUI toolkits can use a similar approach: widgets and containers are pure values that
programmers can adapt and combine. An effectful interpretation function then converts these pure
values into GUI-producing computations, or applies changes onto existing GUIs.

Such is the case in Objects I/O [AP98|, implemented in Clean [BvEVLPS&T], in which GUIs are pure
values and event handlers perform transformations over the world state. Clean’s uniqueness types
ensure that the world is never duplicated or discarded, leading to pure transformational code over
an explicit state.

Since interactive widgets must handle user actions, produce a visualisation and notify of changes, some
purely-functional solutions adopt a function-like view of GUT elements themselves. Fudgets [CH93]|
is an asynchronous programming library built on top of stream processors. In the context of GUISs,
a fudget is a widget with one input and one output®. A series of combinators allow fudgets to be
connected to one another and, depending on the one being used, determines how the elements are
laid out on the screen. A particular limitation of Fudgets is that, because combinators determine
both connections and layouts, there is no way to connect visually distant widgets. Gadgets [NR95],
a similar approach, tries to work around Fudgets’ limitation of one input and output channel per
process. In Gadgets and Fudgets, code is more declarative than in imperative toolkits, but both are
limited in terms of feature coverage.

1 import Fudgets

main = fudlogue (shellF "Up,Counter"

— counterF) ol Up CountdEd
5 | counterF = intDispF |:| Upl
— >==< mapstateF count 0

— >==< buttonF "Up"

count n Click = (n+1,[n+1])

Figure 2.1: A small Fudgets program and a screenshot of the GUI it generates. intDispF is an integer
display text fudget, mapstateF keeps a counter, and buttonF is a button fudget. >==< chains
fudgets from right to left and places them mext to one another in the GUL

The freedom to define a purely functional abstraction for the domain is both a blessing and a curse:
to cover the whole domain, one needs to implement all possible types and operations that may
be needed. For GUIs, this implies a type, an implementation and set of operations for each kind
of widget supported. GUI toolkits are notoriously large®, and this results in very large codebases
with high maintenance costs’, rendering some projects unrealistic in the long term. Furthermore,
different platforms behave slightly differently. Creating a unique GUI abstraction that provides all
the features of each platform under a common, clean interface has been challenging. The opposite,
maintaining several (similar) sets of code, only exhacerbates the maintenance costs.

5In general terms, a fudget process which can communicate with other concurrently running fudgets and the
outside world.

6As an example, GTK2hs, the Haskell bindings to GTK+ [GTK], currently exports 6185 symbols, including
widget constructors, widget properties, event handler installers and other necessary types and functions.

7This extra cost is not exclusive to functional languages, but mainly the result of defining a new, large API for
the domain. In languages that allow effects everywhere there hardly is a motivation to define such an expensive
intermediate GUI abstraction.
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Another problem, as explained in the introduction (page E[), is that some of these solutions require
that the GUI be coded manually, which is suboptimal and expensive in large projects (expert Ul
designers tend to prefer to use visual tools to design GUIs [Vic11]). That also affects the adaptability
of the interface to new OSs like Android and iOS, in different devices use different user interfaces and
changes to the environment (e.g. device orientation) [AnSa] may require switching to a completely
different UI without closing the application.
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A limited form of abstraction over User Interface programming is pursued by implmentations
that generate GUIs automatically based on the types of expressions. GuiTV [EI07], a Haskell
implementation for type-based GUI generator, can construct widget compositions for functions, to
provide the arguments and show the result, eliminating one level of indirection between models and
visualisations (see Fig. [2.3)).

1 reverseT :: CTV (String -> String) .Tv... L_”E”'E
reverseT = tv (oTitle "reverse" TELEEE
defaultOut) |He||o,reversible world!
— reverse |!c||row elbisrever olleH

Figure 2.3: A Tangible Value and the GUI generated for it based on the (function) type of the CTV, with
text bozes being used to interact with Strings.

A similar idea is used in iTask [MPATI], a client-server, task-oriented [WJ|, (monadic) state-
transforming web programming framework for the Clean [BvEVLP87] language. Tasks produce
values that change over time. They are stateful event-processors that may be composed in parallel
and sequentially. User interfaces are generated automatically based on types [AVEP05S], and then
rendered on a browser. iTasks tries to address large-scale architectural concerns in GUI applications,
relying on automatic GUI generation to cover low-level implementation details and focusing on the
definition of data-oriented tasks that define access points to parts of the underlying model or to
subsets that need to be provided in sequence (using monadic combinators to define these sequences).
It is unclear, at this point, whether iTasks could target other platforms, including desktop and
mobile, connect to existing GUI toolkits like Gtk+, or whether it includes all the necessary features
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that exist in GUI toolkits.

Generating GUIs based on the model’s type definition is similar to Ruby on Rails’ runtime scaf-
folding [RoRa]. A well-known limitation of this approach was that views cannot be fully adapted®.
Dynamic (runtime) scaffolding was substituted in new versions by generators that create UI code in
different files, which developers can then adapt and modify [RoRb].

Similarly, the idea of uniquely mapping one type to one kind of widget seems inflexible, as there
may be more than one right way to interact with a specific value in our program. To circumvent
this problem, one can use type wrappers (e.g. Haskell’s newtype), at the expense of additional
boilerplate code”.

Summary

e Problem 2.1: GUI toolkits are large and complex, and reimplementing them is costly. To
get standard behaviour, it must be possible to interoperate with existing toolkits, including all
widgets, their properties and events, and full layout control.

e Problem 2.2: GUIs must be realizable using visual tools, with full control over the repre-
sentation. Hard-coded GUIs are not flexible enough, and there may be several valid visual
representations and interaction mechanisms for values of the same type.

8iTasks enable custom layout using style sheets. The authors also acknowledge that automatic UI generation is
useful when prototyping, but customisation must be possible in real-world applications [MPAII].

9 All the operations defined for the type, including necessary instances of (type) classes, must also be reimplemented,
making the impact of this approach quite palpable.
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Chapter 3

Functional Reactive Programming

Reactive Programming [CR96l [BDS96] tries to address “callback hells” and the poor modularity of
Model-View-Controller [KP™88| by focusing on data-dependencies between view and model fields,
updating them when either changes. The functional take on reactivity needs to, additionally, handle
state in a referentially transparent way, which Functional Reactive Programming [EH97, [CE0IL
NCP02] addresses as follows:

e Referential transparency: Values that change with time are defined as signals, which are,
conceptually, functions from time to a value (Signal a = Time — a).

e Reactivity: Signals may depend on present or past values of other signals.

o Interactivity: Some distinguishable signals represent user input and signals that depend on
them will change when the input does. FRP systems also have identifiable output signals.

The previous definition is deliberately abstract. There are multiple variants of FRP, some built
around different basic constructs, but all carrying a sense of time-variance and reactivity. The main
purpose is to enable thinking about what things are over time (declarative programming), instead of
how to convert what things were into what they have become (imperative programming).

Publications and discussions on FRP usually focus on one of the following (non-exclusive) topics:
e Language, semantics and reasoning.
e Evaluation strategy and efficiency.
e Effects, visualisation and/or connections to other systems.
e Modularity and programming style.

This section presents each topic separately, exploring design decisions made by different FRP
variants, open and solved problems and the relations between them. The order of presentation does
not mean to reflect importance; it has been chosen so to facilitate the exposition.

Chapter [] and appendix [A] present a proposal for Functional Application Programming based on
the reactive paradigm. Since I expect future research on that approach to make use of FRP, this
chapter gives a general view of the field, with more detail than in previous chapters. However, it
does not constitute an exhaustive review (for such an analysis see [BCVCT12|) nor an introduction
to FRP (see [CNP03]).
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3.1 Language, semantics, reasoning and guarantees

3.1.1 The nature of signals

Time Multimedia applications often portray environments whose time dimension appears con-
tinuous!, which can be represented mathematically by the real numbers. The most common and
efficient machine approximation are floating point numbers (e.g. float and double).

However, not all applications need such continuity. A view of time as discrete unit steps is sometimes
sufficient and renders simpler solutions [200b]. In those cases the time dimension can be the natural
numbers, giving a correspondence between streams of values and signals.

More generally, the requirement is that time be ordered [EHIT, [EII09], with evaluation happening at
strictly increasing times. Because simulations always have a beginning, most FRP implementations
represent time as RT™ and IN. Some variants add infinity and negative infinity to the time domain,
at least at a conceptual level, to capture what has always been and what will never be respectively.
This allows some equations to be simplified [EHI7, p. 4].

The original formulation of FRP [EH97] worked with continuous time, as do AFRP/Yampa [NCP02]
and Uniti [Rovll]. Discrete-time variants of FRP include Elerea [Patll] and Ordrea [ORD].

Kinds of signals Just as not all applications have the same requirements over time, the same
can be said about signals: some change continuously, others change only sporadically. In general
terms, we can distinguish between three kinds of signals:

e Continuous-time continuously-changing signals.
e Continuous-time sparsely-changing signals (analogous to step-functions).

e Discrete-time signals, defined only at discrete points in time.

-

_a
- 5
(1]
>

value

time time time

- = _ 5

Figure 3.1: From left to right: a continuously (or frequently) changing signal, a sparsely-changing signal,
and an event-stream.

Not all FRP variants use all three categories, which motivates a distinction between Single-kinded
and Multi-kinded FRP. Fran [EH97], SOE FRP [Hud00] and Reactive-banana [HHA1] are multi-kinded,
while Yampa [NCP02], Elerea [Patll], Elm [CCT3a] and Flapjax [MGB™09] are uni-kinded.

Continuous-time signals have traditionally been called behaviours, step-function-like signals are
sometimes called step-signals, and signals defined only at discrete points in time have been called
events (or, more properly, event streams). Event-based GUI toolkits have a closer correspondence

IWhether time really is continuous is out of the scope of this work.
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with FRP variants with a notion of events [MGB™09, [CK04! [Cou01}, SagOO]Q. Games are most often
implemented in variants with continuous time [CNP03| [NP14l [P14bl [Che05].

Further variations are possible. N-ary FRP [SN10a] extended the signal definition to make signals of
tuples equivalent to tuples of signals. To the best of my knowledge, it is the only FRP implementation
to have exploited that isomorphism, for which dependent types were used.

Structural dynamism and higher-order Interactive applications, especially games, change
dynamically during execution, with new elements being introduced and others removed. In FRP,
this is accomplished by allowing signals to change or “become” other signals, captured in Fran with
the untilB combinator:

1 redBlue u = buttonMonitor u ‘over‘ withColor c circle
where
¢ = constantly red ‘untilB‘ 1bp u -=> constantly blue

The signal ¢ defined in this example (adapted from [EH97]) should behave like constantly red,
called the subordinate signal, until a certain property is fulfilled (1bp u, a mouse left-button press),
in which case it should become constantly blue, known as the residual signal [SN10al p. 6].

More general forms of dynamism exist in FRP. Yampa and others introduce dynamic collec-
tions [CNPO3], e.g. collections of signals that new elements can be added to or removed from during
execution. Higher-order signals, which carry other signals, can sometimes be “flattened” with given
combinators [Pat1l], turning on the internal signals as the output at specific times.

This kind of structural changes involve important concerns, such as network optimisation and
determining the value of the signal at the time of change/switching. This question was explored
by Nilsson et al. [NCP02, p. 54|, leading to two forms of switching: instantaneous switching and
decoupled switching. Instantaneous switching may result in nested switches and, in the presence of
recursion, in infinite loops [CNPQ3], p. 8]. Some FRP implementations like Yampa [NCP02] provide
delays and initialisation combinators to break looped switching®, while others like Elerea [Pat11]
introduce these delays automatically in the presence of circular dependencies.

The task-model of signals described in O-FRP [200a] and Monadic FRP [vdP13] also allows signals
to be turned off (in both cases, using monads), giving them temporary lifetimes. This could be
simulated using just plain, infinite signals, but the conceptual separation between tasks and ordinary
signals may facilitate thinking and a substantially more efficient implementation.

3.1.2 Semantics and guarantees

Work on FRP has been frequently applied to multimedia, game programming and user interfaces.
Precise definitions of the language and its meaning have not been a major concern in those domains.
On the other hand, hardware simulation and real-time systems are some of the use cases that can
be aided by having formal semantics.

2This similarity is progressively disappearing, since in new GUIs, animations —conceptually continuous— play a
central role.

3In the case of Yampa, the problem manifests itself also in delayed switching, due to the use of transitions or
future signal functions and strict evaluation.
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FRP was given denotational semantics by Elliott and Hudak [EH97], to “facilitate and guide
implementations”. A similar approach was used by Courtney [Cou04]. However, these semantics can
only be approximated, and there are discrepancies between implementations and the ideal meaning.
As an example, take a counter that increases in one unit every time it is sampled®. This construction
is completely dependent on the sampling rate, diverging in the limit (as the sampling frequency
increases), yet it is a common and useful FRP construct. In practice, some FRP implementations
sample based on CPU load, which even makes programs exhibit non-deterministic behaviour.

Figure 3.2: Because sampling times depend on CPU load, some FRP libraries exhibit non-determinism.
For example, two runs of the same force-based graph layout algorithm, with identical initial
conditions and force coefficients, may converge onto different stable configurations.

Conversely, think of an event that should conceptually fire at 7 time. Such an event would clearly
be missed. Adding a margin of error could make the event fire twice or more in a time period, and
correcting the second event would not prevent a third (fictitious) one from firing. Implementations
like reactive-banana [HA1] address this problem by not allowing to convert an arbitrary behaviour
into an event. For a discussion on how to avoid duplicated and missing input events, see [EII09].

A branch of research has been focused on giving different FRP variants more precise (operational)
semantics, that enable reasoning about the implementation, the output values and resources.
RT-FRP [WTHOI] and the later E-FRP [WTHO02] followed this path by reducing the language
to a minimum core, adding static types and minimal extensions. Priority-based FRP [KTZ07]
built on this work by adding priorities, enabling near-backwards compatibility while facilitating a
suitable implementation for hardware analysis and real-time systems. Krishnaswami [KB11l [KBH12]
Kril3] defines a stream-based FRP language with higher-order constructs and temporal operations,

constrained so as to reason about necessary resources and providing proofs of space leak avoidance®.

On the opposite end we find implementations with no formal semantics, such as reactive-banana [HAT].
Concurrent variants, especially GUI-oriented ones [CK04, [CC13a], pose difficulty reasoning about

programs and exhibit non-determinism, relying on eventual consistency [ANVdB13|] and going to
great lengths to break infinite loops caused by circular dependencies [Pat09, p. 10].

Testing Because some signals represent user input, the only way to test some signals that depend
on them is to provide input for testing purposes. In the following example, to test signalText, we
need to provide credible mouseInput (manually or automatically).

4Counters rely on state keeping, which will be presented later on.
5[KBl 1] gives semantics of FRP based on ultrametric spaces, [KBHI12| gives a language based on linear types,
and [KBHI12| gives one without linear types, motivated by trying to write more abstract code.
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glade-previewer glade-previewer

Normal: Text! Normal: Text!
Reversed: | ltxeT Reversed: |!txeT
Reversed: Reversed: |!txeT

Figure 3.3: Some asynchronous implementations rely on eventual consistency, resulting in glitches (short-
lived inconsistent states). In this application the text in the first text box should be immediately
shown reversed twice. There is a short delay (left) until the state becomes consistent (right).

1 signalText :: Signal String
signalText = show <$> mouselnput
Manual tests are not always reproducible, limiting the conclusions we can draw from them. FRP
variants with signals as first-class citizens hide data dependencies in implementations (the type
Signal String does not reflect a dependency on user input). To test these variants automatically,
a testing layer would need to overload all input signals (e.g. mouseInput) with fake-data-producing
definitions, merely for testing purposes. This approach is used in the Android SDK [AnSh].

Making the inputs explicit, as Arrowized FRP [CE0I] does, eliminates this problem
altogether, and allows us to use existing tools (e.g. QuickCheck [CHO0]) to test our implementations®.

3.2 Efficiency and evaluation

Efficiency has been a major concern in FRP implementations since the very beginning [LHO7, [EII09],
and it is strongly tied to the semantics of the language. The major approaches to improve the
efficiency of FRP applications have been:

e To restrict the language to guarantee well-behaved expressions.
e To add structure, in order to optimise specific cases.

e To change the evaluation model, avoiding unnecessary computations, propagating changes
more quickly and executing subnetworks in parallel.

3.2.1 Looking back and state

Signals can depend both on present and past values of other signals. This ability to inspect the past
requires that the whole history of other signal be saved indefinitely, leading to memory leaks [CEQ0]).
If a great part of that history is evaluated at once it may take a long time to compute, causing a
time leak [CEOIL [LHOT]. Both are common symptoms in implementations that use functions [EH97]
and streams [Hud00] to model signals.

One way to tackle this situation is to let signals inspect other signals only at the present time, but to
let them keep samples (state) for later. This is less expressive than full time access, since knowledge
of previous values of signals is restricted to the times at which they were sampled.

60f course, not every input generated by QuickCheck will be credible for the specific application. For more details,
see the cited article.
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Keeping state can be done explicitly, or be hidden using monads [LJ95] or continuations |[Rey93,
Wad97]. The latter is used in UniTi [Rovll] and Yampa [NCP02]. To guarantee that continuations
are passed in the right order, without discarding states or branching [KPVES0Il p. 99], combinators
are used to hide the plumbing.

Arrowized FRP [CEO01] INCP02] goes one step further than signal-based FRP variants, by not giving
developers access to arbitrary signals, but rather, to signal functions. Signal functions are connected
using arrow combinators [Hug00], which results in declarative constructs that resemble circuit design.
Signal functions are not allowed to sample signals at arbitrary times, and Arrowized FRP has been
shown to avoid different kinds of space leaks [CEQ1] [LHO7]. Further benefits of Arrowized FRP are
described in [Sculll sec. 3.5].

State in these variants can be kept either with stateful signal (function)
Q generators, or by creating feedback loops (see figure on the left). In
g these loops, part of the last known output becomes part of the current
INTEGRATOR input. The implementation of these loops can be done using the
r T least-fixed point combinator, in which case users need to take special
care so as to avoid undesired infinite loops or undefined values [EX07].

EULEFR

3.2.2 Evaluation model

FRP signals may change continuously, but their realisation on the screen takes place by sampling at
discrete points in time. Higher-fidelity may be achieved by sampling more frequently, but if a value
has not changed, recomputation may be unnecessary.

This gives rise to two ways of processing the network: by sampling (output) signals as frequently as
possible, known as pull evaluation, or by propagating changes forward, known as push evaluation.

In pull evaluation, the output signals are sampled again and again, until the application is closed.
This may result in unnecessary work, since only a small subset of the network, or nothing at all, may
need to be recomputed [Jel08]. Pull evaluation is used by Yampa [NCP02], and results adequate for
games [CNP03] [Che05] NP14] and physics simulations.

In push evaluation the output signals do not change unless there is a change to one of the input
signals. This may result in minimal recomputations and fast time-to-screen, but it comes at a cost:

e The effect of time-driven signals that should change continuously is not perceived until an input
event provokes network recomputation. A common workaround is to force such recomputation
by triggering events at regular intervals [HAI].

e Depending on the implementation, if several events happen very close in time, their effect
may be propagated independently, instead of calculating the output taking both changes into
consideration, resulting in unnecessary computations.

Push evaluation is used by most modern implementations, including reactive-banana [HAT] and
Elm [CC13b]. Most event-based variants are push-based, and connections to GUT toolkits are more
natural if events and push-evaluation are used [Cou01l p. 2].

Several authors have tried to combine both evaluation strategies by distinguishing signals based
on their range of existence and rate of change (behaviours, events, and others). Push-pull FRP
variants [EII09, [Ams12] uses this approach to only recompute continuous signals, but not events,
as frequently as possible, while reactive values are calculated only when there are actions to
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react to. A similar approach is used by Frappé [Cou0ll], in which time-dependent signals can
be distinguished from time-independent, reactive ones. Although, strictly speaking, Frappé is a
push-based implementation; only in the presence of time-dependent signals is the network polled at
regular intervals.

Concurrency and Parallelism Traditional implementations of FRP have been synchronous
and one-threaded. This has often been cited as a difference between FRP-backed GUIs and other
functional toolkits such as Fudgets [Cou03, p. 15]. Synchronicity is the simplest way to implement
deterministic, well-defined, invariant-keeping systems.

As computational requirements grow and the demand for precision not so high in many multimedia
applications, these requirements have been commonly relaxed. This topic is of particular impor-
tance at the present time, as the number of cores per machine is growing [OH05] and Functional
Programming is often advertised as capable to taking advantage of such capacity [Jon89).

In this context, we should distinguish between deterministic implementations that use parallelism
and concurrency and implementations that rely on eventual consistency [Vog09, [ANVAB13]. The
former kind has been used in Parallel FRP [PTS00] and Reactive [EII09]. Implementations such
as Elm [CC13b] and Netwire [Net] relax such restriction, and rely on the fact that applications
will eventually come to a balance. This results in glitches [BCVCT12l p. 6], temporal incoherences
between FRP invariants and the network state (Fig. [3.3).

Breaking loops In all cases, including synchronous implementations, circular dependencies may
lead to never-ending data propagation. Variants like Parallel FRP [PTS00] do not allow circularity,
while others like Elerea [Pat11] break loops by identifying each signal, detecting loops and introducing
delays.

Loops may be difficult to detect, both in compile time and in runtime. In the presence of asynchronous
evaluation, it may even be difficult to observe by users themselves, as data propagation can make
programs progress and respond while never reaching a standing point.

3.2.3 Adding structure

Optimisations to FRP networks can also be achieved by distinguishing between different kinds of
signals and/or transformations. This lets implementations exploit known laws and equivalences,
reduce the size of data structures and process them more efficiently.

Nilsson et al. [NCP02] distinguish between identity, constant, pure and other kinds of signal
transformations, exploiting arrow laws to reduce expressions. Generilised Algebraic Datatypes
(GADTs) helped avoid certain runtime checks, resulting in a more efficient execution [Nil05].

Without having to add such distinction, works on Causal Commutative Arrows [LCHO09| also exploits
the arrow laws for, in specific conditions (arrow commutativity, no circular dependencies, etc.)
reduce any expression to a minimal normal form that accepts more efficient execution.

Work on Push-Pull FRP [EII09, [Ams12] took advantage of the event/behaviour dichotomy to provide
efficient implementations. Similarly, Frappé [Cou01] detects time-dependent signal functions and
uses pull evaluation for them and push evaluation for all other signals.
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Work on N-ary FRP [Sculll chapter 8] explored optimisation opportunities in a form of dependently
typed, multi-kinded FRP extended with Signal Vectors.

3.3 Visualisation and connection to external systems

Interactive and visual applications have been the major domain of application of FRP. Similarly to
the way we explored GUI toolkits in chapter[2] FRP implementations have either enabled connections
to existing graphics and GUI toolkits, or used functional abstractions. Most modern FRP variants
are not tied to a particular backend or GUI toolkit, and very few maintain several independent
backends up to date.

Connections to GUI toolkits are easier in push-based, event-aware FRP, like Frappé (Java Beans,
[Cou01]), reactive-banana (HTML, wx, [HAI]), grapefruit (wx, [Jel09]), Elm (HTML DOM and
canvas, [CC13al), KSWorld [OFLKI2|. Pull-variants have also been connected to existing toolkits,
such as in wxFruit [Rob04], although this connection results more complex and artificial.

When it comes to low-level visualisation, both variants have been equally successful. Yampa
has several known backends (SDL [SDLal, [SDLDL], Glut [YGL], Fruit [CE01], HGL [HGL] and
OpenGL [GL]), Fran uses Win32 [W32], Reactive has been connected to FieldTrip [RET], and
Elerea to OpenGL and LambdaCube3D [L3D].

FRP has been used in multiple other domains, including computer vision [RPHH99], robotics
programming [FICNP03] and web applications [Prz, MGB™09).

3.4 Style and code modularity

FRP tries to shift the direction of data-flow, from message passing onto data dependency. This
helps reason about what things are over time, as opposed to how changes propagate.

One of the specific way to impose such restriction is to have one, and only one, place in our code,
where a signal can be defined. That is: signals are defined by their values over time: we cannot
declare a signal in one place and define its value over time somewhere else. This has traditionally
been seen as an advantage, as it results in clear and declarative specifications. There are, however,
at least two aspects in which FRP may be improved.

First, and in spite of the wide interest in FRP, multiple reports claim that it is difficult to understand
and to model systems using FRP [Rus03]. This may be due to lack of tutorials and examples, and
not a deficiency of FRP as such, but it pays to try to use clearer programming style and avoid code
redundancy whenever possible”.

A second problem is that, at least in user interfaces, visually-related elements may not be conceptually
related. Consider, for instance, the screenshot from Xournal [Xou| shown in figure There are
(at least) four different ways to move from one page to the next: with the toolbar buttons (top), by
dragging the central area with the mouse (center left), by scrolling down the page (center right),
and with the bottom toolbar controls. Each of these acts both as an input and an output. No matter
which of the four methods we use, the central area will show different contents, and scroll bar will

"In particular, I have found, in myself and in multiple FRP users that I have spoken to, that dynamism (mode
switching) and looped signal definitions (using let or ArrowLoop) tend to pose serious challenges.
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be at a different position, the toolbar buttons will be enabled/disabled depending on whether there
are more pages before/after, and the bottom toolbar page selection text entry will show a different
number. The following pseudo-FRP code illustrates their mutual dependencies:

Xournal
Edit View Page Tools

le
[ == B &

g/ 7T 0me W M 9 Q& o pEEEN -

FF

Page |1 -|of2 | Layer: | Layer1 =

Figure 3.4: Figure : a Screenshot of Xournal, showing four different ways to change the page number
shown by the program.

1 toolbarButtonRight <- button "rightarrow.png"

[ enabled := 1iftA2 (not.isLast) currentPage numPages ]
pageSelectionEntry <- numEntryText [ value := currentPage ]
5 pagelArea <- renderPage file currentPage

currentPage <- accum O
[ (clickOn toolbarButtonRight ‘tag‘® (+1))
‘merge ‘ (enterText pageSelectonEntry ‘tagf
10 (const (value pageSelectionEntry)))
‘merge ¢

As can be seen, we need currentPage to define toolbarButtonRight, pageSelectionEntry and
pageArea, but we need all three (and probably many others) to define the value of currentPage.
These mutually dependent elements all have to be defined together in the same part of our code, an
obstacle for concern separation and modularity that only gets worse as the codebase grows.

Directly bi-directional data dependencies are omnipresent in software with user interfaces, as some
view elements are mere interactive visualisations of parts of the model. In FRP, data dependencies
are uni-directional®, which results in (error prone) code duplication, as every relation between the
model and the view needs to be written in both directions.

8In shallow embeddings, using the host language’s = (or < —) definition symbol, which is uni-directional, imposes
such restriction.
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3.5 Summary

In this chapter we have examined the field of Functional Reactive Programming, with emphasis on
the design decisions made by different variants. With respect to GUI programming, we can highlight
the following aspects:

e Problem 3.1: In order to provide a standard GUI, we need to be able to connect FRP
implementations to existing GUI toolkits. Signal-based FRP variants have difficulty adapting
to such toolkits; event-based variants do not accommodate continuous animation as well as
signal-based ones.

e Problem 3.2: Both synchronous and asynchronous implementations may exhibit non-
deterministic behaviour, and rely instead on eventual consistency. In both cases, reasoning
about the state of the program is hard.

e Problem 3.3: Implementations must be efficient, avoid space leaks and guarantee short
change-propagation time. Both the signal kindedness and the evaluation strategy impact the
performance of the implementation.

e Problem 3.4: Circular dependencies, ubiquitous in GUI applications, may lead to infinite
loops and, without the proper abstractions, to poor modularity and code duplication.

28



Chapter 4

Thesis proposal and work to date

In the previous chapter I identified several problems with existing solutions to write GUI software in
functional languages. The objective during my research is to focus on large-scale concerns, mainly:

e Visual UI design, UI adaptability (plasticity) and connecting to existing GUI toolkits.
e Application architecture, concern separation, and declarative programming style.

e Dynamic structure.

e Efficiency.

The initial details of a proposed solution were included in the paper “Bridging the GUI gap with
reactive values and relations”, a revision of which is included in appendix [A] In this chapter I
introduce the approach described by that paper and list problems that remain to be addressed. 1
also give a tentative outline for my thesis and describe the contributions made to this date.

4.1 Bridging the GUI gap

Key elements of the proposal The key idea is to extend reactive time-varying entities, like
FRP’s signals, with a set operation, making them typed, time-varying, settable, gettable values
whose changes we can listen to. In this chapter we will refer to them as Reactive Values, and they
are represented by the parametric type constructor Va.ReactiveRW a. Additional constructors
ReactiveR0 and ReactiveW0 can be used for read-only and write-only reactive values respectively.
Following the example in section we could have:

Conceptual page number currentPage :: ReactiveRW Int
Text entry in bottom toolbar curPageTextEntryText :: ReactiveRW String

We define primitives and combinators to create and compose reactive values. Combinators let us,
among other things, apply point-wise transformations to existing values, by lifting pure functions,
and focus on specific parts of existing values, by using lenses [FGM™07]:
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Number in the text curPageEntryAsInt :: ReactiveRW Int
entry in bottom toolbar curPageEntryAsInt =
1iftRW (read, show) curPageTextEntryText

1iftRW needs a function to transform values being read and one to transform values being written.
To lift only in one direction, the functions 1iftR and 1iftW render read-only and write-only reactive
values respectively. A family of n-ary lifting functions 1iftR2, 1iftR3, ...is also given.

Uni- and bi-directional dependencies between values can then be defined using the rule-building
combinators <:= and =:= respectively. The constraint on page 27, which then required knowledge of
several Ul elements, could now be expressed separately for the bottom toolbar textbox as:

Update the other curPageEntryAsInt =:= currentPage
when either changes

This gives a general uniform reactive interface suitable to connect models and views (and possibly
other systems such as network and disk I/O) using a declarative, compositional style.

Separation of Concerns The proposed approach lets us write rules for the text box based only
on a conceptual page number, regardless of any other Ul elements that might influence either of
them. It also lets us separate the definition of the reactive element from the rules that affect them.

Constraints can be expressed in separate modules, they do not need to be defined where either the
text entry or the page number are defined. Rules can be organized and grouped by the features they
try to capture, resulting in better concern separation!.

Constraints may also be parametric, as depicted by the following rule-building function, which
implements the common behaviour seen in figure below:

View: Window caption | titleBar :: ReactiveRW String
Model: FilePath, if set -> ReactiveRW (Maybe FilePath)
Model: File modified? -> ReactiveRW Bool

Program name -> String

-> ReactiveRule
titleBar captionRW curFileRW modifiedRW programName =

Directional rule captionRW <:= 1iftR2 titleShould curFileRW modifiedRW
Point-wise title where titleShould f m = modified m ++ fileAsTitle f
assembler ++ ",-," ++ programName
Modified and not saved modified m = if m then "x" else ""
Name if never saved fileAsTitle = fromMaybe "Untitled_ document"

Untitled Document 1 - gedit

*Untitled Document 1 - gedit

File.txt (~) - gedit

Figure 4.1: Common behaviour for programs’ title bars, showing the current file name or location (if
available) and the program name. A * symbolises modified, unsaved files.

!Based on my own experiments with mid-sized (~10K lines of code) programs [KGI} [S12].
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This makes it possible to separate rules in libraries that implement common application behaviour,
letting developers focus solely on the core of the problem they want to solve. For further ab-
straction, type classes could capture whole models or views with specific characteristics, giving
our choreographic functions, like the previous one, shorter and more declarative signatures like
(ModelWithFiles m, ViewWithTitleBar v => m -> v -> ReactiveRule).

Connecting to existing GUI toolkits Reactive values have a clear correspondence with existing
GUI toolkit properties and events. This makes it trivial to connect to existing imperative GUI
libraries, by just giving wrappers to see any widget property as a reactive value. Creating such
wrappers can be simplified and automatized, making it feasible to maintain over time.

-- Library functions

¥3| FMain.form [*] Properties | Hierarchy buttonEnabled :: Button -> ReactiveRW Bool
) . ) buttonText :: Button -> ReactiveRW String
L @ [@ § % e [= Button1Button T
Enabled False - -- Our definitions
Text Click me! buttoniEnabled :: ReactiveRW Bool
ToolTip buttoniEnabled = buttonEnabled buttonl
Visible True buttoniText :: ReactiveRW String
Wwidth 128 = buttoniText = buttonText buttonl
buttonl :: GtkButton -- Defined elsewhere

Figure 4.2: Unlike in libraries such as Fudgets, in this proposal each widget property is seen as a separate
reactive value, giving fine-grained control.

The given implementation works with GTK+ GUIs created with visual design tools such as
Glade [Gla], using Glade library functions to load GUI specification files and specific reactive GUI
libraries to turn widget properties into reactive values (Fig. 4.2)). The connection library to GTK+
is small, suggesting it would be feasible to write backends for wxWidgets [WX] or Qt [QT].

4.2 Open problems

This section describes aspects of the proposed solution that remain to be studied. It is comprised of
three blocks: 1) dynamism, 2) semantics and evaluation model, and 3) extensions to the representation
of reactive values. They are introduced in order of priority, with dynamism and semantics forming
part of the foundations upon which more novel features (sync-async evaluation models, first-order
changes and timeline integration) can be explored.

Dynamism The previous approach works well for static interfaces. Ideally, one would also want a
way to “uninstall” or disable rules, that is, make them no longer valid.

9

The elimination of a reactive value (for instance, because a widget is removed) currently “works
only because data propagation does not find an end point, or simply because the widget never
sends any data. For instance, given a reactive value textEntrylText :: ReactiveRW String
representing the text of a Gtk+ text entry textEntryl, and a reactive value modelText of the same
type, the following reactive rule:

modelText <:= textEntrylText
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is translated into code equivalent to:

onEditableChanged textEntryl $ do
text <- entryGetText textEntryl
set modelText text

If textEntryl is removed, the event handler is also deleted by Gtk, and so the rule is disabled
without any special treatment. This, however, relies on Gtk+ doing the right thing. The workings
of other GUI toolkits could be different, and so a backend-agnostic interface should be provided.
Also, it only works for GUI elements and it is not a solution for the general case.

Dynamism is non-trivial and must be handled with special care. Consider, for instance, the following
rule, which connects the same reactive string to two status bars:

1iftW2 (,) statusBarlString statusBar2String <:= 1iftR (\x -> (x,x)) appStatus

This rule hides two independent dependencies inside. If we remove one of the status bars, we could
then consider that the end-point of the rule is not fully defined, and therefore the whole rule should
be disabled. But we could also consider that only part of the rule (propagation to the eliminated
status bar) should be disabled?. We could manually solve this situation by writing two independent
rules, but maybe the reactivity implementation could do some work behind the scenes for us by
removing “dead” parts of reactive networks. This problem was also enunciated in [SN10b| p. 27].

Semantics The defined reactive approach does not include any formal, rigorous definition of the
semantics of getting, setting, combinining and syncing reactive values. Reasoning about complex
data propagation networks can be, as examples in other data-flow frameworks show, substantially
hard.

Even though FRP does not allow us to separate signal definitions from value declarations, I believe
FRP could be a suitable layer to formally state that meaning, possibly by extending signals, or by
making reactive values signal functions.

One requirement of doing so would be to clearly state the time dimension of reactive programs.
In particular, multiple data dependencies for the same reactive value can lead to ambiguous, non-
deterministic or ill-defined reactive values at specific times. This may happen if several rules exist
for the same reactive value (implicit in the presence of cyclic dependencies and bi-directional rules.
Circular dependencies can, as seen in previous chapters, lead to endless data propagation?, and
stating the requirements for efficient convergence would be necessary. Currently, because real (user)
time is used, the time that it takes for changes to propagate is theoretically unbounded.

Related literature which could serve as a starting point to study this problem includes [Cou04,
Chapter 4][BG92, [PHPS&T, [Vog09|, [ANVdB13}, [LLI1].

Evaluation model The current implementation is fully asynchronous, mainly driven by the
same concurrency necessities seen in chapter [I| More sophisticated implementations, combining
asynchronicity for GUIs and deterministic, synchronous propagation for models, could be designed.
The evaluation model and the semantics influence each other, and we should expect several stages
between one and the other until converging on a specific design.

2For this particular reason, the current library implementation does not provide 1iftw2.
3The current implementation does analyse whether the value has changed, halting propagation if, and only if, a
fix-point is reached.
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Potential optimisations, such as parallelism, could be introduced at this reactive level. Preliminary
tests using the FRP implementation Yampa showed that multiple changes to its API would
be required, since Yampa's parallel combinators act on (individible) Functors, not (divisible)
collections [CNP(3]. If our reactive library were re-implemented on top of FRP, a more specific
API should be implemented, based on divisible structures that can be processed parallely. However,
since the net benefit of parallelism depends on the size of data structures and the number of cores
available [SSOG93|, some workload subdivisions may only be feasible at application level.

The nature of change When new values are propagated along, the change itself is lost. Consider,
for instance, a list widget and a list of strings, synchronized as follows:

let listItems :: ReactiveRW [String] -- Widget property holding the elements

listItems = ...
items :: ReactiveRW [String] -- Model value holding the elements
items = ...

in items =:= listItems

Given this implementation, we cannot distinguish between adding a new item to items, and clearing
the list and subsequently adding all the elements one by one, plus the additional element. We
also cannot distinguish between moving one element and loading a brand new re-sorted list. One
alternative is computationally more expensive than the other, and information is being lost, resulting
in a different final widget state with potentially undesirable visual effects (fig. [4.3]).

Item 1 .y || ltem 1 2N

ltem 2 S ) | ltem 2 °

Item 3 \\y ltem 4 \\,//)
b — L

Figure 4.3: With an element of the list selected (left), changing the order by pressing the up-arrow button
will actually load a new list, clearing the selection (right). In this example, Item 4 should have
remained selected.

One possible solution is to pass along change information together with the new value, that is, to
include, for every change, the difference between the old value and the new one (and possibly the
reason behind that change). In our example, the implementation of reactive data propagation for
lists could know how to synchronize two lists when the only change has been the addition of a new
element at a specific position.

Additional related literature includes [Aca05l, [LW10, [Car02]

Timeline integration If time was made explicit, at least conceptually, a further question would
be if several reactive systems with different notions of time (continuous and discrete) could be
synchronised using reactive rules (equations). Consider, for instance, a game UI with a continuous

33



notion of moving pieces on a board, and a discrete, conceptual notion of the same board. Synchro-
nizing these two structures would require having a clear time-mapping, from the discrete to the
continuous-dimension, and back.

Together with adding first-class changes, this would help address a long-standing issue of data
duplication across different non-inclusive models of the same data, common in GUIs and games [HEF05]

p. 6].

4.3 PhD Plan

A tentive plan for my thesis follows:

Abstract Programming GUI and multimedia in functional languages has been a long-term
challenge, and no solution convinces the community at large. Purely functional GUI and multimedia
toolkits enable abstract thinking, but have enormous maintenance costs. More general solutions,
such as Functional Reactive Programming, provide a pure functional view of interactive, reactive
processes, which can then be connected to effectful backends for specific domains such as Graphics,
UI, sound, etc. FRP has resisted an efficient implementation, and existing FRP libraries sacrifice
determinism and abstraction in the name of performance.

FRP requires that signals be defined by their values over time. This facilitates reasoning about the
execution, but at the cost of modularity and concern separation. Also, FRP’s uni-directionality of
data dependencies results in code duplication in the presence of circular dependencies, ubiquitous in
User Interfaces and multimedia.

This work presents an abstraction for reactive, time-varying values in which declarations and data
dependencies are separated. A relational language is given to transform these reactive values, to
observe them, and to define bi-directional and uni-directional dependencies between them. This
results in increased modularity, to the point that common model-view coordinations can be abstracted,
separated from the application completely and reused across different programs. A definition of
Model and View is provided, and a combinator language for applications with GUIs facilitates the
definition of larger applications from smaller ones.

To achieve efficiency without sacrificing model invariants, we give an implementation strategy
that uses synchronous propagation (with well-defined, deterministic semantics) for intra-model
dependencies and asynchronous, non-deterministic propagation for extra-model dependencies.

An implementation, connected to existing GUI and multimedia libraries, is provided, together with
comprehensive examples. This illustrates the resulting benefits in terms of clarity and modularity,
feature coverage of the supported GUI toolkits, and the low maintenance costs of this solution.

Table of contents
1. Introduction

2. Technical background. This chapter should be an extension of chapters 2| and [3 with further
examples to facilitate the exposition, a short introduction to FRP, and to a review of other
(imperative and OO) reactive approaches.
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3. Reactive values. This chapter should include a definition and introduction to reactive values,
together with the common operations that can be applied on them, including lifting, lens
application, and reactive rules.

4. Synchronous reactivity. This chapter should explore how to “reactivate” application models
and give a formal denotational and operational interpretation of reactive values over time.

5. Asynchronous reactivity. This chapter should explore reactive rules that are asynchronously
propagated. This will be necessary to connect to existing GUI toolkits, to other concurrent
applications, and for network communication.

6. Connections to the outside world. This chapter should provide implementation details of the
connection to specific existing I/0 backends, including GUT toolkits, OS files and network.

7. Application combinators. This chapter should define applications, composed of GUIs, models
and rules, and a combinator language to define complex applications out of simpler ones. It
should also include choreographies, that is, template applications that can be instantiated onto
specific models and views to create additional connections on them, providing general-purpose
functionality.

8. Case studies. This chapter should introduce three non-trivial examples: one of synchronous
reactive models, another of asynchronous model-view communication, and a final example
that uses choreographies and application composition.

4.4 Work to date

Over the course of my first year of PhD, I have carried out the following activities:
e Papers

— I have written a paper, together with my supervisor, outlining a preliminary solution to
the aforementioned problem based on mutable, thread-safe variables with rule-building
combinators. This paper was accepted for presentation in Trends of Functional Program-
ming 2014, but was rejected for publication in the proceedings. Part of the reviewer’s
comments have been included in a version of the paper attached as annex I.

— I have written a draft paper, together with my supervisor, on using QuickCheck to specify
and test temporal properties of FRP applications. Due to the correspondence between
FRP and Temporal Logic [IN11 [Tel12 [JeI13l [SNTODL p. 27-34], the tests themselves have
declarative specifications. I have written multiple tests both of Yampa properties and for
a game, to prove tunneling effects and detect bugs in the physics subsystem.

e Software

— I have included extensions to the existing reactive library on which these ideas are based.
In particular, I have extended the library with lenses.

— I have written a game using the Functional Reactive Programming implementation
Yampa, in order to explore the possible difficulties of using FRP in the real-world. This
game has been made available online [P14b].

— I have used that game to explore the introduction of parallelism in Yampa. So far, this
has been done at the game level, since Yampa’s combinators act on Functors, not just
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any form of collections [CNPO3|. Parallelism, often based on “divide an conquer”, could
for instance be introduced in Yampa if we could split collections in smaller subcollections.
That approach could also have its drawbacks: the net benefit of introducing parallelism
often depends on the size of data structures and the number of cores available [SSOG93].
Knowledge of the problem at hand, which is mainly present outside Yampa, might enable
smarter subdivisions, such as space partitioning [Gre09l p. 467].

— The aforementioned game was the culmination of a series of increasingly-complex FRP
examples, which could evolve in a published tutorial on FRP and game programming. I
have received messages from members of the FP community expressing interest in such a
publication.

— I have taken over the maintenance of Yampa, contributing a considerable amount of doc-
umentation and communicating actively with other users of FRP, in order to understand
other problems that the community may see in FRP or in this particular variant that
may not be apparent to me or my supervisor.

e Talks

— The aforementioned Yampa game was used by my supervisor, Henrik Nilsson, to present
a tutorial at PPDP 14 on Declarative Game Programming [NP14].

— I gave a talk on Reactive Values and FRP at the London Haskell Meetup, in June 2014.
The aforementioned game was presented at that talk.

— I gave two talks on the same topic during internal activities of the Functional Programming
Lab (FPLunch, FPLab Away Day).

e Additional research

— I have identified and classified over 150 papers specific to the area, compiled in an online
database.

— T am in the process of compiling a database with details on (so far) 31 FRP implemen-
tations, 9 reactive programming implementations, 50 related frameworks and libraries,
10 Functional GUI libraries, 9 imperative GUI bindings, 4 imperative graphics bindings,
and 5 pure graphics manipulation libraries. This database contains details on each imple-
mentation, including some of the framework’s features, the relations between different
implementations, details on how maintained they are to this date and their domain of
application.

e Courses

— At the Midlands Graduate School 2014, I attended courses on Category Theory, Functional
Reactive Programming and Dependently-typed Programming.

— Since the beginning of October 2014, I have formed a regular study group of Category
Theory together with first-year PhD students Jan Bracker and Jon Fowler, meeting
weekly to discuss problems taken from study books.

I believe that lacks in other areas, such as Temporal Logics and Parallel Programming, can be
addressed more easily by myself, since those are topics that I studied in the past.

Nevertheless, some expert knowledge could be acquired by doing an internship during my
PhD. In particular, I have located and spoken to employees of several companies that already



are applying or are interested in applying Functional Programming and may consider the
possibility of accepting me as an intern. This, however, would be limited to a short period of
time (possibly between two and four months), just enough to acquire the necessary knowledge
about one particular problem, and always strictly related to my PhD studies.
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Bridging the GUI Gap with Reactive Values and
Relations

Ivan Perez and Henrik Nilsson

Functional Programming Laboratory
School of Computer Science
University of Nottingham
United Kingdom
{ixp,nhn}@cs.nott.ac.uk

Abstract. Despite a rapidly growing number of successful, real-world
applications implemented in functional languages, there is still arguably
a lack of good frameworks for GUI programming in a functional set-
ting. Of course, one of the many imperative frameworks can be used.
However, for a number of reasons, they are usually a less than ideal fit,
in particular if we are concerned with pure functional languages. There
are GUI frameworks that have been designed ground up for functional
settings. However, they have drawbacks of their own, such as difficulties
in accommodating platform-specific look-and-feel, or lack of maturity.
More generally, but for different reasons, both current imperative and
current functional approaches tend to impact negatively on the modu-
larity of the application code. This paper presents a novel approach for
structuring GUIs based on reactive values, which can be seen as a form of
communication channels, and a declarative specification of the relation-
ships among such values. We argue that this approach is a good fit for a
functional language, while at the same time allowing easy interfacing to
the event-based, imperative GUI frameworks that are standard on most
platforms, and that it further addresses some of the structural problems
of present approaches. We demonstrate by presenting an implementation
in Haskell that has been used to realise a range of non-trivial applications
with GUI interfaces.

Keywords: GUI, pure functional programming, reactive values

1 Introduction

Functional programming is today in many ways a mature and successful pro-
gramming paradigm, as witnessed by the development of languages such as F#,
Erlang, OCaml, and Haskell, along with associated tools and libraries, and the
growth of events such as CUFP (Commercial Users of Functional Programming).
However, when it comes to Graphical User Interface (GUI) programming, the
state of the art is arguably not very satisfying.

Of course, using standard imperative or object-oriented GUI frameworks,
such as GTK+ or wxWidgets, is, at least in principle, straightforward [12], and
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indeed what typically is done. The look and feel of the resulting applications
can thus be as professional as for applications written in any other language. A
fundamental problem, though, is that the imperative nature of these frameworks
is deeply ingrained in their Application Programming Interfaces (API). In a
mostly functional language, such an API can be used without further ado as
side-effects are permitted everywhere. However, the API will mandate that an
overall imperative style of coding is adopted for the GUI part of an application,
meaning that many of the benefits of working in a functional language can no
longer be fully realised [2,21]. Exacerbating matters, to meet the needs of the
GUI part, the structure of other parts of an application may be impacted as well,
particularly in the setting of a pure functional language like Haskell where all
effects have to be accounted for explicitly, even if abstractions such as monads
can hide much of the “plumbing”.

There are many different architectures for structuring applications with GUIs.
Model-View-Controller (MVC) [15] is a classic, widely-used UI programming
pattern that remains one of the predominant choices also in large functional
software. However, MVC, as traditionally realised, is notoriously non-scalable
and suffers from poor separation of concerns as controllers tend to know and do
“too much”. Analysis of this and other problems, together with proposed solu-
tions, are available in the literature of design patterns [9], data-binding languages
[6] and application architectures [23].

In view of concerns such as those above, a number of attempts have been
made to design GUI frameworks that are inherently functional. In the context
of Haskell, an early and comprehensive example is Fudgets [3], and there have
been a number of attempts since based around Functional Reactive Programming
(FRP) [8,4] or FRP-like ideas. However, these efforts come with their own sets
of problems. Some, such as lack of maturity, are in essence “just” a question
of engineering and resources. But others are more fundamental. For example,
depending on the nature of the specific abstractions, interfacing with standard
GUTI toolkits, which in many cases is required for long-term sustainability and
to get acceptable look-and-feel, can be very difficult indeed. For another, these
approaches have their own implications regarding the structure of application
code, some of which do not sit well with notions such as modularity, reuse, and
separation of concerns.

To illustrate this last point, let us present a case inspired by the real-world
drawing software GIMP. In GIMP users can select the foreground drawing color
using an advanced dialog; see Fig. 1. This dialog enables viewing and select-
ing the color in multiple forms, including a luminosity panel, HSV, RGB and
hexadecimal (HTML) notations. Interaction using any of these widgets is imme-
diately reflected on all of them, including the application’s main window.

Due to the interactive nature of all of these widgets, which essentially ma-
nipulate the same conceptual value, there is a circular dependency between each
and every one of them as well as the application’s internal representation. If we
tried to represent this problem in FRP, because signal definitions and data de-
pendencies are merged in this paradigm, the result would be a monolithic block
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Fig. 1. GIMP’s color selection dialog showing seventeen interdependent ways of repre-
senting and selecting the foreground color.

of interdependent signals that would be difficult to divide. Even in Arrowized
FRP [18], where signal routing is more manifest, which arguably makes for more
modular system descriptions, this multiple inter-relation must be resolved by
making the circular dependencies explicit, consequently making it more difficult
to structure the code based on conceptual units and not on the specific relations
between different interacting elements.

In this paper, we present a novel approach for structuring GUIs that we
believe is a good fit for the functional paradigm while simultaneously allowing
standard GUI toolkits to be used as the “backend” for a look and feel appropriate
to any specific platform. Additionally, it addresses some of the issues related
to the impact on the structure of applications that affect most current GUI
programming approaches, be they imperative or functional. The idea is based on
the notion of reactive values, acting as channels of communication, and specifying
relationships among such values in a declarative manner. We demonstrate by
presenting an implementation in Haskell that has been used to realise a range
of non-trivial applications with GUI interfaces.

The rest of this paper is structured as follows. We first present, in more
detail, the background for the problem we are trying to address. We then state
key objectives that we believe make for a better approach to GUI programming
in a functional setting. Then we introduce the idea of reactive values, illustrating
it with concrete examples and explaining how this approach meets the stated
objectives. Finally, we review related work and draw conclusions.

2 Background
FRP remains the most prominent contestant when it comes to developing inter-

active applications in functional languages. We introduce only the basic concepts
necessary to understand the problem that we are trying to address. For further
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details, see earlier papers on FRP and Arrowized FRP (AFRP) as embodied by
Yampa [8,18,5]. This presentation draws heavily from the summary in [5]. We
center our discussion on AFRP, and later summarize how the problems exposed
are also present in other variants.

2.1 Fundamental Concepts

FRP is based on the concepts of signals and signal functions. A signal is a
function from time to values of some type:

Signal a = Time — «

Time is continuous, and is represented as a non-negative real number. The type
parameter « specifies the type of values carried by the signal. For example, the
type of an audio signal, i.e., a representation of sound, would be Signal Sample
if we take Sample to be the type of the varying quantity.

A signal function is a function from Signal to Signal:

SF o 8= Signal o — Signal 8

When a value of type SF « ( is applied to an input signal of type Signal «,
it produces an output signal of type Signal . Signal functions are first class
entities both in (classic) and in AFRP, while signals are first class only in the
former, and exist indirectly through the notion of signal function in the latter.

2.2 Composing Signal Functions

Programming in AFRP consists of defining signal functions compositionally us-
ing primitive signal functions and a set of combinators. In the Haskell implemen-
tation Yampa, signal functions are an instance of the arrow framework proposed
by Hughes [13]. Some central arrow combinators are arr that lifts an ordinary
function to a stateless signal function, composition >>>, parallel composition
&&&, and the fixed point combinator loop. In Yampa, they have the following

types:

arr :: (a->b) >SFab

(>>) :: SFab->SF bc->S8Fac
(&&&) :: SFab->S8SF ac->S8F a (b,c)
loop :: SF (a,c) (b,c) ->SF ab

2.3 Describing cyclic dependencies in AFRP

One of the main motivations to propose an alternative to FRP for GUI pro-
gramming is that, in presence of complex cyclic hybrid networks, AFRP code
becomes hard to modularize. Consider the description depicted in Fig. 2.
which we could implement as a hybrid system in Yampa as follows:
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Fig. 2. A sample cyclic hybrid system.
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sf = proc(sig) -> do
rec (s11, s12) <- sfl -< (sig, s22, s31)
(s21, s22) <- sf2 -< (s12, s32)
(831, s32) <- sf3 -< (sl11, s21, s32)
returnA -< s31

Even though the notation is short and declarative, it is not easy to divide
such a network of relations in separate blocks that can be specified independently
of one another. In a much larger program, in which many different components
may be interrelated, the difficulty in dividing these complex networks into mod-
ular, conceptual units will be even more pronounced. In particular, the previous
an example would be very hard to realize without Patterson’s arrow notation
or without restructuring the network to make the definitions simpler. However,
restructuring this network appropriately would necessitate grouping signal func-
tions that might not be conceptually related.

As applications grows in complexity, these problems become more frequent,
especially given that circular dependencies are extremely common in interactive
applications, suggesting that a different approach might be more suitable for the
bridge between the conceptual and presentation layers.

Some FRP implementations and languages offer mechanisms to work around
this problem. Elm, for instance, offers handles to push specific changes onto wid-
gets, thus helping to break cycles involving interactive visual elements. Reactive
Banana offers sinks for each WX widget property, to which a signal can be at-
tached. These are, however, and to the best of our knowledge, ad-hoc solutions
to enable pushing changes to those specific kinds of resources, not a general
solution extensible to every reactive element.

44



3 Key objectives

In our opinion, to constitute a successful GUI framework for a pure functional
setting, the following objectives need to be met.

Architectural objectives:

— Keeping the code clean as the code base grows in size, allowing declarative,
functional programs.

— Ensuring that controllers have minimal knowledge of the internals of both the
view and the model, and that different features affecting the same elements
can be separated into logical units, thus achieving separation of concerns.
In particular, controllers should not need to know how change propagates
internally within the model.

— Achieving reusability across applications, not only for Ul and models, but
also for parts of the controller.

— Allowing programs to easily be broken into cooperating subcomponents, pos-
sibly having more than one controller, view, model and concurrent access
from separate threads.

UI objectives:

— GUI-agnostic models and controllers. Applications can potentially work with
different GUI toolkits, and be compiled for different platforms with minimal
changes.

— Near-complete coverage of the Ul toolkit, and a way to use unsupported
features without having to extend the framework or sacrifice purity.

— The model and the view should have no knowledge of the concurrency re-
quirements of any GUI toolkit (such as communicating with the UI only
from a special Ul thread).

4 Our approach

In order to decouple different components, we provide a uniform interface to
the model, the view, and any other external component of our program. In our
framework we describe them as collections of read-write/read-only/write-only
typed values whose changes we can listen to, which we call reactive values.

In order to manipulate these values, we give a way to lift pure n-ary functions,
and specific rules stating the kind of component that results from such lifting.

Controllers [15] can be described as sets of synchronization rules, which can
be directional or bi-directional. This allows us to break controllers into subsets
of rules specific to a feature, and to move more of the problem’s logic into the
conceptual problem definition, which is kept in the model as an ADT.

Because we cannot hope to cover every possible use case and widget prop-
erty, we provide a low-level interface to reactive values. Equations involving UI
elements are transformed into GUI-aware code using this interface, and we allow
users to write low-level code for those widgets or operations that are not specifi-
cally supported by our framework and interact with the rest of their application.
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4.1 Reactive values

We tackle the problem at hand by first providing a uniform interface to both
models and views, turning each field, attribute or property into a value that can
be changed and observed, and whose changes we are aware of.

For that purpose we define reactive values, which are characterized by their
type and an access property:

— The type is the type of the element that they store or represent. In our
implementation, this can be any Haskell data type.

— The access property states whether it the reactive value is read-only (can be
observed, but not modified), write-only (can be modified, but not observed)
or read-write.

We say that a reactive variable is readable if it is read-only or read-write, and
writeable if it is write-only or read-write. We use analogous Haskell type classes
for these access properties.

Interaction with UT libraries, which often happens in terms of procedure calls,
can now translated into write-only typed reactive values, attributes have a one-
to-one mapping to our reactive values, and event handling functions that are not
associated with any attribute can be encoded as read-only values.

Example A hypothetical text entry, which we will use to show SSH usernames,
could have two read-write reactive values, of types String and Boolean, which
correspond to the entry’s text and whether it’s enabled or disabled. In a hypo-
thetical SFTP client application, we could let users optionally provide a user-
name and store it in a Maybe String in the model.

usernameEntryText :: ReadWrite String -- UI
usernameEntryEnabled :: ReadWrite Bool -- Ul
username :: ReadWrite (Maybe String) -- Model

4.2 Transforming and combining reactive values

There is often not a one-to-one correspondence between models and views. This,
it is necessary to transform or combine values before they are “transfered” to
other reactive values.

Applying a transformation to a readable reactive value is straightforward,
and it always yields a read-only reactive value. Transformations to writeable
values are applied before storing the new, transformed value, and they always
yield a write-only reactive value.

In fact, read-only values are functors and they would fulfill the functor laws
[16], and we have done the same for write-only values and contravariant functors.
We provide 1iftR and 1iftW respectively to lift functions onto reactive variables,
which have the types:
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1liftR :: Readable r => (a -> b) -> r a -> ReadOnly b
1iftW :: Writeable r => (b -> a) -> r a -> WriteOnly b

Continuing with our previous examples, we can write:

usernameCustomized :: ReadOnly Bool
usernameCustomized = 1iftR isJust username
plainUsername :: ReadOnly String
plainUsername = 1iftR (fromMaybe "") username
justUsername :: WriteOnly String

justUsername = 1iftW Just username

To map a read-write reactive value, we need to provide the transformation
functions in both directions. We often want the transformation to be an isomor-
phism (in which case we would lift the function by the functor and the inverse
function by the contrafunctor). We cannot but trust users in this respect, provid-
ing only a small facility for involutions. In the extended article we briefly detail
the consequences of not using actual isomorphisms, and the cases in which it
may be justified.

The type of the function that lifts mappings onto read-write reactive values
is:

1iftB :: (a -> b, b => a) -> ReadWrite a -> ReadWrite b
which can be used as follows:

plainStringUsername :: ReadWrite String
plainStringUsername = 1liftB (fromMaybe "", Just) username

Similar constraints apply to n-ary functions, depending on the variables’
read/write access properties. We have defined these using analogous names for
the lifting combinators, indicating the artity of the function being lifted.

Ezample In a hypothetical SSH application, such as the one depicted in figure
3, we give users a checkbox to decide whether the username must be customized
and, if so, a text field in which to write it. The possibly customized username
could be defined as:

customUsername :: ReadOnly (Maybe String)
customUsername = 1iftR2 (\c v -> if ¢ then Just v else Nothing)
customUsernameCheckboxValue usernameEntryText

4.3 Reactive equations

Now that we can define and combine reactive values, it is time to describe depen-
dencies between them. For this purpose, we use constraint-building combinators
that capture the idea that the value of a reactive value x must be updated to the
value of a reactive value y. Therefore, whenever y changes, x must be updated
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accordingly. We use the symbols <:= and =:> for such combinators, depend-
ing on the direction of change propagation. One of the values (the origin of the
change) must be readable, the other must be writeable, and they must both
contain values of the same type.

To simplify our rules further, we also provide the combinator =:=, which is
syntactic sugar for two directional rules. For obvious reasons, it can only be used
with read-write variables.

Example Imagine that we have a checkbox and a text entry in our SSH GUI.
If the user wants to customize the username, she must tick the checkbox and
write a username. If not, the checkbox must be unticked, and the text entry
must be empty and disabled. In the model, we use a Maybe String to encode
all possibilities.

-- If username changes, update view
customUsernameCheckboxValue <:= 1iftR isJust username
usernameEntryText <:= 1liftR (fromMaybe "") username

—— Coherence between checkbox and text view
usernameEntryEnabled =:= customUsernameCheckboxValue

-- Update model upon changes
1iftR2 (\c¢ v -> if c then Just v else Nothing)
customUsernameCheckboxValue usernameEntryText =:> username

Using these combinators we can specify circular data dependencies (and
therefore create a potentially-infinite data-transfer loop). Implicitly, every =:=
rule specifies one.

~| |Custom username Nothing
(. ,,cjic,k
lefyk
& Custom username
Dll‘(rk JuSt’ n
fljpe
CLQJ B Custom username
psxip1 Just "psxipl"

Fig. 3. Transitions in the application, showing the two widgtets’ states in synchrony
(left), and the contents of the model in each state (right).
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5 Lower-level interface and implementation details

Reactive values are polymorphic on the type of the values they contain. Their
access properties are captured using type classes, each of which defines corre-
sponding operations.! A readable reactive value must let us read its value and
listen to changes to it:

class Readable a b m where
read :ta->mb
onChange :: a -=>m () ->m ()

Writable reactive values, on the other hand, must be able to consume values:

class Writable a b m where
write :: a ->b ->m ()

A read-write value needs just be an instance of both classes:
class (Readable a b m, Writable a b m) => ReadableWritable a b m

We also provide instances of this class that can be used to create reactive
values, although developers need not use those specific instances, and can supply
one of their own. One example for which the appropriate instance has been
defined is:

data RWma=RW (a->m ) ma) (m O ->m ())

The interface provided for all reactive values is the same, regardless of whether
we are using widget properties or purely functional values. The implementation
of reactive rules is now straightforward, and we illustrate it with the left-to-right
example:

(=:>) :: (Monad m, Readable a b m, Writable c¢c b m)
=>a->c->m (O
(=:>) vl v2 = onChange vl (read vl >>= write v2)

5.1 Reactive widget attributes

Most UI widgets, at least in GTK+ and WX, can be controlled by means of
a collection of attributes. Except in very specific cases, these attributes can be
both set and viewed, and they have a corresponding event handler installer that
we can use to listen to changes. One example of how we can turn a GTK+ text
entry’s text into a reactive value is:

! Our implementation signature is slightly more convoluted than the one presented
in the previous section, parameterizing also over a monad. In practice, and for GUI
applications, this monad will always be the IO monad. Nevertheless, we want our
signature to be general enough to account for other possibilities.
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entryTextReactive :: Entry -> RW I0 String
entryTextReactive e = RW setter getter notifier
where getter get e entryText
setter v = set e [entryText := v]
notifier p = void (on e editableChanged p)

Note that the functions get, set and on are GTK+ functions, that entryText
is an attribute of entries that refers to its text, and that editableChanged is a
GTK+ Signal (read “event”) that we use to install an event listener. We could
now use the previous function two synchronize two (given) text entries:

entryTextReactive entryName =:>
1liftW reverse (entryTextReactive entryReversedName)

5.2 Reactive models

The same can be done for pure Haskell values, which we can embed into a reactive
value using something we called “reactive models” and “protected models”. A
reactive model is just a polymorphic, purely functional holder of reactive values.
These reactive models hold not only the actual value, but also a queue of event
pending handlers to be called. A protected model wraps a reactive model in a
Software Transactional Memory [11] MVar, and uses one thread to dispatch all
the pending change handlers in order upon changes.

This is just one of many possible implementations, and we do not impose
this specific construct upon users. Furthermore, we have sometimes changed our
default implementation in order to adapt it to specific applications, for instance
adding knowledge of past states in order to implement a transparent, reactive
undo/redo queue. Provided that the type class interfaces are fulfilled, reactive
values may take many forms.

To make our applications lighter, we also provide several facilities in our li-
brary to focus only on specific parts of these protected models, either by means of
lifting pure functions and lenses [22], or using record field accessors. For this last
case, we provide several Template Haskell functions that generate the necessary
code to observe, and change, only one subpart of a larger model.

6 Real-world experience and impact on software
architecture

We have used the approach described in this paper in the development of several
real-world applications, amounting to over 20,000 lines of Haskell code. This
includes small (yet useful) applications that showcase our framework, and fully-
fledged programs, originally written in an imperative fashion, which we have
partially and progressively transformed into reactive programs.

The first and most important benefit is that our controller [15] no longer
knows about the internals of the model and the view. Our applications are now

50



structured as a view, a model and a set of constraints. Occasionally we have
added IO code, either in write-only variables or using the low-level interface to
reactive values. This also allowed us to progressively add support for more and
more widgets and properties, while being able to benefit from reactivity from the
very start. These IO blocks do not pollute our codebase, and become cleaner as
a result of moving most of the code to separate, declarative reactive constraints.

A second benefit is palpable when we use
Detection Settings)| Basic settings threads that interact with our models.
This was done in Keera Posture [20] to

Correction Factor

7

(Increase it if the system notifies you when you move little) I'eCOI'd images from a Webcam and detect
Delay before notification when users sit incorrectly (one thread does
s : visual recognition and communicates with

(Increase it if the system notifies you too often)

the model, which is separately syncronized
with the view). It was also used in Keera
- Renamer (a content-based PDF renamer)
Show Keera Posture your correct siting position. and in Keera Gale Studio (a Graphical
Calibrate Adventure Game IDE), to asynchronously
move files in the hard disk from a thread
that communicates with the model while
showing a progress dialog.
Fig. 4. Keera Posture’s preference In all of these cases, the controller is not
dialog, whose updates are immedi- aware of any concurrency requirements of
ately used by the image recognition ~ the model or the view. All Ul functions
thread without restarting or explicit are transparently executed from the UI
message passing. thread.

Image source

0

Close

A consequence of having separate conditions involving the same reactive
values is that we can group features into modules, resulting in greater separation
of concerns, compared to structuring the application based on the Ul layout or
the model structure. It also allows us to completely add or remove a feature to
a program without affecting the rest of our codebase, making debugging easier.

A final outcome of our architecture is that we can factorize code out into
libraries that have minimal knowledge of the view and the model, yet implement
useful coordinations between them. A simple, yet frequent feature we factorized
was to show the program name in the title bar of our program. The independent
library only needs access to a writeable String-typed value for the title bar, a
readable Maybe String containing the current file name, and a readable boolean
variable indicating if the file has been modified but not saved. This rule can now
be imported into any program, cleanly and concisely.
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7 Related work

From an imperative or object-oriented perspective, our work is closest in spirit to
reactive programming?, and then in particular to change subscription facilities
and data binding languages.

Our notification system is similar to the observer design pattern [9] frequently
encountered in object-oriented programming. Indeed, this pattern has specific
support in recent versions of Javascript in the form of Object.observe() [19].
The observer pattern does provides the possibility of detecting changes to ob-
jects, which is one of the pillars of our proposal, but it does not constitute a
reactive DSL on its own.

Our reactive rules specify a data dependency language, with similar motiva-
tions and aims as the data-binding facilities of frameworks like AngularJS and
EmberJS. There are, however, structural differences. AngularJS, for instance,
merges data-binding, function lifting, and view declaration into a single, an-
notated XML tree. For that reason, we believe our approach results in a more
modular and abstract design, partly because it maximizes separation of concerns,
and partly because it allows factoring sets of rules out of specific applications
for independent reuse.

Nonetheless, and as one would expect, our approach poses challenges similar
to those of other frameworks that provide data-binding in terms of minimizing
data propagation, performance and consistency. To minimize data propagation
we use equality tests (where permitted) to avoid unnecessary updates: the “set-
ters” of our reactive values only update values and notify subscribers when the
values have actually changed. This approach is typically® more efficient than the
dirty-checking used in AngularJS, but it does present some challenges both in
the design of reactive values and in the implementation of our library.

Guaranteeing consistency, especially in the presence of asynchronous propa-
gation, is hard to express formally. Our current implementation sacrifices consis-
tency across a network of possibly-duplicated values in favour of responsiveness
and scalability [10]. We rely on always being able to break circular dependen-
cies to achieve eventual consistency [24]. We return in the next section to how
we intend to tackle this aspect more formally and provide minimal sufficient
conditions that guarantee the desired convergence.

As to purely functional user interfaces, there are several existing approaches
most notably Fudgets [3] and ones based on Functional Reactive Programming
(FRP) [8,4]. Compared to Fudgets, we believe that we achieve greater separation
of concerns and controller modularization. Further, our framework is not limited
to one reactive value per widget. Nonetheless, we consider the idea of defining
a compositional Ul framework worth exploring, and it is the direction we will
follow with our polymorphic controller rule sets.

2 https://github.com/Netflix/RxJava

3 Should equality testing be undesirable, e.g. because prohibitively expensive, the user
can always take control by defining a new type.
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In contrast to FRP, our approach disregards time, both at the conceptual and
implementation level. While, for example, analysis of soft real-time guarantees
has been carried out in the FRP setting [14], the lack of time-based semantics
prevents us from reasoning about temporal properties. That said, so far, we
have not needed to reason about time guarantees, and change propagation in
Gtk applications has always been fast enough. Nevertheless, we believe that
giving precise semantics to Reactive Values in terms of FRP signals is entirely
possible, and would provide the necessary formal foundations that would allow
implementors to reason about Reactive Values.

However, the central difference between Reactive Values and FRP signals is
the idea of separating value declaration from data dependencies: our reactive
values are declared independently of their connections to other elements, while
in FRP each signal is defined in one place by a single expression. As we showed
before, the FRP approach often leads to scalability issues in larger applications
in the presence of circular dependencies. In the context of user interfaces, we
argue that our framework achieves greater modularity than FRP and is easier
to use and understand. The ability to easily use any IO code to make up for
unsupported features is only rivalled, to the extent of our knowledge, by reactive-
banana [1].

In this area of DSLs for Ul programming in Functional Languages, Gtk+
lenses [7] also has similarities to the low-level interface of our reactive values.
Although lenses and change propagation are, in principle, orthogonal, a lens-
based interface would help describe the semantics of reactive values, facilitate
reusing existing libraries, and simplify definitions. Reactive values have their
own laws, weaker than the lens laws, and there are practical cases in which they
are purposely not fulfilled. We have also combined reactive values with lenses in
order to allow focusing on specific parts of a reactive value.

There are further clear similarities between our approach and Uniform Data
Sources [17]. Our reactive values constitute a constrained form of Data Sources
in which the input and the output type are the same, augmented with an event
subscription operation.

Finally, both Reactive Values and Uniform Data Sources have elements in
common with Lenses [22]. Although there is an obvious terminology overlap,
reactive values are neither lenses nor fulfil the lens laws. We expect future work
on formalizing RVs with FRP to help us express a temporal version of similar
laws that may be applicable to our case. Nevertheless, RVs can be combined with
lenses to focus on specific parts of reactive values, hence our vision that lenses
and reactive values are complementary and address different problems. Recent
developments on monadic lenses [7] and lenses with notifications could help us
simplify our formalisation in the future, allowing us to reduce our language to its
true core objective which is to serve as a data-binding language between typed
reactive elements, a bridge for the gap in GUI application architecture.
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8 Future work

In this paper we have described a reactive framework suitable to implement
applications with GUIs in Haskell. We have demonstrated how reactive values
can be defined and how to establish dependencies between them.

Our work has been guided by industrial experience, and we have successfully
used this framework to implement several applications. Due to the nature of
these programs, formal analysis of temporal properties of change propagation
and consistency guarantees have not been explored. Our approach ignores time
at a conceptual level, which makes it less expressive than Qt’s QML and FRP.
In the future, we would like to provide a well-founded FRP-based definition to
reason about delays, change propagation and temporal inconsistencies.

We have observed constant memory consumption while profiling some appli-
cations. Nevertheless, for the reasons stated above, it is currently difficult in our
framework to reason about efficiency, memory footprints and garbage collection.

In particular, it has been suggested that making our reactive rules first-class
citizens would facilitate the specification of dynamic data-bindings, which would
increase the importance of garbage collection in our framework.

Recent developments combining applicative syntax and lenses have allowed us
to obtain less verbose rule sets. We expect this combination to have a sizeable
impact on the codebase of large applications. Future work will measure and
compare the complexity of software specified in each style.

In this paper we have not described all the tools and libraries in our frame-
work’s ecosystem, which contains several prepackaged controller rule sets. Exam-
ples include adding a visual loggin console, quitting programs (optionally saving
modified files), undoing/redoing, and checking for updates. We have identified
other common features that could be also be factorized. Eventually, this frame-
work could evolve towards an algebra of applications, structured around the con-
cepts of model, view, controller, threads and conditions, and a set of well-defined
combinators, in which orchestrations would have a more precise meaning.

We have also developed tools and libraries that have not been described
in this paper, and which help with internationalization, accessing Ul widgets,
generating application and reactive model skeletons, etc. Some of these tools and
libraries are GTK+ centric, and we heavily rely on convention over configuration.
Nonetheless, configuration is possible and the division in multiple libraries makes
supporting other UI toolkits straightforward.
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