
Native Offload of Haskell Repa Programs to Integrated GPUs

Hai Liu Laurence E. Day Neal Glew Todd A. Anderson Rajkishore Barik

Intel Labs

{hai.liu,todd.a.anderson,rajkishore.barik}@intel.com led@cs.nott.ac.uk aglew@acm.org

Abstract

In light of recent hardware advances, general-purpose comput-
ing on graphics processing units (GPGPU) is becoming increas-
ingly commonplace, and needs novel programming models due to
GPUs’ radically different architecture. For the most part, existing
approaches to programming GPUs within a high-level program-
ming language choose to embed a domain-specific language (DSL)
within a host metalanguage and then implement a compiler that
maps programs written within that DSL to code in low-level lan-
guages such as OpenCL or CUDA. An alternative, underexplored,
approach is to compile a restricted subset of the host language it-
self directly down to OpenCL/CUDA. We believe more research
should be done to compare these two approaches and their relative
merits. As a step in this direction, we implemented a quick proof
of concept of the alternative approach. Specifically, we extend the
Repa library with a computeG function to offload a computation to
the GPU. As long as the requested computation meets certain re-
strictions, we compile it to OpenCL 2.0 using the recently added
feature for shared virtual memory. We can successfully run nine
benchmarks on an Intel integrated GPU. We obtain the expected
performance from the GPU on six of those benchmarks, and are
close to the expected performance on two more. In this paper, we
describe an offload primitive for Haskell, how to extend Repa to
use it, how to implement that primitive in the Intel Labs Haskell
Research Compiler, and evaluate the approach on nine benchmarks,
comparing to two different CPUs, and for one benchmark to hand-
written OpenCL code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers

Keywords GPU Programming; Heterogeneous Programming;
Haskell

1. Introduction

With recent advances in computing hardware, general-purpose
computing on graphics processing units (GPGPU) is becoming a
common practice. Despite being labeled as general purpose, mod-
ern GPUs differ significantly from regular CPUs architecturally,
giving rise to specific programming models and languages de-
signed to simplify the programming of such devices. OpenCL [10]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FHPC’14, September 04, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3040-4/14/09. . . $15.00.
http://dx.doi.org/10.1145/2636228.2636236

and CUDA [16] are two such popular frameworks that come with
restricted C-based languages that address this need, and hard-
ware vendors typically provide the necessary toolchain to compile
OpenCL or CUDA programs to their devices.

OpenCL and CUDA are low-level programming languages and
require programmers to write a range of boilerplate code to setup
devices and manually manage memory. Obtaining reasonable per-
formance usually requires programmer knowledge of some aspects
of the compute resources and the memory hierarchy of the GPU.

In the past few years, however, several frameworks for GPU
programming have emerged for high-level languages, which do not
require familiarity with low-level details and languages. A popular
approach is to embed a domain-specific language (DSL) within a
host language. When execution of the host program on the CPU
encounters an embedded program, the DSL compiler translates the
embedded code into OpenCL or CUDA and then compiles and
offloads that code to the GPU. Accelerate [4] and Obsidian [22]
are two examples of this approach, using the functional language
Haskell. Delite [3] is another such approach allowing not only the
compilation and execution of DSLs on GPUs, but also a flexible
technique for building DSLs using a multi-staged toolchain built
on top of the Scala language.

If we view OpenCL as providing a hardware abstraction over
data-parallel hardware architectures, then DSLs raise the level of
abstraction even higher by hiding the hardware interface almost en-
tirely. The obvious benefit is productivity due to higher-level con-
structs and operators. Additionally, the DSLs are carefully crafted
so that only programs suitable for GPUs are expressible. This
self-imposed design choice saves DSL implementers from writ-
ing a full-blown general-purpose compiler targeting GPUs, which
is often infeasible given hardware limitations. Furthermore, DSLs
naturally separate data in the host language from data inside the
DSL, providing a hook to address the following aspect of GPUs.
Specifically, discrete GPUs typically communicate incoherently
with the CPU across a limited interconnect, and should be treated
like distributed-memory machines. Thus, carefully choosing when
to move data between CPU and GPU is important to achieving good
performance.

On the other hand, the DSL approach has drawbacks of its
own. To understand why, consider two similar libraries for parallel
programming in Haskell, Repa [9] and Accelerate [4]. Repa is a
Haskell library for high-performance array computation on multi-
core CPUs, and Accelerate is an embedded array language targeting
GPUs. They share similar high-level APIs for multi-dimensional
and shape-polymorphic parallel arrays (no coincidence—the same
team designed and implemented both), yet differ in ways beyond
those due to differing hardware architectures:

• Repa programs are statically type-checked and compiled, whilst
those written using Accelerate are only compiled at runtime.

• The DSL compiler for Accelerate has to re-implement opti-
mizations already implemented by the host-language compiler.

The first versions of Accelerate indeed had performance issues
due to missing general optimizations, which are not GPU spe-
cific [15].

• The DSL approach needs a special mechanism to interface with
foreign code since DSL programs cannot directly use the FFI
features already available to the host language [5].

An alternative approach for high-level languages, which we call
native offload, is to compile a restricted subset of the host language
itself to OpenCL or CUDA. To the best of our knowledge, this alter-
native approach has not been tried for any functional programming
languages. If the restrictions are carefully selected, this approach
should obtain many of the benefits of the DSL approach, while re-
taining all the facilities of the host-language.

With this in mind, we have implemented a proof of concept sys-
tem for compiling a restricted subset of Haskell to Intel’s integrated
GPU, and we strongly believe that the results are interesting and
show that this alternative approach is viable. Whilst we have em-
ployed a number of short-cuts for quick prototyping, the majority
of these are engineering related, requiring more time and effort to
address. One point in particular is worth emphasizing—we are tar-
geting an integrated GPU. A number of companies have already
been shipping processors with both a CPU and a GPU on the same
die that can share the same memory system (e.g., Intel Haswell™,
and AMD Kaveri™). The integrated GPUs from Intel also share
the last level cache between the CPU and the GPU. Thus, the issues
with data movement between CPU and GPU are largely mitigated.
This difference simplifies compiling to GPU, and should be borne
in mind throughout.

With these caveats in mind, we make the following specific
contributions:

1. We introduce a new computeG combinator to the Repa library
that offloads a parallel array computation to GPU.

2. We give a prototype implementation of compiling native Haskell
functions to OpenCL as part of the Intel Labs Haskell Research
Compiler (HRC) [13].

3. We integrate our solution with the Concord compiler (a C++
based heterogeneous computing framework for integrated GPUs
that compiles to OpenCL) [2].

4. We demonstrate the effectiveness of the native-offload approach
by comparing a set of Haskell benchmarks on both GPUs and
CPUs.

2. Offloading Repa Array Computation

2.1 Overview of Repa

The Repa library represents the state-of-the-art for data-parallel
computing with arrays in Haskell. It allows computation over high-
rank arrays to be expressed in a type-safe manner, and at the same
time enables implicit parallel execution on multi-core CPUs with
aggressive array fusion guided by indexed types [12].

Consider the following Repa program map2:

import Data.Array.Repa as R

a :: Array U DIM2 Int
a = R.fromListUnboxed (Z :. 5 :. 10) [0..49]

b :: Array D DIM2 Int
b = R.map (^2) (R.map (*4) a)

c :: IO (Array U DIM2 Int)
c = R.computeP b

In the above program, both a and b are two-dimensional arrays,
where a is fully manifest (type-indexed by U), and b represents

a ‘delayed’ computation (type-indexed by D) based on the input
array a. To fully compute b (i.e., to turn the delayed array b

into a manifest array c), one can use either the computeS or the
computeP combinators:

computeS :: (Shape sh, Unbox e)⇒
Array D sh e → Array U sh e

computeP :: (Shape sh, Unbox e, Monad m)⇒
Array D sh e → m (Array U sh e)

The difference between the above two functions is that computeP
evaluates its input array in parallel by distributing the work across
a set of worker threads (which can be specified by RTS option -N at
runtime), whilst computeS evaluates sequentially. Besides delayed
computations, Repa supports several other kinds of representations
of typical array computations, but the gist remains the same: Repa
array computations are made manifest only when we ‘force’ the
delayed computation to evaluate to a concrete form (i.e., force an
array of thunks to an array of values), and users do not have to
specify anything other than replacing computeS with computeP to
run the computation in parallel.

Following the same design philosophy, we extend the Repa
API with a computeG combinator with the same type signature as
computeP and with the intention that instead of spawning worker
CPU threads, it offloads the actual computation to the GPU:

computeG :: (Shape sh, Unbox e, Monad m)⇒
Array D sh e → m (Array U sh e)

In theory, with the computeG function added to the Repa library,
it should be possible to run any Repa computation on the GPU, be-
cause semantically computeG is equivalent to both computeS and
computeP. In practice, however, it is difficult to do this without
compromise because of the differing underlying hardware architec-
tures of GPUs and CPUs. Instead, we will restrict the computations
that computeG will run by rejecting at compile time any compu-
tation that is ill-suited to run on GPU. To further understand the
issues involved, we first discuss OpenCL and, more generally, the
GPU computing paradigm.

2.2 Overview of OpenCL

OpenCL [10] is an open standard for cross-platform, parallel pro-
gramming of modern processors, including CPUs and GPUs, digi-
tal signal processors (DSPs), field-programmable gate arrays (FP-
GAs) and others. OpenCL includes a C99 based language, called
OpenCL C, for writing kernels that are executed on OpenCL-
compliant devices, and a set of APIs for controlling such devices.
Although both task-based and data-based parallelism are supported
by OpenCL, the latter still is the dominating programming model as
it is well matched to the hardware characteristics of most OpenCL
devices. Devices like GPUs usually consist of one or more compute
units, each of which consists of a number of processing elements
(PEs) and local memory. The most important OpenCL API call is
to request execution of a kernel instance on a device. A kernel in-
stance consists of a kernel, its arguments, and an NDRange. The
latter is a contiguous rectilinear index set of integers in one, two, or
three dimensions. For each index in the space, the GPU will execute
the kernel on the given arguments and the index, this execution is
called a work item. This kind of computation falls into the general
category called single instruction multiple data (SIMD). NDRanges
are additionally divided into work groups, contiguous sub-blocks of
the index space of a user-requested size. Kernels have access to a
local memory that is shared among the work items of a given work
group. This local memory is limited in size, but usually much faster
to access than global memory. It is often important to exploit local-
ity and copy data to local memory for repeated processing.

OpenCL 2.0 is the latest iteration of the OpenCL standard,
and among the many features and enhancements is the introduc-
tion of SVM (Shared Virtual Memory), which allows programs
to directly share pointer-containing data structures between CPU
and GPU. Integrated GPUs—those built on the same die as the
CPU and therefore sharing the same physical memory and co-
herency domain—has significantly lowered the cost of offloading
work from CPU to GPU, and made SVM an important feature to
have.

An OpenCL application typically consists of a main program
that runs on the host, and one or more kernels which run on
OpenCL devices. The main program queries the system for a list of
devices, sets them up appropriately, requests compilation of the ker-
nels, creates kernel instances, and enqueues those kernel instances
for execution on OpenCL devices. The OpenCL C language has
a number of restrictions that limit the kind of programs that one
can write. Most implementations provide a just-in-time compiler
capable of compiling the kernel at runtime.

To illustrate, below is an example of an OpenCL kernel:

kernel void map2(global const int * restrict a,
global int * restrict b)

{
int idx = get_global_id (0):
int x = a[idx] * 4;
b[idx] = x * x;

}

The above kernel performs the same computation as the Repa
program given in Section 2.1. The main program must allocate both
arrays, initialize the source array a and then build and enqueue the
kernel instance for execution with an appropriate range (i.e. the size
of both arrays). Ignoring device setup and error handling issues
for the time being, we can generalize this notion of data parallel
execution via the following (Haskell) type signature:

offload# :: Int → (Int → State# s → State# s)
→ State# s → State# s

The offload# function takes two arguments: the range of the
task to run on the external device, and the actual function, mapping
from a valid index (within the range) to a stateful computation
with the potential to read from and write to the main memory.
Implicitly, we assume a form of memory coherence between CPU
and GPU. As a consequence, we will make use of the SVM feature
introduced in OpenCL 2.0. Furthermore, there are limitations on
what offloaded functions can actually do—for instance, they must
adhere to the same set of restrictions on the kernel functions as
those for OpenCL kernels. In contrast with the DSL approach
taken by Accelerate and others, the type of offload# gives little
guarantee on its runtime behavior, and so any restrictions must be
enforced either at compile time or runtime. As such, we specify
offload# as a primitive in the implementation and not as part of
the general API. In Section 3, we will discuss the set of restrictions
again in greater detail, and moreover how they are enforced.

2.3 Implementing computeG

The offload# primitive represents the line we draw between high-
level abstractions that can be implemented in a library (such as
computeG) and the lower-level implementation details that are best
handled by a Haskell compiler such as GHC and HRC.

Internal to Repa, computeP is implemented by forking a set of
native threads (called a Gang), and dispatching chunked computa-
tions of the target array as individual tasks to each thread. The im-
plementation of computeG is similar in the sense that it also relies
on individually computing each chunks, but does so by offloading
work to an external device rather than by spawning CPU threads.

The actual mechanism of chunk division varies according to the
representation of the target array, and is implemented by declaring
instances of the Load class:

class (Source r1 e, Shape sh)⇒ Load r1 sh e
where

-- | Fill an entire array sequentially.
loadS :: Target r2 e⇒

Array r1 sh e → MVec r2 e → IO ()
-- | Fill an entire array in parallel.
loadP :: Target r2 e⇒

Array r1 sh e → MVec r2 e → IO ()
-- | Fill an entire array in parallel via

offload.
loadG :: Target r2 e⇒

Array r1 sh e → MVec r2 e → IO ()

Without diving into the details of Repa’s internal implementa-
tion, let us just say that this Load class abstracts the computation of
all elements defined by an array (of type Array) and writes them
to a manifest target of type MVec, a mutable vector representation.
Here we add a new loadG method with the same type signature
as the sequential loadS and parallel loadP. We then implement
loadG for each array representation. For example, delayed array
computations are offloaded as follows:

import GHC.IO (IO (...))

instance Shape sh⇒ Load D sh e where
loadG (ADelayed sh getElem) mvec
= mvec ‘deepSeqMVec ‘ (IO dispatch >>

touchMVec mvec)
where

dispatch s =
case size sh of
I# n → (# offload# n f s, () #)

where
f i s =

case w of
IO m → case m s of

(# s’, _ #) → s’
where

w = unsafeWriteMVec mvec (I# i)
((getElem . fromIndex sh) (I# i))

In the above, we first compute the range n of the computation
to offload, which is the size of the array to be made manifest.
The actual function f which we offload maps each index i to an
array-write operation using the utility function unsafeWriteMVec,
which takes an array, an index, and a computation of the value
of the element to write into the array at that index. Unlike the
computeP implementation, we need not chunk the target array
into suitable sizes beforehand, because in general the thread model
is a poor fit for GPU devices. Instead, we specify the overall
work-range to be the size of the destination array, and defer the
dispatching of jobs to available compute units to the underlying
OpenCL computation.

In a similar manner we implement loadG for other array rep-
resentations (including Cursored, which share index computations
between array elements, and Partitioned, which allow different
element-indexing functions to be defined for distinct partitions of
an array). With a relatively small set of changes, we produced a
Repa library that implements computeG via the offload# primi-
tive. Our goal is to be able to replace any calls to computeP with
calls to computeG, and therefore convert a data parallel Repa pro-
gram from CPU execution to GPU execution. We must highlight at
this point that when using the computeG combinator, no assump-
tions can be made regarding the order of execution, and moreover
floating point determinism cannot be guaranteed.

3. Implementing the Offload Primitive

Implementing offload# has a number of issues. To solve these
issues we made two main choices: first we decided to implement in
HRC and utilize Concord, and second we restrict functions that can
be passed to offload# to ones that we can compile to GPU code.
We explain these choices, the issues they address, and the way they
solve these issues next.

3.1 Implementing in HRC

HRC is an alternative backend for GHC. It uses GHC as a front-end
and intercepts the external Core after GHC does its optimization
of Core code. HRC also implements a multitude of optimization
passes based on a strict SSA-style internal representation called
MIL. Specifically it converts to a strict IR, optimizes that, con-
verts that to MIL, and does a number of control-flow and data-flow
based optimizations. What makes MIL unique is that it combines a
low-level CFG-based representation with a high-level object-based
memory model. Of particular note is the contification optimiza-
tion [7], which, when appropriate, converts mutually tail-recursive
functions into loops, and optimizations to flatten data structures
into other data structures or local variables, thus often eliminating
allocation of temporary data structures. Eventually, the MIL code is
translated into an extension of C called Pillar [1], which is passed
on to the Pillar-to-C converter, before being compiled and linked
by a C compiler (we use Intel’s C compiler).

We choose HRC over GHC to implement an alpha prototype of
this work for a number of reasons:

1. HRC’s existing backend already generates C-like code, which
makes it easy to re-use the same compilation pipeline to target
OpenCL.

2. HRC performs a number of loop-based and representation-style
optimizations [13, 17], and is able to produce straight loop code
for many Repa programs. This is a good fit for OpenCL because
OpenCL does not allow recursive function calls.

3. We previously conducted a performance study using a set of
Repa benchmark programs compiled by HRC for both the Xeon
CPU and the Xeon-Phi coprocessor [18]. We re-use the same set
of benchmarks in this study to compare performance.

Because HRC uses GHC as its frontend, we modified GHC,
adding the offload# primitive by declaring its type and giving
it an empty implementation. We need not implement offload#
in GHC, as we only need GHC to compile the modified Repa
library down to Core code, which is then passed to HRC as input.
Since HRC is a whole-program compiler, when compiling a source
program it will also pull in Core code from all libraries used by the
program, and among them is our modified Repa library where we
can find the definition of computeG in terms of offload#.

3.2 Utilizing Concord

We need to implement runtime support for setting up OpenCL
devices, calling OpenCL kernels, and integrating SVM into the
garbage collector. On the last point, code before the offload will
allocate and build data structures on the CPU that the offloaded
code may want to access. We want to use the SVM mechanism to
pass pointers from the CPU code to the GPU code that the latter
can just use to access the data structures. To achieve this, any such
pointers must be in the space covered by the SVM mechanism.

To address all these issues we use Concord [2], a heteroge-
neous C/C++ programming framework for processors with inte-
grated GPUs with SVM support. Concord implements SVM in
software today making it suitable for processors like Ivy Bridge
and Haswell from Intel. It enables existing multicore applications

that use pointer-based traversals to take advantage of GPUs easily
without having to marshal and un-marshal data.

Any memory that Concord code wants to share between CPU
and GPU must be allocated with special SVM allocation opera-
tions. Since we do not know what parts of the garbage-collected
heap might be used by GPU code, we simply place all of the heap
within an SVM allocated area. Then any pointers into the heap can
be used with the SVM mechanism and accessed on the GPU. Due
to an OpenCL restriction, Concord limits SVM memory to 400
megabytes, which in turn limits our heaps to 400 MB. For now, this
limit does restrict which programs we can offload. However, fu-
ture implementations will use OpenCL’s fine-grained SVM (which
is not currently supported by hardware), and there is no limit on
fine-grained SVM memory, so there is no long-term concern.

Also, we must prevent garbage collection while running GPU
code, as the garbage collector needs to halt threads and then scan
and possibly update their stacks. OpenCL and thus Concord cur-
rently provide no mechanism for achieving this. At worse, some
CPU threads will be blocked waiting for garbage collection so
that they can allocate, blocked until the GPU code completes. The
programs we have run, however, do no interesting CPU execution
while GPU code is running.

3.3 Restricted Functions Offloaded

The two arguments passed to offload# are the range and the func-
tion to offload. The range argument is easy to handle, but the func-
tion to offload comes from arbitrary Haskell code. In particular,
when we compile the offload, we may not know what actual Haskell
code is being called at runtime. Even if we are able to locate the
code that is called, it could contain arbitrary code, including allo-
cating memory, evaluating thunks, making calls to other functions,
and so on. OpenCL and thus Concord do not support arbitrary code,
so we either have to implement difficult encodings of Haskell con-
structs in terms of what is allowed, or restrict the Haskell code that
we will compile to Concord code. We choose to restrict what we
compile, and will issue and error and stop compilation if these re-
strictions are not met.

First, we require that HRC can determine which MIL function
will be called by any call to offload#. If after all of GHC’s and
HRC’s optimizations, this function cannot be determined, HRC
will issue an error message and stop compilation. Our implemen-
tation of computeG passes a function to offload# that HRC can
determine the MIL function for. In fact, since offload# should re-
ally only be used in the low-level parts of libraries providing high-
level parallelism abstractions, it should be easy for those libraries
to avoid this compiler error.

Second, we restrict what code is allowed in the function passed
to offload#. Ideally, HRC would scan the MIL function passed to
offload# and check for the use of any constructs that it cannot
effectively compile to Concord code, and if any are found then
HRC would issue an error message and stop compilation. We do not
currently run this check pass; it would be easy to implement. Note
though, this check is done on MIL code, which is far from Haskell
source code. Any error messages might be difficult to interpret.
Figuring out good ways to explain the error in terms of source
would be good research, but we leave that to future work. Instead,
We rely on the Concord compiler to report errors for anything that
it does not understand or support. Violations to almost all of our
restrictions are being caught this way. Next we describe the main
restrictions.

Calling Other Functions Concord and OpenCL do not support
indirect calls, as these either are not possible or perform badly on
most GPUs. Theoretically speaking, it is possible to completely
eliminate the use of runtime function pointers by a whole-program
transformation called de-functionalization [6, 21], and hence make

every function call statically known. However, HRC does not cur-
rently implement this. Alternatively, HRC could restrict function
calls to those where a single MIL function is known to be the one
called. In this case, we can generate a direct call to that function.
We do not currently implement this either, but it is simple engineer-
ing effort to traverse the call graph and generate code for all MIL
functions that might be called on the GPU.

Recursive Functions Concord and OpenCL do not support re-
cursive function calls, and it is neither easy nor likely to perform
well to work around this restriction. Therefore, we should reject
any recursive functions that might be directly or indirectly called
by code executed on the GPU. Note that due to contification, this
restriction is far less restrictive than it might first seem. Any al-
gorithm that conceptually is non-recursive functions and loops can
be easily written in Haskell in a way that HRC will contify into
non-recursive functions and loops.

Calling Foreign Code Haskell has an FFI that can be used to
call non-Haskell code. It is difficult, generally impossible, to make
available on the GPU the same set of foreign code as is available
on the CPU. We do allow foreign calls to OpenCL code or Concord
code or to built-in OpenCL functions.

Allocation It is not impossible to write a memory allocator for
GPU code, but it is not easy and performance is not likely to be
good. Implementing garbage collection on the GPU is hard, and
implementing garbage collection across the CPU and GPU both is
even harder. Rather than attempting to tackle these challenges, we
choose to disallow allocation in GPU code.

Laziness Unlike Accelerate or other DSL solutions, Repa is a na-
tive Haskell library and thus must adhere to Haskell’s lazy seman-
tics. In general, laziness requires forming thunks and later eval-
uating them. Forming thunks requires allocation, and evaluating
them often involves unknown calls. Since we do not support al-
location and unknown calls, we disallow thunks and thunk evalua-
tion, meaning that the Haskell code, by time it gets to HRC must
be strict.

As GHC and HRC have aggressive optimizations for avoiding
laziness and executing in a strict manner when that is a correct
optimization, and as Repa is implemented carefully to be mostly
strict, typical Repa programs do end up being strict at HRC’s MIL
IR level. However, this is not always the case, but usually strictness
annotations can correct matters.

Exceptions It is difficult to propagate exceptions generated in
GPU code through that GPU code and back to the CPU. Therefore,
we disallow exception throwing and catching constructs.

3.4 Implementation

With these choices, it is then straightforward to implement the ac-
tual offload# primitive as follows. Intercept all offload calls at the
code generation stage before Pillar code is produced. Then, for each
call, we first ensure the kernel is a known MIL function, and then
examine the body of the kernel function to check for no-allocation
and no-thunk-eval conformance before outputting them as separate
source files to be compiled by Concord. Finally, we replace the
offload# call in the main program with a Concord function that
runs the kernels themselves. We ensure that all kernels are properly
compiled by Concord, and linked with the main program together
with the Concord runtime.

4. Optimization for Performance

The Repa library is known to produce high-quality code through
a set of advanced optimizations including type-indexed representa-
tions, heavy use of the INLINE pragmas and GHC rules to help fuse

array computations. The result is particularly effective considering
that Repa is not a full-blown DSL compiler but rather a library,
and as such has to rely on GHC to do the actual optimization. This
kind of reliance can be fragile at times, as we cannot be sure if an
optimization really has taken place unless we examine the gener-
ated Core code, or even lower, such as LLVM code via the GHC
LLVM backend, and MIL code in HRC. In constrast, the DSL ap-
proach taken by Accelerate and Obsidian has direct control over
which optimizations go into the DSL compiler, and how they are
implemented and tuned. However, it cannot make good use of the
optimizations already implemented in the Haskell compiler. Both
approaches have different pros and cons, and in this section we ex-
plore ways to help users write Repa programs appropriate for GPU
offloading, and ways to aid compilers to optimize the generated
code.

4.1 Strictness

As discussed previously, HRC rejects kernel functions that contain
thunk-eval instructions, which means that as a Repa library user,
we must ensure that the computation passed to computeG is strict.
This is often the case, but sometimes the situation is more complex
than appears at first glance. To paraphrase an example given by
Lippmeier, et al [12]:

diagonals :: Array U DIM1 Int
→ Array U DIM2 Int
→ Array U DIM1 Int

diagonals xs ys = computeG
(R.map (\i → ys ‘index ‘ (DIM2 i i)) xs)

One would expect that the function diagonals completely
evaluates the map function over the two input arrays xs and ys

when it builds the output array, and thus is strict in both arguments.
Unfortunately, this is not the case under lazy evaluation, as the array
ys is not demanded at all if the length of xs is zero. Indeed, if
we compile this program with our compiler, it will complain about
a thunk evaluation in the kernel function that corresponds to the
evaluation of ys.

To alleviate this problem, Lippmeier, et al [12] suggest users
“add bang patterns to all array parameters for functions using the
Repa library”, and use seq when bang patterns are not sufficient.
This might come only as a minor annoyance in practice, but it
is important to know the difference, especially when DSLs like
Accelerate impose a strict semantics while Haskell and Repa do
not.

4.2 Branch Avoidance

GPUs are not good at executing branch code in general. Although
the OpenCL compiler will not complain when you compile code
with branches, runtime performance suffers. To illustrate, consider
the following OpenCL kernel skeleton:

kernel void f(...)
{

...
if (C) {

A;
} else {

B;
}
...

}

When this kernel is offloaded to a typical GPU, multiple hard-
ware threads will execute its instructions in lockstep. Some of those
hardware threads might evaluate C to true, and others might evalu-
ate it to false. The first group will execute the instructions of A in
lockstep while the second group sit there idle; then the first group

will sit idle while the second group executes the instructions of B.
Effectively, all the hardware threads take time equal to the time to
execute both branches, rather than just the one taken on that hard-
ware thread, a significant waste of computing cycles.

If conditionals cannot be avoided at the source level, we should
attempt to minimize the number of instructions in both branches.
Unfortunately, this is not a factor that the user can control when
compiling Haskell programs with GHC, as GHC performs many
code transformations when optimizing a program, with a particular
tendency to push code towards branch leaves in the hope that this
will reveal more opportunities for optimization. Therefore, when
examining the code generated for offloaded kernels, we often see
branches with relatively large amounts of code in both of them,
with many instructions common to both branches (after alpha-
renaming variables to match them up). This issue is not a problem
unique to GPU offloading, but was previously also encountered
when implementing SIMD vectorization for CPUs in HRC.

To reduce the impact of situations such as these, we imple-
mented an algorithm that attempts to merge conditional branches
using a new conditional move (CMOV) primitive introduced into the
MIL IR. A CMOV is semantically similar to the following C expres-
sion:

c ? a : b

That is to say, c represents a boolean value, and both a and b

represent values of the same type. The expression evaluates to a

when c is true, and to b otherwise. Unlike in a general C expression
where only one branch needs to be evaluated, since MIL requires
that a, b and c are either constants or variables, their values will
already have been evaluated prior to reaching the conditional.

MIL has a CFG-based block structure, where conditional
branches are represented by a case switch that can potentially jump
to one of several destination blocks. We impose the following pre-
conditions for the branch merge optimization:

• The conditional is a binary switch over a boolean variable.
Binary switches over non-boolean values are easily converted
into boolean ones.

• Both branches contain only one instruction block, i.e., they do
not contain intermediate block transfers.

• Both branches must share a unique predecessor block, the block
that performs the case switch.

• Both branches must share a unique successor block to ensure
that there are no more branching transfers after the merge.

We illustrate the branch merging algorithm in Figure 1 as
psuedo-code written in Standard ML. We show only the type sig-
natures of many utility functions used, and leave out their detailed
definitions due to the lack of space. The mergeBranch function
takes the two blocks from each branch as input, and produces a sin-
gle output block if the merge is successful, or NONE otherwise. The
actual merging is done recursively by the merge function that tries
to match up instructions from each block in a pairwise manner,
while keeping the output block as part of a state being passed
around. The state also keeps track of variable equivalences (in
vMap), as well as equivalence assumptions (in aMap).

For each pair of instructions, if they are equivalent, the match

function (not shown in Figure 1) adds a new instruction to the
output block after alpha renaming. Equivalence means that both
instructions may only differ in their arguments. The vMap keeps
track of existing equivalent arguments, and if two arguments are
not found in vMap, we must assert their equivalence by updating
aMap and vMap. A new assertion also triggers adding a CMOV
instruction to the output block, selecting one of the two arguments
based on the boolean variable of the branch that we are merging.

(*
type state = (equivMap , assumptMap , block)
empty : ’a Map
threshold : int
firstOf : block → instr option
nextInstr : instr → instr option
>>= : ’a option → (’a → ’b option) → ’b option
match : state * instr option * instr option

→ state option
merge : state * int * instr option * instr option

→ (int * block) option
mergeBranch : block * block → block option

*)
merge (state , mismatch , i1 , i2) =

let val (vMap , aMap , blk) = state
in if mismatch > threshold then NONE

else case (i1 , i2)
of (NONE , NONE)⇒ SOME (mismatch , List.rev blk)
| _⇒
let val i1 ’ = i1 >>= nextInstr

val i2 ’ = i2 >>= nextInstr
in case match (state , i1 , i2)

of SOME state⇒ (* we have a match *)
merge (state , mismatch , i1 ’, i2 ’)

| NONE⇒ (* we have a mismatch *)
let fun mergeNext (u, v) = fn i⇒

merge ((vMap , aMap , i::blk),
mismatch + 1, u, v)

val l = i1 >>= mergeNext (i1’, i2)
val r = i2 >>= mergeNext (i1, i2 ’)

in (* choose one with fewer mismatches *)
case (l, r)

of (SOME (m, _), SOME (n, _))⇒
if m < n then l else r

| (SOME _, NONE)⇒ l
| (NONE , SOME _)⇒ r
| (NONE , NONE)⇒ NONE

end
end

end

mergeBranch (b1, b2) =
let val state = (empty , empty , [])
in case merge (state , 0, firstOf b1 , firstOf b2)

of SOME (_, blk)⇒ SOME blk
| NONE⇒ NONE

end

Figure 1. Branch merging algorithm in Standard ML

If two instructions fail to match, we increment a mismatch

counter, choose to shift either one of the instructions to the out-
put block, and continue to merge the remainder of both blocks.
We do the merge recursively up to a certain mismatch threshold,
and choose a result that eventually yields fewer mismatches. The
threshold is a heuristic to ensure that we do not overly merge
branches that are indeed substantially different from each other.
Ideally, we should check instruction equivalence modulo instruc-
tion re-ordering when permitted by side-effect constraints, but for
simplicity we choose not to implement this and adhere to the exist-
ing instruction order in the input blocks.

The actual equivalence check of two instructions is more com-
plicated than we describe here due to the variety of instruction
types, and also for correctness we must disallow mismatches that
have side-effects. Such details are omitted in Figure 1.

4.3 Cache Locality

A topic related to multi-dimensional array representations is how
to best make use of cache locality and avoid unnecessary cache
misses and page faults. Repa uses a row-major representation for
multi-dimensional arrays, so it is best to structure innermost loops
along the rows, and use blocking techniques to structure the outer
loops so as to maximize the use of the cache-line. For example, the

Repa library already implements explicit memory blocking in the
load function for its cursored array representation. It also tries to
make use of the Global Value Numbering (GVN) optimization that
is available in GHC’s LLVM backend by loop unrolling and rela-
tive index calculation [11]. HRC implements a range of arithmetic
optimizations and has initializing-once immutable arrays, and ef-
fectively is able to achieve similar results. This proves to be quite
useful at reducing the number of memory load instructions for sten-
cil programs, which we will look at in greater detail in Section 5.3.

Cache locality optimization in general applies to both CPUs and
GPUs, however there are also CPU- or GPU-specific techniques.
For example, we know that execution resources on typical GPUs
are grouped, and within groups share some local memory. There-
fore, in addition to using a global ID, it may be beneficial to use
group and local IDs and make use of local memory. Unfortunately
we cannot make use of this kind of cache locality optimization be-
cause our offload# primitive assumes a linear range, which im-
poses a flat rather than hierarchical structure, and once a multi-
dimensional index is collapsed into a linear one, its structural in-
formation is lost. One of the reason that we choose to support only
linear ranges in offload# is because this is also what Concord
currently provides. Whether changing to a hierarchical range could
bring real cache locality benefit remains a research topic for future
work.

5. Benchmark Results

We measure the performance of native offloading to GPU using
a set of “embarrassingly parallel” benchmarks written using the
Haskell Repa library. The majority of these benchmarks originate
from our previous study [18], with three new benchmarks added:
matrix multiplication, 7-point stencil, and 2D-to-3D back projec-
tion. We briefly describe the benchmarks and their runtime param-
eters in Table 1, wherein the iteration count refers to the number
of iterations of the kernel computation per program run. This itera-
tion count serves to amortize the cost of initiating GPU offload, as
some of the benchmark kernels take milliseconds to complete. We
refer interested readers to the previous paper for a more thorough
study of these benchmarks on both the Xeon CPU and Xeon Phi
co-processors.

5.1 GPU vs CPU performance

All benchmarks presented here are compiled using HRC with GHC
7.6.1 as its frontend, the Intel C/C++ Compiler version 13.1.3.198
as its CPU backend, and Intel OpenCL SDK 3.0 with the latest ver-
sion of Concord as the GPU backend. We only measure time spent
in kernel computations when running the benchmarks, excluding
time spent preparing inputs and producing output. We run these
benchmarks on the following hardware:

Processor Cores Clock Hyper-thread Peak Perf.

HD4600 (GPU) 20 1.3GHz No 432 GFLOPs

Core i7-4770 4 3.4GHz Yes 435 GFLOPs

Xeon E5-4650 32 2.7GHz No 2970 GFLOPs

Note that the above peak GFLOPs for each processor are calcu-
lated based on their hardware specifications, and hence should only
be considered as theoretical limits. Although the HD4600 GPU has
about the same peak GFLOPs as Core i7-4770, its Cores are of a
much simpler design. We do not expect to get better performance
by offloading to HD4600, but for the same performance we do ex-
pect less energy consumption through GPU offloading.

For the Core i7 CPU, we run each benchmark with 1, 4, and 8
OS threads with hyper-threading enabled. For the Xeon CPU, we
run each benchmark with 1, 4, 8, 16, and 32 OS threads without

hyper-threading. We do not include numbers for GHC-compiled
benchmarks in part due to GHC not supporting SIMD vectorization
on CPUs, as all but one of the benchmarks we present contain a
kernel that can be vectorized by HRC. We refer our readers to the
work by Petersen et al for details on the HRC vectorizer [19].

The relative kernel performance is given in Figures 2 and 3,
where all numbers are normalized to a baseline speed correspond-
ing to the execution time of a Core i7 CPU running a single thread
without vectorization (which we call the baseline). All benchmarks
are ordered in descending order of their max CPU speedups, and
split into two figures for clarity on their relative scale. In the re-
mainder of this section, we will speak of the relative performance
of a particular configuration for a given benchmark as a single num-
ber, for example 4.7× means it is 4.7× faster than the baseline.

Figure 2. Kernel speedups relative to non-vectorized single-thread
Core i7, Part 1/2 (bigger is better)

Figure 2 shows two high-performing benchmarks with very
effective speedups on multi-core CPU. From left to right, we have:

1d-convolution This benchmark has a tight inner loop that iterates
over the same input stencil array of 8192 elements, which can
all fit into cache. 256-bit wide AVX2 vectorization gives very
good speedup of almost 8× on CPU. Over-subscribing the Core
i7 CPU with 8 hyper-threads also brings a little speedup. It
scales linearly to the number of CPU cores, and at 32-core,
Xeon (154×) significantly outperforms GPU (11×).

nbody This benchmark is computation intensive, since the entire
input arrays all fit into cache, and over-subscribing the Core i7
CPU with 8 hyper-threads actually slows it down. Vectorization
brings 4.7× speedup. It also scales linearly on CPU. Its GPU
speedup is pretty good (20×), but still no match for 32-core
Xeon (57×).

Figure 3 shows the remaining seven benchmarks. From left to
right, we have:

matrix-mult This benchmark is both computation intensive and
sensitive to cache misses, since the inner loop has to traverse
both a row from one matrix, and a column from the other.
The inner loop vectorizes on CPU, but the vectorization is
ineffective due to strided loads being software-emulated in-
stead of hardware-accelerated on AVX2 architecture. This ac-
tually gives a slow down on the Core i7 at 0.75× compared
to non-vectorized version. Over-subscribing the Core i7 CPU
with 8 hyper-threads boosts the performance quite significantly.
Its GPU performance is good (21×), which significantly out-
performs Core i7 (max at 4×), and is close to the performance
of 32-core Xeon (21×).

Name Parameter iteration Description

1d-convolution 3M pixels 10 1D convolution with 8192-point stencil

2d-convolution 3200×4000 pixels 100 2D convolution with a 5x5 stencil

7pt-stencil 256×256×160 pixels 100 3D convolution with 7-point stencil

backprojection 256×256×256 pixels 100 2D to 3D image projection

blackscholes 10M options 100 Black Scholes algorithm for put and call options

matrix-mult 2K×2K matrix 1 Matrix multiplication

nbody 200K bodies 1 Nbody simulation

treesearch 16-level tree, 20M inputs 50 Binary tree search

volume-rendering 1M input rays 1000 Volumetric rendering

Table 1. Haskell Repa benchmarks and their parameters

Figure 3. Kernel speedups relative to non-vectorized single-thread Core i7, Part 2/2 (bigger is better)

blackscholes This benchmark is memory bound, and is limited by
the available memory bandwidth, which explains the significant
speedup when over-subscribing the Core i7 CPU. As witnessed
by the Xeon performance, it does not scale linearly to the
number of cores due to memory bandwidth saturation. GPU
performance is good at 19×, comparable to the Core i7 (20×)
and the Xeon (19×).

treesearch This benchmark does little computation in its in-
ner loop, and is sensitive to cache misses. It’s also heavy on
branches, which are translated to CMOV instruction on CPU
by HRC. CPU vectorization is rather ineffective as a result:
0.9× on the Core i7 for single-thread, and 1.3× on the Xeon
(not shown in the figure). Likewise, its GPU performance is not
great either (5.5×). It scales linearly on the Xeon with a peak
performance of 17× at 32-cores.

backprojection This benchmark is both computation intensive
and sensitive to cache misses when indexing its input 2D array.
It contains strided loads in the inner loop, which hampers vec-
torization on CPU (1.6× on single-thread Core i7). The GPU
speedup is modest at 7.5×. It scales linearly on the Xeon with
a peak performance of 17× at 32 cores.

7pt-stencil This benchmark is light on computation, and very sen-
sitive to cache misses. The program is written as a naive traver-
sal of its input 3D array because Repa does not yet provide
domain-specific operators for 3D stencils. Vectorization is in-
effective due to strided loads and cache misses, which brings a
significant slowdown (0.65× on single-thread Core i7). Like-
wise, its GPU performance is poor (3.87×). It scales linearly
on the Xeon with peak performance of 8× on 32-cores.

volume-rendering This benchmark has an irregular inner loop
with two early loop exits, and HRC is unable to vectorize it. So
for this one benchmark, the CPU numbers shown in Figure 3
are without vectorization. It scales linearly on the Xeon but the
performance is not great (7× at 32 cores). Its GPU performance
is also poor (2×).

2d-convolution This benchmark is memory bound, and sensitive
to cache misses. Repa gives special treatment to 2D stencils
using a cursored representation, which when compiled with
HRC optimizations, is able to vectorize effectively on CPU (4×
on single-thread Core i7). Its Xeon performance does not scale
linearly, but appears to be limited by memory bandwidth. On
the other hand, its GPU performance is very poor at only 1.1×
speedup. We discuss this benchmark further in Section 5.3.

In all nine of the benchmarks we have studied, HD4600 either
matches or beats Core i7 performance on six of them. It does
reasonably well for for 1d-convolution, but fares poorly for the
volume-rendering and 2d-convolution benchmarks. For volume-
rendering, its performance is not bad given that the irregular kernel
is more challenging for GPUs. In all benchmarks, the 32-core
Xeon still out-performs the 20-core GPU, which is not surprising
given that the Xeon is a server-grade CPU with a significantly
higher theoretical peak performance, and it is a lot more expensive
(and power hungry) too. We summarize by giving the geometric
means of the best relative speedups of all benchmarks on the three
architectures:

HD4600 (GPU) Core i7-4770 Xeon E5-4650

Geometric Mean 6.9 7.0 18.8

By showing that we can achieve expected performance on in-
tegrated GPU by offloading Haskell Repa programs, hopefully we
have demonstrated the viability and promise of the native approach.
With shared memory support already in place, our system can be
further extended to combine both CPU and GPU to achieve even
greater performance, something that we will consider in future
work.

5.2 Performance Factors

Our benchmark study is focused on Haskell programs written using
the Repa library. Despite all being generally categorized as data-
parallel, these programs have different factors contributing or lim-
iting their performances, and most of these factors are applicable to
both CPUs and GPUs. We make the following important observa-
tions:

• Thread-level or multi-core parallelism usually brings linear
scale-up for regular workloads under a shared memory model.
This is true for most of our benchmarks, and especially effec-
tive for computation intensive ones such as 1d-convolution and
nbody. A notable exception is that when the memory bandwidth
is fully saturated, adding more threads or cores no longer helps,
and sometimes may result in slowdowns. This is evident for the
blackscholes and 2d-convolution benchmarks.

• Making good use of memory locality is crucial for applications
to gain performance, Applications perform best when most its
input data can fit into cache (as in nbody and 1d-convolution),
but it is not always possible. Grouping data together for sequen-
tial access through AOS (Array of Struct) to SOA (Struct of
Array) conversion (as in blackscholes), and cache blocking (as
in treesearch and 2d-convolution) are two frequently used tech-
niques to help memory locality.

• Over-subscribing with hyper-threads will help applications
improve performance by amortizing the cost of memory I/O
due to cache misses (as in matrix-mult and blackscholes), but
will not help those that are already computation intensive (as in
nbody).

• SIMD vectorization is an effective means to gain performance
when the inner loop is regular and can be vectorized (as in
1d-convolution, nbody, blackscholes, and 2d-convolution). Al-
though AVX2 (and older generation of SIMD hardware) cur-
rently does not support hardware-accelerated strided loads and
some of our benchmarks (as in matrix-mult, backprojection,
7pt-stencil) suffer from it, future hardware (including the cur-
rent generation of Xeon Phi) will no longer have this deficiency.
Besides, algorithmic change can help to turn strided loads into
sequential ones, as demonstrated by the modifications to Repa
we did for 2D stencils [18].

• Branch-avoidance helps gaining performance on both CPU
and GPU. The CMOV optimization we implemented in HRC en-
ables SIMD vectorization for programs that have conditionals
in their hot loops (as in blackscholes), although its effective-
ness will be limited when branching cannot be avoided (as in
volume-rendering) and when branching cost out-weighs com-
putation cost (as in treesearch).

Most of the above mentioned techniques can and already have
been implemented as part of an optimizing compiler and/or li-
brary. For example, HRC implements automatic SIMD vectoriza-
tion. The Repa library makes it trivial to take advantage of thread-
level (or multi-core level) parallelism, and its high-level interface
enables automatic AOS-to-SOA conversion under-the-hood. It is
also easy to implement cache blocking for Repa’s abstract array
representation (cursored, partitioned, etc.). Some applications such

as treesearch require algorithmic changes to implement advanced
cache blocking, and others require explicit strictness annotations
or INLINE/NOINLINE pragmas in order to achieve desirable low-
level compiled code. Hopefully we have shown that despite hard-
ware differences these optimization techniques are applicable to the
compilation of a data-parallel program written in a high-level lan-
guage for both CPU and GPU targets, and when the performance is
missing, which techniques could be effectively applied according
to the characteristics of the application.

5.3 Haskell vs OpenCL Performance

No Haskell benchmarking is complete without comparing to native
C performance, where ‘C’ symbolizes what is possible with low-
level high-performance languages. Following the same spirit of
our previous study, we believe it would be good to compare the
following two categories:

1. idiomatic Haskell programs compiled by an optimizing com-
piler that targets integrated GPUs; and

2. the best-performing low-level programs written using either
OpenCL or CUDA that targets the same hardware.

Ideally we would also like to compare Repa programs compiled
using our native offload approach with Accelerate DSL programs
compiled by its OpenCL backend for the same hardware. Unfortu-
nately we were unable to complete this task at the time of writing
due to the lack of a fully functioning OpenCL backend for Accel-
erate that targets Intel integrated GPUs.

Furthermore, due to our limited resources, we were unable
to port all benchmarks to OpenCL and fine tune them for best
performance. Therefore we choose to focus on a single benchmark,
2D convolution, which is one of the worst performing programs we
have benchmarked on the GPU. We obtained a series of hand-tuned
OpenCL programs for 2D convolution from [20], modified to work
on the same inputs (e.g. only use one Float value per input pixel),
and compiled by the same Intel OpenCL SDK 3.0 that HRC (via
Concord) uses.

We summarize the set of 2D convolution benchmarks in Ta-
ble 2. There are 6 OpenCL programs ranging from naive to opti-
mized ones, and 2 Haskell programs that are actually source level
identical, but with different Repa library implementations. When
compiled by HRC, both programs produce an OpenCL kernel with
its inner stencil loop completely unrolled, and with all stencil val-
ues specialized into the kernel code as constants. The haskell-row
benchmark has the same implementation as the 2d-convolution
benchmark that we previously presented in Figure 3.

An important difference between the Haskell and OpenCL
benchmarks is that all OpenCL kernels (except ocl-linear) use a
2D index range consisting of both X and Y coordinates, whereas
both of the Haskell kernels use a linear index as required by the
offload# primitive. The ocl-linear benchmark is produced by
hand-porting to OpenCL the kernel code obtained from compil-
ing haskell-1 with HRC, and hence it uses the same linear index
range that is used by the Haskell benchmarks.

One other difference is that the OpenCL implementations do not
handle border conditions, while the Haskell ones do. This means
the Haskell benchmarks are always going to have more overhead,
despite that we have been cautious at modifying the Repa library to
make sure that border values are computed on CPUs concurrently
with the GPU kernel offload.

Figure 4 shows the relative performance of all 7 benchmarks for
2D convolution on HD4600, where the speedup is normalized to
the same baseline we have considered previously, i.e., the Haskell
2d-convolution benchmark (same as haskell-row) running on a
single thread on the Core i7 with vectorization turned off. This
helps to compare the OpenCL performance on GPU with Haskell

Benchmark Description

haskell-1 Haskell program with a kernel that computes only one output pixel

haskell-row Haskell program with a kernel that computes an entire output row

ocl-naive A native OpenCL implementation that reads 5x5 stencil from an array

ocl-const Similar to ocl-naive, but specifies constant memory for stencil array

ocl-unrolled Similar to naive-const, but with stencil loop unrolled

ocl-specialized Similar to ocl-unrolled, but with stencil values specialized as constants

ocl-localmem Similar to ocl-specialized, but uses a 20x20 local memory for cache blocking

ocl-linear A OpenCL implementation ported from the generated kernel of haskell-1

Table 2. OpenCL and Haskell benchmarks for 2D convolution

Figure 4. 2D convolution kernel speedups relative to Core i7 (big-
ger is better)

performance on CPU. All benchmarks compute 2D convolution
repeatedly for 100 iterations over an input image of 3200x4000
pixels on a single run. We make the following observations based
on the benchmark results:

• The best performing OpenCL program (ocl-specialized) is at
7.16×, which is only slightly higher than the best performing
Haskell program on Core i7 (6.37× at 4 threads). This likely is
another confirmation that this benchmark is memory bound.

• By declaring the input stencil array as constant memory, we im-
mediately see a huge performance boost from ocl-naive (0.24×)
to ocl-const (3.56×). This is the kind of low-level OpenCL op-
timization that compilers for high-level language can take ad-
vantage of. Eliminating memory reads of stencil values by spe-
cializing them (as in ocl-specialized, at 7.16×) doubles the per-
formance further.

• Explicitly blocking using local memory does not seem to im-
prove performance much. The overhead of filling a 20x20 cache
(with a local group range of 16x16) and synchronizing at the
end of the cache-fill actually gives a slight slowdown, when we
compare ocl-localmem (6.34×) with ocl-specialized (7.16×).
This is contrary to the original report by Reda [20]. We suspect
this is due to hardware architecture differences.

• Despite ocl-linear having the same kernel source as haskell-1,
it is more than twice as fast (ocl-linear at 6.74× vs haskell-1 at
2.75×). Besides border-condition handling, there are possibly
other non-negligible overheads in the Haskell implementation.
Having to allocate a new array to store the output image in be-
tween every convolution iteration could be one of them. Further
analysis is required to better understand this.

• The performance difference between haskell-1 (2.75×) and
haskell-row (1.12×) is also surprising. Lippmeier and Keller [11]

carefully crafted the cursored representation and implementa-
tion of Repa arrays for parallel execution, where adjacent reads
from source image can be shared during batch processing. For
example, when we batch-compute 4 output pixels with a 5 × 5
stencil, only 5×(5+4−1) = 40 memory loads are required (as
in haskell-row), as compared to 5×5×4 = 100 memory loads
when each output pixel is computed in isolation (as in haskell-
1). This was presented as a good optimization technique for
CPUs. However, the same does not seem to apply to GPUs. As
a result of the batched loads and unrolling and inlining, haskell-
row is compiled to a very long kernel program. We suspect this
overly unrolled loop body contributes to the added overhead.
Again, further analysis is required to better understand this.

In conclusion, there are still great opportunities for compiler
and library writers to borrow some of the low-level GPU and
OpenCL optimization techniques to improve the compilation of a
high-level language. Complementing the discussion in Section 5.2,
with the 2D convolution benchmark study, we have shown that not
all techniques for optimizing CPU programs are as effective when
applied to GPU. Sometimes the performance discrepancy must be
scrutinized on a case by case basis, and it requires deep knowledge
of the low-level toolchain and hardware architecture before one can
start to understand it. We consider this as part of our future work.

6. Related Work and Conclusion

Due to similarities between the APIs of Repa and Accelerate, we
are interested in undertaking a detailed comparison between our
native approach and the DSL approach taken by Accelerate. Unfor-
tunately, Accelerate does not have a fully functional OpenCL back-
end to compile and run the benchmarks in Table 1, and moreover
other DSL based frameworks for GPU programming (such as Ob-
sidian [22] and Nikola [14]) only target CUDA. As a result, a direct
performance comparison upon the same hardware is not possible.
Obsidian’s DSL uses a lower-level abstraction that exposes more
hardware details by only targeting one-dimensional arrays of lim-
ited size. At the high level, Nikola is similar to Accelerate, but with
more targeted optimizations only supporting first-order array func-
tions. It also makes use of meta-programming to statically compile
DSL programs when the host program is being compiled, avoiding
the overhead of having to compile them at runtime. More generally,
Gaster and Morris [8] implement a direct embedding of OpenCL in
GHC, offering a way for low-level GPU programming in a high-
level language for applications outside the domain of data-parallel
array computation.

Furthermore, we intend to study irregular workloads, as there
is nothing preventing us from using the offload# primitive to
compile programs beyond those written using the Repa library, so
long as the same set of limitations are respected. In particular, the
Concord compiler [2] that we use in this work was designed to

target irregular workloads. By focusing only on programs writ-
ten in Repa, we are not fully exercising the power of Concord.
There are still many issues surrounding the native offload of arbi-
trary Haskell functions, however, especially considering the lack of
garbage collector and thunk-evaluation support for GPU runtimes.
It remains to be seen whether a compromise exists for capturing
irregular GPU workloads by way of an abstraction between array-
based data-parallel programming and the call-by-need semantics of
Haskell.

In conclusion, this work presents a technique for directly of-
floading computations written using the Haskell Repa array library
to integrated GPUs via OpenCL without requiring extensive API
changes. We support the latest shared virtual memory model be-
tween the host and associated OpenCL devices, avoiding unnec-
essary data movement between them. The Repa library provides
just the right kind of data-parallel abstraction our purposes, and
by implementing a GPU backend in HRC, we can compile most
programs written using Repa down to a strict kernel function com-
prising straight loop code, which is ideal for execution on GPUs.
We demonstrated the feasibility of the native offload approach by
presenting a detailed analysis of nine benchmarks contrasting the
performance on GPU and two CPUs.

References

[1] T. A. Anderson, N. Glew, P. Guo, B. T. Lewis, W. Liu, Z. Liu, L. Pe-
tersen, M. Rajagopalan, J. M. Stichnoth, G. Wu, and D. Zhang. Pillar:
A parallel implementation language. In LCPC, pages 141–155, 2007.

[2] R. Barik, R. Kaleem, D. Majeti, B. T. Lewis, T. Shpeisman, C. Hu,
Y. Ni, and A.-R. Adl-Tabatabai. Efficient mapping of irregular
C++ applications to integrated GPUs. In Proceedings of Annual

IEEE/ACM International Symposium on Code Generation and Opti-

mization, CGO ’14, pages 33:33–33:43, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2670-4. .

[3] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun. A heterogeneous parallel framework for domain-
specific languages. In Proceedings of the 2011 International Con-

ference on Parallel Architectures and Compilation Techniques, PACT
’11, pages 89–100, Washington, DC, USA, 2011. IEEE Computer So-
ciety. ISBN 978-0-7695-4566-0. .

[4] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and
V. Grover. Accelerating haskell array codes with multicore GPUs. In
M. Carro and J. H. Reppy, editors, DAMP, pages 3–14. ACM, 2011.
ISBN 978-1-4503-0486-3.

[5] R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, and
G. Keller. Embedding foreign code. In M. Flatt and H.-F. Guo, edi-
tors, PADL, volume 8324 of Lecture Notes in Computer Science, pages
136–151. Springer, 2014. ISBN 978-3-319-04131-5.

[6] O. Danvy and L. R. Nielsen. Defunctionalization at work. In Proceed-

ings of the 3rd ACM SIGPLAN International Conference on Principles

and Practice of Declarative Programming, PPDP ’01, pages 162–174,
New York, NY, USA, 2001. ACM. ISBN 1-58113-388-X. .

[7] M. Fluet and S. Weeks. Contification using dominators. In Proceed-

ings of the Sixth ACM SIGPLAN International Conference on Func-

tional Programming, ICFP ’01, pages 2–13, New York, NY, USA,
2001. ACM. ISBN 1-58113-415-0. .

[8] B. R. Gaster and J. G. Morris. Embedding OpenCL in GHC Haskell.
In MULTIPROG’13 Workshop On Programmability Issues For Het-

erogeneous Multicores, 2013.

[9] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. L. P. Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in Haskell.
In P. Hudak and S. Weirich, editors, ICFP, pages 261–272. ACM,
2010. ISBN 978-1-60558-794-3.

[10] Khronos Group. The OpenCL specification, version: 2.0, 2013. See
https://www.khronos.org/opencl/.

[11] B. Lippmeier and G. Keller. Efficient parallel stencil convolution in
Haskell. In K. Claessen, editor, Haskell, pages 59–70. ACM, 2011.
ISBN 978-1-4503-0860-1.

[12] B. Lippmeier, M. M. T. Chakravarty, G. Keller, and S. L. P. Jones.
Guiding parallel array fusion with indexed types. In J. Voigtländer,
editor, Haskell, pages 25–36. ACM, 2012. ISBN 978-1-4503-1574-6.

[13] H. Liu, N. Glew, L. Petersen, and T. A. Anderson. The Intel Labs
Haskell research compiler. In Haskell Symposium, pages 105–116,
Boston, Massachusetts, USA, 2013. ACM. ISBN 978-1-4503-2383-3.

[14] G. Mainland and G. Morrisett. Nikola: embedding compiled GPU
functions in Haskell. In J. Gibbons, editor, Haskell, pages 67–78.
ACM, 2010. ISBN 978-1-4503-0252-4.

[15] T. L. McDonell, M. M. T. Chakravarty, G. Keller, and B. Lippmeier.
Optimising purely functional GPU programs. In G. Morrisett and
T. Uustalu, editors, ICFP, pages 49–60. ACM, 2013. ISBN 978-1-
4503-2326-0.

[16] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with CUDA. Queue, 6(2):40–53, Mar. 2008. ISSN
1542-7730. .

[17] L. Petersen and N. Glew. GC-safe interprocedural unboxing. In Com-

piler Construction, pages 165–184, Tallinn, Estonia, 2012. Springer-
Verlag.

[18] L. Petersen, T. A. Anderson, H. Liu, and N. Glew. Measuring the
Haskell gap. In Post Symposium Submission to The 25th Interna-

tional Symposium on Implementation and Application of Functional

Languages, Aug. 2013.

[19] L. Petersen, D. Orchard, and N. Glew. Automatic SIMD vectorization
for Haskell. In ICFP, pages 25–36, Boston, Massachusetts, USA,
2013. ACM. ISBN 978-1-4503-2326-0.

[20] K. Reda. A study of OpenCL image convolution optimiza-
tion, April 2012. URL http://www.evl.uic.edu/kreda/gpu/
image-convolution.

[21] J. C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of the ACM Annual Conference - Volume

2, ACM ’72, pages 717–740, New York, NY, USA, 1972. ACM. .

[22] J. Svensson, M. Sheeran, and K. Claessen. Obsidian: A domain
specific embedded language for parallel programming of graphics
processors. In S.-B. Scholz and O. Chitil, editors, IFL, volume 5836 of
Lecture Notes in Computer Science, pages 156–173. Springer, 2008.
ISBN 978-3-642-24451-3.

