Native Offload of Haskell Repa Programs to GPGPU

Hai Liu Laurence E. Day Neal Glew

Todd A. Anderson RajkishBegik

Intel Labs

{hai.liu,todd.a.anderson,rajkishore.barik } @intel.com

Abstract

In light of recent hardware advances, General Purpose Graph
ics Processing Units (GPGPUSs) are becoming increasingty- co
monplace, and demand novel programming models to account fo
their radically different architecture. For the most paristing ap-
proaches to programming GPGPUs within a high-level program
ming language choose to embed a domain specific language) (DSL
within a host metalanguage and implement a compiler mapping
programs written within said DSL to code in low-level langea
such as OpenCL or CUDA. We question this design choice, and
argue that by directly implementing a GPGPU offload prineitiv
as part of a general-purpose language compiler, we gairsacce
to a substantial number of existing optimization technijuth-

out having to reimplement them in a DSL compiler. In this pape
we describe the structure of our prototypical treatmenhdf te-
search direction, demonstrating the applicability of oppraach

by showing how to bridge between APIs by extending the Repa
library of Haskell with an offload primitive, and detailing @&x-
perimental implementation of our approach within the Iritabs
Haskell Research Compiler. We also provide a detailed sbfidy

set of nine benchmarks, by compiling them to both GPU and two
distinct CPUs and comparing their performance.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers

Keywords GPU Programming; Heterogeneous Programming;
Haskell

1. Introduction

With recent advances in computing hardware, general-jgarpo
graphics processing units (GPGPU) are becoming more and mor
accessible to ordinary consumers. Despite being labelédeas
eral purpose”, modern GPUs differ significantly from reg@&Us
architecturally, giving rise to specific programming madeind
languages designed to simplify the programming of suchcdevi
OpenCL [8] and CUDA [14] are two such popular frameworks that
come with restricted C-based languages which address ¢leid, n
and hardware vendors typically provide the necessary tiagicto
compile OpenCL or CUDA programs to their devices. Program-
ming for a combination of mixed processing units, such as £PU

[Copyright notice will appear here once "preprint’ opti@réemoved.]

led@cs.nott.ac.uk aglew@acm.org

GPUs, and FPGAs (amongst others) is often referred teteso-
geneous computing. Whilst CUDA is only available for NVIDIA
GPUs, OpenCL is an open standard providing support for pragr
ming devices from multiple hardware vendors.

Heterogeneous computing is a complex area of research due
to the existence of and need to accommodate multiple differe
programming models. Despite being designed to target dggter
neous platforms, OpenCL is still a low-level programming-la
guage that requires programmers to write a range of bodtrpl
code addressing topics such as device setup and manual gnemor
management. In the past few years, however, a number ofgimegr
ming frameworks have emerged for higher-level languagéstive
goal of supporting GPU programming (and heterogeneous com-
puting in generalithout requiring familiarity with low-level lan-
guages such as OpenCL or CUDA. A popular approach is to embed
a domain-specific language (DSL) within a host language. Whe
execution of the host program on the CPU encounters an eratledd
program, it translates the embedded code into OpenCL or CUDA
and then compiles and offloads that code to the GPU. Accelgtht
and Obsidian [19] are two examples of this approach towaras p
gramming GPUs using the functional language Haskell. BER}
is another such approach allowing not only the compilatind a
execution of DSLs in a heterogeneous setting, but also ebfeexi
technique for building DSLs using a multi-staged tool chbirilt
on top of the Scala language.

If we view OpenCL as providing a hardware abstraction over
data-parallel hardware architectures, then programmimjJ$
through DSLs raises the level of abstraction even higherity h
ing the hardware interface almost entirely. The obvioushieof
taking this approach is that programmers can continue tie\wro-
grams using higher-level constructs and operators, and8le
compiler shoulders the responsibility of translating thertar-
get GPUs. Additionally, these DSLs are carefully crafteduad
a limited set of constructs and operators such that onlyetipos-
grams suitable for GPU execution are expressible. Thisddise!f-
imposed design choice not only ensures program runtimeysafe
but also saves DSL implementers from the task of writing & ful
blown general-purpose compiler targeting GPUs, which terof
infeasible given hardware limitations.

On the other hand, the DSL approach has drawbacks of its
own. To understand why, consider two similar parallel paogr
ming libraries in Haskell, Repa [7] and Accelerate [4]. Répa
Haskell library enabling high-performance array compatabn
multi-core CPUs, and Accelerate is an embedded array lgegua
targeting GPUs. These two share similar high-level APlsureg
ing multi-dimensional and shape polymorphic parallel gsréno
coincidence—the same team designed and implemented peth),
differ in ways beyond those associated with differing haatar-
chitectures:

e Repa programs are statically type-checked and compileitstwh
those written using Accelerate are only compiled at runtime

2014/5/16

e The DSL compiler for Accelerate has to re-implement many of Consider the following Repa programp2:
the existing features that are already available in the laost

guage compiler in order to handle ordinary Haskell expoessi import Data.Array.Repa as R

function composition and so on. The first versions of Aceker

indeed had performance issues due to missing general aptimi a :: Array U DIM2 Int

tions, which are not GPU specific [13]. a = R.fromListUnboxed (Z :. 5 :. 10) [0..49]

¢ The DSL approach needs a special mechanism to interface with .. Array D DIM2 Int
foreign code since they cannot directly use the FFI features b = R.map ("2) (R.map (*4) a)
already available to the host language [5].

e Data transfers between the host program and DSL program c :: I0 (Array U DIM2 Int)
must be explicitly handled at runtime, as they operate in sep ¢ = R.computeP b

arate address spaces. With the increasing dominance ef inte . .
grated GPU and recent introduction of Shared Virtual Memory !N the above program, bothandb are two-dimensional arrays,
wherea is fully manifested (type-indexed), andb represents

SVM) to OpenCL 2.0 standards, this becomes an unnecessar X . A
l(Jurdezm P ya ‘delayed’ computation (type-indexed By based on the input

array a. To fully computeb (i.e., to turn the delayed array
To the best of our knowledge, this alternative approach of-co into a manifest array), one can use either themputeS or the

piling a restricted subset of the host language itself tor{Qeor computeP combinators:

CUDA and thereafter to GPU has not been tried, at least not for

any functional programming languages. With this in mind haee computeS :: (Shape sh, Unbox e) =>
implemented a proof of concept system for compiling a retstd Array D sh e —> Array U sh e
subset of Haskell to Intel's integrated GPU. Our system igeds

incomplete, with a number of short-cuts in place to quickigtp- computeP :: (Shape sh, Unbox e, Monad m) =>
type our concept and produce preliminary results. Deshite e Array D sh e -> m (Array U sh e)

strongly believe that the results are interesting and shaw this
alternative approach is viable. The majority of the shortits in
the work we present here are engineering related, requnioge
time than effort to address; however, some are more seramds,
as such we discuss them below. One point in particular ishwort
emphasizing—we are targeting amegrated GPU. A number of
CPU vendors have in recent years started making processtrs w

The difference between the above two functions istbaputeP
evaluates its input array in parallel by distributing therkvacross
a set of worker threads (which can be specified by RTS optiicat
runtime), whilstcompute$S evaluates sequentially. Besides delayed
computations, Repa supports several other kinds of reqasens
of typical array computations, but the gist remains the sdRepa
array computations are manifested only when they are ‘@rce

Ynd users do not have to specify anything other than regacin
ally share at least the last-level cache and often also sheoker- computeS with computeP to run the computation in parallel.

ence domain, and can be considered to have a shared memery sys Following the same design philosophy, we propose extending

tem. Th_|s Is In contrast to discrete GPUs, Wh'c.h _typlc_allmm:- the Repa API with @omputeG combinator with the same type sig-
nicate (incoherently) with the CPU across a limited intergect, nature agzomputeP and with the intention that instead of spawning
and as such should be treated as if they possesmeate memory \qker CPU threads, it offloads the actual computation—tvhie
system. This difference greatly simplifies compiling to GRidd will call the kernd instance—to the GPU:

should be borne in mind throughout.

With those caveats, we make the following specific contribu- computeG :: (Shape sh, Unbox e, Monad m) =>

tions: Array D sh e -> m (Array U sh e)

1. We introduce a newomputeG combinator to the Repa library In theory, with thecomputeG function added to the Repa li-
that offloads a parallel array computation to GPU. brary, it should be possible to ramy Repa computation on GPU,

2. We give a prototype implementation of compiling nativeskizll because semanticalljomputeG is equivalent to botlomputes
functions to OpenCL as part of the Intel Labs Haskell Researc andcomputeP. In practice, however, it is difficult to do this without
Compiler (HRC) [11] backend. compromise because of the differing underlying hardwazkitec-

. .) , tures of GPUs and CPUs. Instead, we will restrict the contjmuts
3. We integrate our solution with the Concord compiler (& C++ {hat computeG will run. Our intention (not fully implemented) is

based heterogeneous computing framework for integratésGP - jetect and reject at compile time any computation thatitted
that compiles to OpenCL) [2], and the latest Intel OpenCL SDK o1 compilation to GPU. To further understand the issueslired,
to take advantage of the new SVM hardware features available e first discuss OpenCL and, more generally, the GPU comgutin
on the Intel Broadwell platform. paradigm.

4. We demonstrate the effectiveness of this native offl@adio- .
proach by comparing a set of Haskell benchmarks on both 2.2 Overview of OpenCL

GPUs and CPUs. OpenCL [8] is an open standard for cross-platform, pargliet
gramming of modern processors, including CPUs and GPUE, dig
2. Offloading Repa Array Computation tal signal processors (DSPs), field-programmable gatgysi(fP-

GAs) and others. OpenCL includes a C99 based language, call

2.1 Overview of Repa OpenCL C, for writingkernels that are executed on OpenCL-

The Repa library represents the state-of-the-art for gatatel compliant devices, and a set of APIs for controlling suchicks:
computing with arrays in Haskell. It allows computation okigh- Although both task-based and data-based parallelism pposied
rank arrays to be expressed in a type-safe manner, and arie s by OpenCL, the latter still is the dominating programmingdelas
time enables implicit parallel execution on multi-core GPWith it is well matched to the hardware characteristics of mos#r@j
aggressive array fusion guided by indexed types [10]. devices. Devices like GPUs usually consist of one or morepeen

2 2014/5/16

units, each of which consists of a number of processing al&sne
(PEs) and local memory. The most important OpenCL API is to
request execution of kernel instance on a device. A kernel in-
stance consists of a kernel, its arguments, ant@Range. The
latter is a contiguous rectilinear index set of integersria,awo, or
three dimensions. For each index in the space, the GPU vaH ex
cute the kernel on the given arguments and the index, thistpa

is called awork item. This kind of computation falls into the gen-
eral category that we call single instruction multiple d¢gg&VD).
NDRanges are additionally divided intork groups, contiguous
sub-blocks of the index space of a user-requested sizeelédrave
access to a local memory that is shared amongst the work @géms
a given work group. This local memory is limited is size, batu
ally much faster to access than global memory. It is ofteroirtgmt

to exploit locality and copy data to local memory for repegbeo-
cessing.

OpenCL 2.0 is the latest iteration of the OpenCL standard, an
among the many features and enhancements is the introdwgtio
SVM (Shared Virtual Memory), which allows programs to ditec
share pointer-containing data structures between CPU d&d. G
The ubiquity of integrated GPUs—those built on the same die a

on its runtime behaviour, and so any restrictions must bereal
either at compile time or runtime. As such, we speeifyff1load#
as a primitive in the implementation and not as part of theegan
API. In Section 3, we will discuss the set of restrictionsiaga
greater detail, and moreover how they are enforced.

2.3

Theoffload# primitive represents the line we draw between high-
level abstractions that can be implemented in a library {sas
computeG) and the lower-level implementation details that are best
handled by a Haskell compiler such as GHC.

Internal to RepagomputeP is implemented by forking a set of
native threads (called @ang), and dispatching chunked compu-
tations of the target array as individual tasks to each thréae
implementation ofcomputeG is similar in the sense it also relies
on individually computing each chunks, but does so by ofiilogd
work to an external device rather than by spawning CPU thlread

The actual mechanism of chunk division varies accordinpéeo t
representation of the target array, and is implemented bladeg
instances of theoad class:

Implementing computeG

the CPU and therefore sharing the same physical memory andcilass (Source ri e, Shape sh) => Load rl sh e where

coherency domain—has significantly lowered the cost of affiog
work from CPU to GPU, and made SVM an important feature to
have in a heterogeneous programming model.

An OpenCL application typically consists of a main program
that runs on the host, and one or more kernels which run on
OpenCL devices. The main program queries the system faraf lis
devices, sets them up appropriately, requests compilefite ker-
nels, creates kernel instances, and enqueues those kestagldes
for execution on OpenCL devices. The OpenCL C language has
a number of restrictions that limit the kind of programs tbae
can write. Most implementations provide a just-in-time qiler
capable of compiling and offloading the kernel at runtime.

To illustrate, below is an example of an OpenCL kernel:

kernel void map2(global const int * restrict a,

global int * restrict b)
{
int idx = get_global_id(0):
int x = alidx] * 4;
bl[idx] = x * x;
}

The above kernel performs the same computation as the Repa

program given in Section 2.1. The main program must allooatie
arrays, initialize the source arrayand then build and enqueue the
kernel instance for execution with an appropriate rangetfie size
of both arrays). Putting to the side device setup and ernadlivay
issues for the time being, we can express this notion of datlpl
execution via the following (Haskell) type signature:

offload# :: Int -> (Int -> State# s -> State# s)

-> State# s -> State# s

The offload# function takes two arguments: the range of the
task to run on the external device, and the actual functi@ppimg
from a valid index (within the range) to a stateful computatith
the potential to read from — and write to — the main memory. Im-
plicitly, we assume a form of memory coherence between CRU an
GPU, since the function we offload could be arbitrarily constied.

As a consequence, we will make use of the SVM feature intro-
duced in OpenCL 2.0. Furthermore, there are limitations datw
offloaded functions can actualtjo: for instance, they should ad-
here to the same set of restrictions on the kernel functisrib@se

for OpenCL kernels. In contrast with the DSL approach takgn b
Accelerate and others, the typedafffload# gives little guarantee

-- | Fill an entire array sequentially.

loadS :: Target r2 e =>
Array rl sh e -> MVec r2 e -> I0 O
-- | Fill an entire array in parallel.
loadP :: Target r2 e =>
Array rl sh e -=> MVec r2 e -> I0 ()
-- | Fill an entire array in parallel via offload.
loadG :: Target r2 e =>

Array rl sh e -> MVec r2 e -> I0 O

Here we add a newoadG method with the same type signature
as the sequentialoads and parallelloadP. We then implement
loadG for each array representation. For example, delayed array
computations are offloaded as follows:

import GHC.IO (IO(...))

instance Shape sh => Load D sh e where
loadG (ADelayed sh getElem) mvec
mvec ‘deepSegMVec‘ (IO dispatch >>
touchMVec mvec)

where
dispatch s =
case size sh of
I# n -> (# offload# n £ s, () #)
where
fis-=
case w of
I0m -> case m s of
(# s, _#) > 8’
where
w = unsafeWriteMVec mvec (I# i)
((getElem . fromIndex sh) (I# 1))

In the above, we first compute the rangef the computation
to offload, which is the size of the array to be manifested. The
actual computation which we offload maps each indeto an
array-write operation using the utility functiamsafeWriteMvec,
which takes an array, an index, and a function that compties t
value of the element to write into the array at that index.ikénthe
computeP implementation, we need not chunk the target array into
suitable sizes beforehand, because in general the threddl iso
a poor fit for GPU devices. To counter this, we specify the aler
work-range to have the same value as the destination amdy, a

2014/5/16

defer the dispatching of jobs to available compute unitshi t
underlining OpenCL computation.

In a similar manner we implemenbadG for other array rep-
resentations (such as Cursored, Partitioned, etc). Withaively
small set of changes, we produced a Repa library that impleme
computeG via the offload# primitive. Our goal is to be able to
replace any calls teomputeP with calls tocomputeG, and there-
fore convert a data parallel Repa program from CPU execution
GPU execution. We must highlight at this point that when gsire

computeG combinator, no assumptions can be made regarding the

order of execution, and moreover floating point determirgammot
be guaranteed.

3. A Heterogeneous Backend for HRC
We implemenbffload# as part of the Intel Labs Haskell Research

the function to offload could be arbitrarily composed, which
can become a problem for the code generator, i.e., we cannot
generate code from it if we do not know where the code is at
compile time.

3. If we are able to locate the function body that is passed to
offload#, it could contain arbitrary code that allocates mem-
ory, evaluates thunks, makes calls to other functions, amhs
Therefore we either have to implement runtime support fer do
ing these things on GPU, or enforce restrictions on the kind o
code that we expect to convert to OpenCL.

To deal with this first issue, we choose to integrate with Con-
cord [2], a heterogeneous C/C++ programming framework ffor p
cessors with integrated GPUs with SVM support. Concord émpl
ments SVM in software today making it suitable for processite

Compiler backend. HRC uses GHC as a front-end and interceptsh,y Bridge and Haswell from Intel. It enables existing modtie

the external Core before performing whole-program optatidan.

The HRC also implements a multitude of optimization passset
on a strict SSA-style internal representation called Mlhg gen-
erates code in an extension of C calledlar [1], which is then
transformed to standard C code and compiled with eitherrited |

C compiler or GCC. We choose HRC over GHC to implement an

alpha prototype of this work for a number of reasons:

1. HRC'’s existing backend already generates C-like codéchwh
makes it easy to re-use the same compilation pipeline tetarg
OpenCL.

2. HRC performs a number of loop-based and representaiyten-s
optimizations [11, 15], and is able to produce straight looge

for many Repa programs. This is a good fit for OpenCL because

OpenCL does not allow recursive function calls.
3. We previously conducted a performance study called trzeskill

Gap” using a set of Repa benchmark programs compiled by
HRC for both the Xeon CPU and Xeon-Phi Co-processor [16].
We re-use the same set of benchmarks in this study to compare

performances.

Because HRC uses GHC as its frontend, we first have to modify

GHC to add theff1load# primitive by declaring its type and giv-
ing it an empty implementation. We need not implemefftl oad#

in GHC, as we only need GHC to compile the modified Repa li-

brary down to Core code, which is then passed to the HRC cempil
as input. Since HRC is a whole-program compiler, when cangil
a source program it will also pull in Core code from all libesr

identified by a dependency graph, and amongst them is our-modi

fied Repa library where we can find the definitioncefiputeG in
terms ofoffload#.

The overall HRC compilation pipeline works as follows. GHC
Core is first translated into a strict IR based on adminiseat
normal form (ANormStrict), then run through an optimizefdre
being closure-converted to MIL. After the program is cotwer
to MIL, it goes through a number of control-flow and data-flow
based optimizations. What makes MIL unique is that it corebia
low-level CFG-based block structure with a high-level abjased
memory model. Eventually, the MIL code is translated intiiaPi
and passed on to the Pillar-to-C converter, before beingpdeth—
and linked — by a C compiler.

There are several issues we must consider in order to both

implementoffload# in HRC and support it at runtime:

1. We need to implement runtime support for setting up OpenCL

devices, calling OpenCL kernels, and integrating SVM i® t
garbage collector.

2. The two arguments passedddfload# are the range and the

function to offload. The range argument is easy to handle, but

applications that use pointer-based traversals to takaraage of
GPUs easily without having to marshal and un-marshal data.

The latter two issues are related to program safety andaerre
ness, and we must assess them carefully when taking thesnativ
offload approach. We present the set of design choices and con
cessions we have made in Table 1, and discuss their implicati
below:

1. We do not attempt to offload arbitrary Haskell functionst b
rather only computations that are composed of functions and
combinators drawn from the Repa library. The authors of the
Repa library have already taken great effort to instruct GHC
to aggressively inline and fuse all array functions. We note
that whilst we explicitly preclude the calling of non-resive
function calls within the kernel in this presentation of ewark,
implementing a pass to inline their definitions is a techihica
simple matter. As a result, more often than not what we get
by compiling Repa programs that use thenputeG API is a
known static function passed td&fload#. As we shall see in
Section 5, this is true for all benchmarks tested, withoyt an
modifications to their source.

2. HRC is good at turning tail-recursive calls — and even ralutu
ones — into local loops, so typical Repa computations in fhe o
fload kernel are not recursive. Calls to other functions a® p
sible, but currently we do not transitively translate alidétions
that are called, but instead leave them to the compiler to re-
solve. For the most part, functions concerning operatioich s
as arithmetic are easily resolved by the Concord/OpenCL-com
piler.

3. Unlike Accelerate or other DSL solutions, Repa is a native
Haskell library and thus must adhere to its call-by-needassem
tics. Although most Repa computations are not lazy by design
strictness analysis alone does not handle all cases, angl som
times one must still modify the program to make sure no resid-
ual thunk evaluations remain inside the offload kernel.iStat
analysis is enough to catch these and report them at compile
time, however.

4. One early design choice was to make use of SVM to ease
memory management, but the interaction of the offloaded ker-
nel with the garbage collector can still prove difficult. Fof
stance, only memory allocated in the SVM region is visible to
the kernel, but it is very difficult to know beforehand if a pée
of memory will be accessed by the kernel when allocating it.
Therefore, we choose to avoid this problem entirely by uregtr
ing the garbage collector tways allocate in the SVM region.
Unfortunately, the amount of data which we can store in SVM
is restricted by the specification of OpenCL.

2014/5/16

Property Scope Checked at Note

Kernel function pointer Only static functions Compile time This is usually the case for Repa programs
Non-recursive function callg Not supported Compile time Can be inlined into the kernel definition

Recursion Not supported Compile time Tail-calls are already turned into loops

Foreign calls Limited Compile and link time| Only safe foreign calls to OpenCL functions are allowed
Shared memory Full support By making GC always allocate in SVM space

Garbage collection Limited Run time SVM has a maximum heap size of 400MB

Memory allocation Not supported Compile time No GC runtime for OpenCL devices

Thunk-eval Not supported Compile time Strictness annotations to source code may be required

Table 1. Design choices: implementation of offload

5. Always allocating inside SVM does not solve all memory is-

sues, however, as dynamic heap allocation inside the kernel

presents another challenge. We must either callback irgo th

main program on CPU, or implement part of the garbage collec-

tor as GPU kernels. Since such allocations are not datdlglara
to begin with, we choose to simply rule oalf kernel alloca-
tions, and report them as errors at compile time.

6. Due to the relaxed memory consistency guarantee during GP
kernel execution, we must temporarily halt garbage catect
whilst the GPU is interacting with memory.

With these decisions, it is then straightforward to impletre
firstiteration of the actualff1oad# primitive as follows: intercept
all offload calls at the code generation stdgfore Pillar code is
produced. Then, for each call, we first ensure the kernel iatacs
function, and then examine the body of the kernel functiorhieck
for no-allocation and no-thunk-eval conformance befortpotiing
them as separate source files to be compiled by Concord lfsinal
we replace theffload# call in the main program with a Concord
function that runs the kernels themselves. Finally, we ensuat
all kernels are properly compiled by Concord, and linkechwtlite
main program together with the Concord runtime.

4. Optimization for Performance

The Repa library is known to produce high-quality code tlfou
a set of advanced optimizations including type-indexedesgn-
tation, heavy use of theNLINE pragma and GHC rules to aid in
fusing array computations. The result is particularly effe con-
sidering that Repa is not a full-blown DSL compiler but rathe

library, and as such has to rely on the GHC to do the actual opti

mization. This kind of reliance can be fragile at times, asamenot
be sure if an optimization really has taken place unless \aenee

the generated Core code (or even lower, such as LLVM code via
the GHC LLVM backend). On the other hand, the DSL approach

taken by Accelerate and Obsidian has direct control overchvhi
optimizations go into the DSL compiler, and how they are ieapl

mented and tuned, but at the same time cannot make good use of

the optimizations already implemented in the Haskell cdenpand

as such the approach is reduced to a matter of taste. In ttisrse
we explore ways to both help users write Repa programs approp
ate for GPU offloading, and aid compilers in better optinmizihe
generated code.

4.1 Strictness

As discussed previously, the HRC performs static checksnto e
sure that kernel functions contain no thunk-eval instargj which
means that as a Repa library user, we must ensure that theitamp
tion passed teomputeG is strict. This is often the case, but some-
times the situation is more complex than appears at firstglaro
paraphrase an example given by Lippmeier, et al [10]:

diagonals :: Array U DIM1 Int
-> Array U DIM2 Int
-> Array U DIM1 Int
diagonals xs ys = computeG
(R.map (\i -> ys ‘index‘ (DIM2 i i)) xs)

One would expect that the functiofiiagonals completely
evaluates the map function over the two input arraysand ys
when it builds the output array, and thus is strict in bothuargnts.
Unfortunately, this is not the case under lazy evaluatietha array
ys is not demanded at all if the length @k is zero. Indeed, if
we compile this program with our compiler, it will complaibaut
a thunk evaluation in the kernel function, which is essdgtihe
lambda expression passeditanap.

To alleviate this problem, Lippmeier, et al [10] suggestrase
“add bang patterns tall array parameters for functions using the
Repa library”, and useeq when bang patterns are not sufficient.
This might come only as a minor annoyance in practice, but it
is important to know the difference, especially when DSl li
Accelerate impose a strict semantics while Haskell and Ripa
not.

4.2 Branch Avoidance

GPUs are not good at executing branch code in general. Ajthou
the OpenCL compiler will not complain when you compile code
with branches, runtime performance suffers. To illustretasider
the following OpenCL kernel skeleton:

kernel void f(...)

{
if (©) 1
A;
} else {
B;
}
}

Suppose this kernel is offloaded to a number of PEs for exe-
cution. As all PEs run exactly the same instruction, if sonks P
enter branch (i.e. conditionC is satisfied), other PEsannot en-
ter branchB simultaneously, as to do so would violate the SIMD
model. These latter PEs must now either wait, or eatbut dis-
card the effect of running it. As a consequence, all compls P
execute both branches, a significant waste of computingsycl

If conditionals cannot be avoided at the source level, wellsho
attempt to minimize the number of instructions in both bres
Unfortunately, this is not a factor that the user can conitrbén
compiling Haskell programs with GHC, as GHC performs many
code transformations when optimizing a program, with aigaler
tendency to push code towards branch leaves in the hope that

2014/5/16

this will reveal more opportunities for optimization. Teéore,
when examining the code generated for offloaded kernelsfier o
see branches with relatively large size of code in both ofmthe
with most of the instructions in each branches almost idahtip

to alpha-renaming of variables. This is not a problem unigue
GPU offloading, but also an issue previously encounterednwhe
implementing SIMD vectorization for CPUs into HRC.

To reduce the impact of situations such as these, we implemen
an algorithm that attempts to merge conditional branchéewus
new conditional movedM0V) primitive introduced to the MIL IR.

A CMOQV is semantically similar to the following C expression
? b

C a @

That is to say,c represents a boolean value, and batland b
represent values of the same type. The expression evalgates
whenc is true, and t® otherwise. Unlike in a general C expression
where only one branch needs to be evaluated, since MIL ¢ gte
require that, b andc are either constants or variables, the values
of which will already have been evaluated prior to reaching t
conditional.

MIL has a CFG-based block structure, where conditional
branches are represented by a case switch that can pdiejoiiab
to one of several destination blocks. For simplicity, we as@ the
following pre-conditions for the branch merge optimizatio

e The branch is a binary switch over a boolean variable. Binary
switches over non-boolean values can be easily converted in
boolean ones.

e Both branches contain only one instruction block, and these
blocks do not contain intermediate block transfers.

e Both branches must share a unique predecessor block, ttie blo
that performs the case switch.

e Both branches must share a unique successor block to ensure

that there are no more branching transfers after the merge.

The actual merge function takes the two blocks of each branch
as input, and produces a single output block as the resttelf
algorithm opts to ‘bail out’ prior to completion, no output pro-
duced and the input code stays unchanged. The generaltatgori
can be described as follows:

1. Pop one instruction from the head of each block, and cHeck i
they are alpha-equivalent by looking up a dictionary of eguli
lent variable names.

. If these instructions are equivalent, we produce a netmios
tion in the output block after alpha-renaming, and loop kack
Step 1.

. If these instructions differ only in their arguments, wlentify
each pair of arguments that are different, and assert theive
alence by making a new variable and map both arguments to
it in the equivalence dictionary. Then we produce a CMOV in-
struction for each equivalent variable to initialize theaséd on
the condition variable. As a result, the two instructions mow
equivalent, and we loop back to Step 2.

. If the instructions are indeed different, we count thisamis-
match. We check if one of them can be appended to the end
of the output block by checking whether it has no side-effect
If this is the case, the instruction is safe to run regardtdss
control flow.

. If the check in Step 4 fails, we bail out of the algorithmitlf
succeeds, we push the side-effect free instruction to tbeoén
output block, push the other instruction back to the top ®f it
input block, and loop back to Step 1.

The above algorithm terminates successfully if we procdlss a
instructions from both input blocks. We also set a threstafld
how many mismatches are allowed, and bail out if this thriesho
is exceeded. This is a heuristic to ensure that we don’t menge
branches that are indeed substantianlly different fronh edber.
Ideally, we should check instruction equivalence modukirirc-
tion re-ordering when permitted by side-effect constsibut we
choose not to implement this and adhere to the existingucisbn
order in the input blocks. The actual equivalence check isemo
complicated than we describe here due to the variety ofuostm
types, but we omit the details for simplicity.

4.3 Better Index Calculation

The Repa library internally represents all arrays as a siogh-
tinuous memory block. In order to read from a multi-dimensio
array, we first convert a N-dimensional index into a row-méjo
ear index, and read the data from the underlining memorykbloc
using this linear index. Usually this is not a problem, buvé re-
call the definition ofLoadG in Section 2, we assume that the range
argument passed to th&€fload# primitive is the same as the lin-
ear size of the underlining array block, and the kernel fioncalso
expects a linear index as its first parameter. Consequéathyb-
tain the value to be written to the output array, we first contree
linear index to the appropriate shape specified by the alisep-
resentation usingromIndex. An issue arises if the linear index is
used to both read from and write to multi-dimensional ar@fytbe
same size, as it is first converted to a multi-dimensional ame
then immediately converted back.

The problem is evident when we compile thep2 example
seen in Section 2 using HRC. The OpenCL kernel code is given
below:

kernel void map2(global const int * restrict a,
global int * restrict b)

{
int
int
int

idx0 = get_global_id(0):
i idx0 / 5;

j = idx0 % 10;

int idxl =1 * 5 + j;

int x = al[idx1] * 4;

b[idx0] = x * x;

}

We can immediately tell thatdx1 is equal toidx0. Further-
more, there are 4 redundant arithmetic operations withieraet
that only comprises 2 multiplications. We might expect aligpa
OpenCL compiler to be capable of reasoning about the egjualit
the two indices and optimize away redundant arithmeticatars.

In practice, we still find it beneficial to adddavMod optimization

to HRC as part of the MIL optimizer, as being able to derive in-
dex equality is a powerful result that may trigger optimiaas that
may not be viable otherwise. In Section 5 we will inspect some
benchmarks that demonstrate the effectiveness of thideiami-
mization.

4.4 Cache Locality

A topic related to multi-dimensional array representatiashow

to best make use of cache locality, avoiding memory latancie
incurred by cache misses. Repa uses a row-major repraserftat
multi-dimensional arrays, so it is best to structure innestioops
along the rows, and use blocking techniques to structureulker
loops so as to maximize the use of the cache-line. For example
the Repa library already implements explicit memory blagkin

the load function for its cursored array representatioaldo tries

to make use of the Global Value Numbering (GVN) optimization
that is available in GHC’s LLVM backend by loop unrolling and

2014/5/16

benchmarks are ordered in the ascending order of their méax CP
practice. performances, and split into two figures for clarity on theiative
Cache locality optimization in general applies to both CRld scale. In the remainder of this section, we will speak of tlative
GPUs, however there are also GPU specific techniques. For-exa performance of a particular configuration for a given benatnas
ple, we know that PEs are grouped into compute units on device a single number, for example7x means it's 4.% faster than the

relative index calculation [9]. This proves to be quite effee in

and that PEs in the unit can share local memory. Therefostgad

of using a linear global ID, it is best to address PEs usindharse
that is close to their physical structure, and arrange mgacess
pattern in the kernel so that all PEs internal to the samewmik

on a contiguous memory region, and two units work on differen
memory regions. Unfortunately we cannot make use of thid kin
of cache locality optimization because @fif Load# primitive as-
sumes a range linear in its type, and once a multi-dimenkiodeax

is collapsed to a linear one, its structural informatiorost |

5. Benchmark Results

We measure the performance of native offloading to GPU using
a set of benchmarks written using the Haskell Repa librahg T
majority of these benchmarks originate from the “HaskelpGa

baseline.

80 EGPU

70 S CPU(i7,1)

& CPU(i7,4)

= CPU(i7,8)
50

£CPU(Xeon, 1)
40

£ CPU(Xeon,4)
30

1 CPU(Xeon,8)
20 - CPU(Xeon, 16)

10 ® CPU(Xeon,32)

1d-convolution

nbody

study [16], with three new benchmarks added: matrix mudt&pl

tion, 7-point stencil, and 2D-to-3D back projection. Weefflsi de-
scribe the benchmarks and their runtime parameters in T3ble
wherein the iteration count refers to the number of iteratiof

the kernel function per program run. This iteration counveg

to amortize the cost of compilation and initiating GPU oftlpas
some of the benchmark kernels take milliseconds to compléee
refer interested readers to the Haskell Gap paper for a rhore t
ough study of these benchmarks on both the Xeon CPU and Xeon
Phi co-processors.

5.1 GPU vs CPU performance

All benchmarks presented here are compiled using HRC wit€GH
7.6.1 as its frontend, the Intel C/C++ Compiler version 13198

as its CPU backend, and Intel OpenCL SDK 3.0 with the latest ve
sion of Concord as the GPU backend. We only measure time spent
in kernel computations when running the benchmarks, ekujud
time spent preparing inputs and producing output. We rusethe
benchmarks on the following hardware:

Processor Cores | Clock Hyperthread Peak Perf.
HD4600 (GPU) | 20 1.3GHz N.A. 432 GFLOPs
Core i7-4770 4 3.4GHz Yes 435 GFLOPs
Xeon E5-4650 32 2,7GHz No 2970 GFLOPs

It must be noted that the above peak GFLOPs for each pro-
cessor are calculated based on their hardware specifisatiow
hence shall only be considered as theoretical limits. Aigiothe
HD4600 GPU has about the same peak GFLOPs as Core i7-4770,
its Cores are of a much simpler design. We do not expect to get
better performance by offloading to HD4600, but for the saete p
formance we do expect less energy conumption through GPU of-
floading.

For the Core i7, we run each benchmark with 1, 4 and 8 OS
threads with hyper-threading enabled. For the Xeon, we aah e
benchmark with 1, 4, 8, 16 and 32 OS threadshout hyper-
threading. We do not include numbers for GHC-compiled bench
marks in part due to GHC not supporting SIMD vectorizations o
CPUs, as all but one benchmarks we present contain a keatel th
can be vectorized by HRC. We refer our readers to the work by
Petersen et al for details on the HRC vectorizer [17].

The relative kernel performance is given in Figure 1 and Fig-
ure 2, where all numbers are normalized to a baseline speed co
responding to the execution time of a Core i7 CPU running a sin
gle thread without vectorization (which we call thaseline). All

Figure 1. Kernel Speedups Relative to Core i7 (bigger is better)

Figure 1 shows two high-performing benchmarks with very

effective speedups on multi-core CPU. From left to right,hage:

1d-convolution This benchmark has atight inner loop that iterates
over the same input stencil array of 8192 elements, which can
all fit into cache. 256-bit wide AVX2 vectorization gives yer
good speedup of almos&8 Over-subscribing the Core i7 CPU
with 8 hyper-threads also brings a little speedup. It schtes
early to the number of CPU cores, and at 32-core, Xeonx154
significantly outperforms GPU (14).

nbody This benchmark is computation intensive, since the entire
input arrays can all fit into cache, and over-subscribing the
Core i7 CPU with 8 hyper-threads actually slows it down.
Vectorization brings 4.X speedup. It also scales linearly on
CPU, Its GPU speedup is pretty good ¢20 but still no match
for 32-core Xeon (5%).

Figure 2 shows the rest seven benchmarks. From left to right,

we have:

matrix-mult This benchmark is both computation intensive and
sensitive to cache misses, since the inner loop has to s&ver
both a row from one matrix, and a column from the other. The
inner loop vectorizes on CPU, but the vectorization is inef-
fective due to strided loads being software-emulated auste
of hardware-accelerated on AVX2 architecture. This abttual
gives a slow down on Core i7 at 0.X5compared to non-
vectorized version. Over-subscribing the Core i7 CPU with
8 hyper-threads boosts the performance quite significantly
Its GPU performance is good (23}, which significantly out-
performs Core i7 (max at»4), and is close to the performance
of 32-core Xeon (2%).

blackscholesThis benchmark is memory bound, and is limited
by the available memory bandwidth, which explains the $igni
cant speedup brought by over-subscribing the Core i7 CPU. As
witnessed by the Xeon performance, it does not scale lipé&arl
the number of cores due to memory 1/O saturation. GPU perfor-
mance is good at 29, comparable to the Core i7 (20 and the
Xeon (19x), which is another indication of memory bandwidth
bound application.

treesearch This benchmark does little computation in its in-
ner loop, and is sensitive to cache misses. It's also heavy on
branches, which are translated to CMQOV instruction on CPU by

2014/5/16

Name Parameter iteration | Description

1d-convolution 3M pixels 10 1D convolution with 8192-point stencil
2d-convolution 3200x 4000 pixels 100 2D convolution with a 5x5 stencil

7pt-stencil 256x 256x 160 pixels 100 3D convolution with 7-point stencil
backprojection 256x 256x 256 pixels 100 2D to 3D image projection

blackscholes 10M options 100 Black Scholes algorithm for put and call options
matrix-mult 2K x 2K matrix 1 Matrix multiplication

nbody 200K bodies 1 Nbody simulation

treesearch 16-level tree, 20M inputg 50 Binary tree search

volume-rendering 1M input rays 1000 | Volumetric rendering

20

15 +

10

Table 2. Benchmarks and their parameters

HGPU

11CPU(i7,1)

™ CPU(i7,4)
m CPU(i7,8)

@ CPU(Xeon,1)

3
\

backprojection

S

P

3

treesearch

3

matrixmult

!

blackscholes

£ CPU(Xeon,4)

[CPU(Xeon,8)

& CPU(Xeon,16)
¥ CPU(Xeon,32)

sl

7pt-stencil volume-rendering 2d-convolution

Figure 2. Kernel Speedups Relative to Core i7 (bigger is better)

HRC. CPU vectorization is rather ineffective as a resuxQ.
on Core i7 for single-thread, and k3n Xeon (not shown in
the figure). Likewise, its GPU performance is not great eithe
(5.5%). It scales linearly on Xeon with a peak performance of
17x at 32-cores.

backprojection This benchmark is both computation intensive

and sensitive to cache misses when indexing its input 2y.arra
It contains strided loads in the inner loop, which hampers ve
torization on CPU (1.& on single-thread Core i7). The GPU
speedup is modest at &5 It scales linearly on Xeon with a
peek performance of 27 at 32-cores.

7pt-stencil This benchmark is light on computation, and very sen-

sitive to cache misses. The program is written as a naivertrav
sal of its input 3D array because Repa does not yet provide
domain-specific operators for 3D stencil. Vectorizatiorinis
effective due to strided loads and cache misses, which $ang
significant slowdown (0.6%5 on single-thread Core i7). Like-
wise, its GPU performance is poor (3:8). It scales linearly

on Xeon with peak performance ok8on 32-cores.

volume-rendering This benchmark has an irregular inner loop

with two early loop exits, and HRC is unable to vectorizedat, s
for this one benchmark, the CPU numbers shown in Figure 2
are without vectorization. It scales linearly on Xeon bug th
performance is not great k7at 32-cores). Its GPU performance
is also poor ().

2d-convolution This benchmark is memory bound, and sensitive
to cache misses. Repa gives special treatment to 2D stencils

using a cursored representation, which when compiled with
HRC optimizations, is able to vectorize effectively on CRL (

on single-thread Core i7). Its Xeon performance does nd¢ sca
linearly, but appears to be limited by memory bandwidth. On

the other hand, its GPU performance is very poor at onlyk1.1
speedup. We discuss this benchmark further in Section 5.3.

In all nine of the benchmarks we have studied, HD4600 ei-
ther matches or beats Core i7 performance on six of them. It

does reasonably well for for 1d-convolution, but fares poéor
the volume-rendering and 2d-convolution benchmarks. darme-
rendering, its performance is not bad given that the irsagkernel
is more challenging for GPU. In all benchmarks, the 32-coeerX
still out-performs the 20-core GPU, which is not surprisgigen
that the Xeon is a server-grade CPU with a significantly highe-
oretical peak performance, and it is a lot more expensive \\®
summarize by giving the geometric means of the best relatve
formance of all benchmarks on the three architectures:

HD4600 (GPU)
6.9

Core i7-4770
7.0

Xeon E5-4650
18.8

Geometric Mean

By showing that we can achieve expected performance on in-

tegrated GPU by offloading Haskell Repa programs, hopewdy
have demonstrated the viability and promise of the natiyeaach.

With shared memory support already in place, our system ean b
further extended to combine both CPU and GPU to achieve even

greater performance, which is left to future work.

5.2 Performance Factors

Our benchmark study is focused on Haskell programs writgen u
ing the Repa library. Despite all being categorized as gatalel
in general, these programs have different performancerfacon-
tributing or limiting their performances, and most of there ap-

plicable to both CPU and GPU hardware settings. We make the

following important observations:

2014/5/16

Benchmark Description

haskell-1 Haskell program with a kernel that computes only one outpl p
haskell-row Haskell program with a kernel that computes an entire output
ocl-naive A native OpenCL implementation that reads 5x5 stencil fronaaay
ocl-const Similar to ocl-naive, but specifies constant memory for Gitearray
ocl-unrolled Similar o naive-const, but with stencil loop unrolled

ocl-specialized
ocl-localmem
ocl-linear

Similar to ocl-unrolled, but with stencil values speciatizas constants
Similar to ocl-specialized, but use 20x20 local memory tcheasinputs
A OpenCL implementation ported from the generated kernbbskell-1

Table 3. OpenCL and Haskell Benchmarks for 2D Convolution

e Thread-level or multi-core parallelism usually brings linear
scale-up for regular workloads under a shared memory model.
This is true for most of our benchmarks, and especially effec
tive for computation intensive ones such as 1d-convolueioch
nbody. A notable exception is that when the memory bandwidth
is fully saturated, adding more threads or cores will no &ng
help with the speed, and sometimes may result in slowdowns.
This is evident for the blackscholes and 2d-convolutionchen
mark.

cache blocking, and others require explicit strictnesotation or
INLINE/NOINLINE pragmas in order to achieve desirable low-
level compiled outputs. Hopefully we have shown that dedpetrd-
ware differences these optimization techniques are agigkdo the
compilation of a data-parallel program written in a highdelan-
guage for both CPU and GPU targets, and when the performance
is missing, which technique could be effectively appliedegi the
characteristics of the application.

5.3 Haskell vs OpenCL Performance

Making good use afnemory locality is crucial for applications
to gain performance, Applications perform best when mast it No Haskell benchmarking is complete without comparing tivea
input data can fit into cache (e.g., nbody, 1d-convolutidul, C performance, where “C” symbolizes what is possible with-lo
it is not always possible. Grouping data together for setiglen |evel high-performance languages. Following the samét sifithe

access (e.g., AOS to SOA conversion as in blackscholes), and“Haskell Gap” study, we believe it makes a very good comparis

cache blocking are two frequently used techniques (treelsea
2d-convolution) to help memory locality.

Over-subscribing with hyper-threads will help applications

to improve performance by amortizing the cost of memory 1/0
due to cache misses (e.g., matrix-mult and blackscholes), b
will not help those that are already computation intenség.(
nbody).

SIMD vectorization is an effective means to gain perfor-
mance when the inner loop is regular and can be vectorized
(1d-convolution, nbody, blackscholes, and 2d-convoh)tiél-
though AVX2 (and older generation of SIMD hardware) cur-
rently does not support hardware-accelerated stridedlaad
some of our benchmarks (matrix-mult, backprojection, 7pt-
stencil) suffer from it, future hardware (including the @mt
generation of Xeon Phi) will no longer have this deficiency.
Besides, algorithm change can help to turn strided loads int
sequential ones, as demonstrated by the modifications ta Rep
we did for 2D stencils [16].

Branch-avoidancehelps SIMD vectorization and gaining per-
formance on both CPU and GPU. The CMOV optimization
we implemented in HRC helps to enable vectorization for pro-
grams that have conditionals in its hot loop (blackscholes)
although its effectiveness is limited when branching c&nno
be avoided (volume-rendering) and when branching cost out-
weighs computation cost (treesearch).

between the following:

1. Idiomatic Haskell program compiled by an optimizing calep
that targets GPGPUSs;

2. the best-performing low-level program written usingheit
OpenCL or CUDA that targets the same hardware.

Ideally we would also like to compare Repa programs compiled
using our native offload approach with Accelerate DSL progra
compiled by an OpenCL Accelerate backend for the same hard-
ware. Unfortunately we were unable to complete this taskhat t
time of writing due to the lack of a fully functioning OpenClatk-
end for Accelerate that targets Intel integrated graphacd<

Furthermore, due to our limited resources, we were unable to
port all benchmarks to OpenCL and hand optimize them for best
performance. Therefore we choose to focus on a single bearghm
2D convolution, which is one of the worst performing benchksa
on GPU. We obtained a sequence of hand-tuned OpenCL programs
for 2D convolution from [18], modified to work on the same itgu
and compiled by the same Intel OpenCL SDK 3.0 that HRC (via
Concord) uses.

We summarize the set of 2D convolution benchmarks in Table 3.
We have 6 OpenCL programs ranging from naive to optimized
ones, and 2 Haskell programs, which are actually the santeesou
program that we have considered before, but with differegpaR
library implementations. When compiled by HRC, both progra
would produce an OpenCL kernel with inner stencil loop com-

Most of the above mentioned techniques can and already havepletely unrolled, and all stencil values already specglias con-

been implemented as part of an optimizing compiler andfor li
brary. For example, HRC implements automatic SIMD vectoriz
tion. The Repa library makes it trivial to take advantagehoéad-
level (or multi-core level) parallelism, and its high-léweterface
enables automatic AOS-to-SOA conversion under-the-htod.
also easy to implement cache blocking for Repa’s abstraal ar
representation (cursored, partitioned, etc.). Some egidins such
as treesearch require algorithmic change to implementragada

stants. The haskell-row benchmark here is the same 2d-ktioro
benchmark presented previously in Figure 2.

One important difference between Haskell and OpenCL imple-
mentations is that all OpenCL kernels (except ocl-lineag a 2D
index consisting of bothX andY coordinates, while the Haskell
kernels use a linear index required by tifef 1oad# primitive. All
OpenCL kernels compute only one output pixel. The ocl-linza-
gram is produced by hand-porting the C kernel code from cbmpi

2014/5/16

ing haskell-1 with HRC to OpenCL, and hence it also uses atine
index.

Another difference is that our OpenCL implementations db no
handle border conditions at all, while the Haskell ones do.

O R, N W A U O N ®
P

\\,’\
@
i
&

\2
,SS
\,(‘

o(«

©Q
N
&
2
Q@
&

Figure 3. 2D Convolution Kernel Speedups Relative to Core i7
(bigger is better)

Figure 3 shows the relative performance of all 7 benchmaks f
2D convolution on HD4600, where the speedup is normalized to
the same baseline we have considered previously, i.e., aiskeH
2d-convolution benchmarked running a single thread on Core
with vectorization turned off. This helps to compare Opergel-
formance on GPU with Haskell performance on CPU. All bench-
marks are run for 100 iterations on an input image of 32008400
pixels. We make the following observations on this set ofiitss

e The best performing OpenCL program (ocl-specialized) is
at 7.16x, which is slightly higher than the best performing
Haskell program on Core i7 (6.37at 4 threads). This further
confirms that this benchmark is memory bound.

By declaring stencil array as constant memory, we immelgiate
see a huge performance boost from ocl-naive (82t ocl-
const (3.56). This is the kind of low-level OpenCL optimiza-
tion that compilers for high-level language should try tketa
advantage of. By further eliminating memory reads of sten-
cil value, ocl-specialized (7.26) is able to double the perfor-
mance.

Explicitly doing a cache blocking using local memory doésn’
seem to give much advantage. The overhead of filling a 20x20
cache (with a local group of 16x16) and synchronization at th
end of cache-fill actually gives a slight slowdown, as intBda

by ocl-localmem (6.34%) and ocl-specialized (7.26), This is
contrary to the original report by Reda [18]. We suspect ithis
due to hardware architecture differences.

There is virtually no difference between the kernels of ocl-
linear (6.74<) and of haskell-1 (2.7%), and yet there is more
than twice a performance gap. Besides border handlinge ther
are possibly other non-negligible overheads in the Haskell
plementation. Having to allocate a new array in between the
convolution iterations could be one of them. Further analigs
required to better understand this.

The performance difference between haskell-1 (2)7%and
haskell-row (1.1%) also come as a surprise. Lippmeier and
Keller carefully designed the cursored representation effeR
arrays for parallel execution, where adjacent reads frauncgo
image can be shared when computing 4 output pixels at a time.
When we batch compute 4 output pixels with a 5x5 stencil, it
only requires 5x(5+4-1)=40 memory loads (as in haskell}row
Compared to 5x5x4=100 memory loads when each output pixel
is computed in isolation (as in haskell-1), it was preserted

10

a good optimization technique for CPUs. However, the same
doesn’'t seem to apply to GPUs. As a result of the batched load
and inlining, haskell-row produces a very long kernel catfe.
suspect the added overhead is due to overly unrolled loop bod
Again, further analysis is required to better understaigl th

As a conclusion, there apparently is great opportunity éonc
piler and library writers to borrow some of the low-level GRbd
OpenCL optimization techniques. As a complement to theudisc
sion in Section 5.2, we have shown that not all techniquesiitir
mizing CPU programs are as effective when applied to GPU.esom
times the performance discrepancy must be scrutinized asalzy
case basis, and it requires deep knowledge of low-levetiadah
and hardware specifics before one can begin to understamd the
We consider this as part of our future work.

6. Related and Future Work

Due to similarities between the APIs of Repa and Accelenate,
are interested in undertaking a detailed comparison betvweee
native approach and the DSL approach taken by Accelerate. Un
fortunately, Accelerate does not have a fully functionale®pL
backend to compile and run the benchmarks in Table 2, and-more
over other DSL based frameworks for GPGPU programming (such
as Obsidian [19] and Nikola [12]) only target CUDA. As a re-
sult, a direct performance comparison upon the same haediwar
not possible. Obsidian’s DSL uses a lower-lever abstradiiat
exposes more details of the hardware hierarchy by only tiagye
one-dimensional arrays of limited size. At the high levekadla is
similar to Accelerate, with more targeted optimization$yasup-
porting first-order array functions, and also makes use dame
programming to allow DSL programs to be compiled statically
when the host program is being compiled, avoiding the owathe
of having to compile them at runtime. More generally, Gaatet
Morris [6] implement a direct embedding of OpenCL in GHC, of-
fering a way to program GPGPUs in a high-level language fer ap
plications outside the domain of data-parallel array progning.

Furthermore, we intend to study irregular workloads, asethe
is nothing constraining us from using théfload# primitive to
compile programs beyond those written using the Repa iibhar
particular, the Concord compiler [2] which we use in this kvbas
beendesigned to target irregular workloads. By focusing only on
programs written in Repa, we are not fully exercising the @oof
Concord. There are still many issues surrounding the naffi@ad
of arbitrary Haskell functions, however, especially caesing the
lack of garbage collector support and thunk-evaluationG&U
runtimes. It remains to be seen whether a compromise exists f
capturing irregular GPU workloads by way of an abstractien b
tween array-based data-parallel programming and thébgatieed
semantics of Haskell.

In conclusion, this work presents a technique for direcfly o
floading computations written in the Repa library of Haskell
GPGPUs via OpenCL without requiring extensive API changes.
We support the latest shared virtual memory model between th
host and associated OpenCL devices, avoiding unnecesatay d
movement between them. The Repa library provides just i ri
kind of data-parallel abstraction required, and by impletimg a
GPU backend in the Haskell Research Compiler, most programs
written using Repa can be compiled down to a strict kernetfun
tion comprising straight loop code, which is ideal for extmu on
GPGPUs. We demonstrate the feasibility of the native offlaad
proach by presenting a detailed analysis of nine benchnmhks
trasting the performance of GPU and two CPUs.

2014/5/16

References

[1] T. A. Anderson, N. Glew, P. Guo, B. T. Lewis, W. Liu, Z. Liu, Pe-
tersen, M. Rajagopalan, J. M. Stichnoth, G. Wu, and D. Zh&ilgar:
A parallel implementation language. WCPC, pages 141-155, 2007.

[2] R. Barik, R. Kaleem, D. Majeti, B. T. Lewis, T. Shpeisman,
C. Hu, Y. Ni, and A.-R. Adl-Tabatabai. Efficient mapping of
irregular c++ applications to integrated gpus. Rwoceedings
of Annual IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO '14, pages 33:33-33:43, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2670-4. URL
http://doi.acm.org/10.1145/2544137.2544165.

[3] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, Md&-
sky, and K. Olukotun. A heterogeneous parallel framework fo
domain-specific languages. [Iroceedings of the 2011 Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’'11, pages 89-100, Washington, DC, USA, 2011.
IEEE Computer Society. ISBN 978-0-7695-4566-0. URL
http://dx.doi.org/10.1109/PACT.2011.15.

[4] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, d@n
V. Grover. Accelerating haskell array codes with multicgpis. In
M. Carro and J. H. Reppy, editorBAMP, pages 3-14. ACM, 2011.
ISBN 978-1-4503-0486-3.

[5] R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravartyand
G. Keller. Embedding foreign code. In M. Flatt and H.-F. Gedi-
tors,PADL, volume 8324 of_ecture Notesin Computer Science, pages
136-151. Springer, 2014. ISBN 978-3-319-04131-5.

[6] B. R. Gaster and J. G. Morris. Embedding OpenCL in GHC bksk
2013.

[7] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. L.Jnes, and
B. Lippmeier. Regular, shape-polymorphic, parallel asrayhaskell.
In P. Hudak and S. Weirich, editor$sCFP, pages 261-272. ACM,
2010. ISBN 978-1-60558-794-3.

[8] Khronos Group. The OpenCL specification, version: 2@ See
https://www.khronos.org/opencl/.

[9] B. Lippmeier and G. Keller. Efficient parallel stencil m@lution in
haskell. In K. Claessen, editdfaskell, pages 59-70. ACM, 2011.
ISBN 978-1-4503-0860-1.

[10] B. Lippmeier, M. M. T. Chakravarty, G. Keller, and S. L. Jones.
Guiding parallel array fusion with indexed types. In J. \ftéigder,
editor,Haskell, pages 25-36. ACM, 2012. ISBN 978-1-4503-1574-6.

[11] H. Liu, N. Glew, L. Petersen, and T. A. Anderson. The Irtaebs
Haskell research compiler. IHaskell Symposium, pages 105-116,
Boston, Massachusetts, USA, 2013. ACM. ISBN 978-1-4508323

[12] G. Mainland and G. Morrisett. Nikola: embedding coredilgpu
functions in haskell. In J. Gibbons, editdfaskell, pages 67-78.
ACM, 2010. ISBN 978-1-4503-0252-4.

[13] T. L. McDonell, M. M. T. Chakravarty, G. Keller, and B. fjpmeier.
Optimising purely functional gpu programs. In G. Morrisettd
T. Uustalu, editors|CFP, pages 49-60. ACM, 2013. ISBN 978-1-
4503-2326-0.

[14] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scééaparallel
programming with cudaQueue, 6(2):40-53, Mar. 2008. ISSN 1542-
7730. . URLhttp://doi.acm.org/10.1145/1365490.1365500.

[15] L. Petersen and N. Glew. GC-safe interprocedural uimgpxXn Com-
piler Construction, pages 165-184, Tallinn, Estonia, 2012. Springer-
Verlag.

[16] L. Petersen, T. A. Anderson, H. Liu, and N. Glew. Measgrthe
Haskell gap. InPost Symposium Submission to The 25th Interna-
tional Symposium on Implementation and Application of Functional
Languages, Aug. 2013.

[17] L. Petersen, D. Orchard, and N. Glew. Automatic SIMDteezation

for Haskell. InICFP, pages 25-36, Boston, Massachusetts, USA,
2013. ACM. ISBN 978-1-4503-2326-0.

[18] K. Reda. A study of OpenCL image con-
volution optimization, April 2012. See

http://www.evl.uic.edu/kreda/gpu/image-convolution.

11

[19] J. Svensson, M. Sheeran, and K. Claessen. Obsidian: maitio
specific embedded language for parallel programming of hacap
processors. In S.-B. Scholz and O. Chitil, editdF,, volume 5836 of
Lecture Notes in Computer Science, pages 156-173. Springer, 2008.
ISBN 978-3-642-24451-3.

2014/5/16

