
Native Offload of Haskell Repa Programs to GPGPU

Hai Liu Laurence E. Day Neal Glew Todd A. Anderson RajkishoreBarik
Intel Labs

{hai.liu,todd.a.anderson,rajkishore.barik}@intel.com led@cs.nott.ac.uk aglew@acm.org

Abstract
In light of recent hardware advances, General Purpose Graph-
ics Processing Units (GPGPUs) are becoming increasingly com-
monplace, and demand novel programming models to account for
their radically different architecture. For the most part,existing ap-
proaches to programming GPGPUs within a high-level program-
ming language choose to embed a domain specific language (DSL)
within a host metalanguage and implement a compiler mapping
programs written within said DSL to code in low-level languages
such as OpenCL or CUDA. We question this design choice, and
argue that by directly implementing a GPGPU offload primitive
as part of a general-purpose language compiler, we gain access
to a substantial number of existing optimization techniques with-
out having to reimplement them in a DSL compiler. In this paper
we describe the structure of our prototypical treatment of this re-
search direction, demonstrating the applicability of our approach
by showing how to bridge between APIs by extending the Repa
library of Haskell with an offload primitive, and detailing an ex-
perimental implementation of our approach within the IntelLabs
Haskell Research Compiler. We also provide a detailed studyof a
set of nine benchmarks, by compiling them to both GPU and two
distinct CPUs and comparing their performance.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers

Keywords GPU Programming; Heterogeneous Programming;
Haskell

1. Introduction
With recent advances in computing hardware, general-purpose
graphics processing units (GPGPU) are becoming more and more
accessible to ordinary consumers. Despite being labeled as”gen-
eral purpose”, modern GPUs differ significantly from regular CPUs
architecturally, giving rise to specific programming models and
languages designed to simplify the programming of such devices.
OpenCL [8] and CUDA [14] are two such popular frameworks that
come with restricted C-based languages which address this need,
and hardware vendors typically provide the necessary toolchain to
compile OpenCL or CUDA programs to their devices. Program-
ming for a combination of mixed processing units, such as CPUs,

[Copyright notice will appear here once ’preprint’ option is removed.]

GPUs, and FPGAs (amongst others) is often referred to ashetero-
geneous computing. Whilst CUDA is only available for NVIDIA
GPUs, OpenCL is an open standard providing support for program-
ming devices from multiple hardware vendors.

Heterogeneous computing is a complex area of research due
to the existence of and need to accommodate multiple different
programming models. Despite being designed to target heteroge-
neous platforms, OpenCL is still a low-level programming lan-
guage that requires programmers to write a range of boilerplate
code addressing topics such as device setup and manual memory
management. In the past few years, however, a number of program-
ming frameworks have emerged for higher-level languages with the
goal of supporting GPU programming (and heterogeneous com-
puting in general)without requiring familiarity with low-level lan-
guages such as OpenCL or CUDA. A popular approach is to embed
a domain-specific language (DSL) within a host language. When
execution of the host program on the CPU encounters an embedded
program, it translates the embedded code into OpenCL or CUDA
and then compiles and offloads that code to the GPU. Accelerate [4]
and Obsidian [19] are two examples of this approach towards pro-
gramming GPUs using the functional language Haskell. Delite [3]
is another such approach allowing not only the compilation and
execution of DSLs in a heterogeneous setting, but also a flexible
technique for building DSLs using a multi-staged tool chainbuilt
on top of the Scala language.

If we view OpenCL as providing a hardware abstraction over
data-parallel hardware architectures, then programming GPUs
through DSLs raises the level of abstraction even higher by hid-
ing the hardware interface almost entirely. The obvious benefit of
taking this approach is that programmers can continue to write pro-
grams using higher-level constructs and operators, and theDSL
compiler shoulders the responsibility of translating themto tar-
get GPUs. Additionally, these DSLs are carefully crafted around
a limited set of constructs and operators such that only those pro-
grams suitable for GPU execution are expressible. This kindof self-
imposed design choice not only ensures program runtime safety,
but also saves DSL implementers from the task of writing a full-
blown general-purpose compiler targeting GPUs, which is often
infeasible given hardware limitations.

On the other hand, the DSL approach has drawbacks of its
own. To understand why, consider two similar parallel program-
ming libraries in Haskell, Repa [7] and Accelerate [4]. Repais a
Haskell library enabling high-performance array computation on
multi-core CPUs, and Accelerate is an embedded array language
targeting GPUs. These two share similar high-level APIs regard-
ing multi-dimensional and shape polymorphic parallel arrays (no
coincidence—the same team designed and implemented both),yet
differ in ways beyond those associated with differing hardware ar-
chitectures:

• Repa programs are statically type-checked and compiled, whilst
those written using Accelerate are only compiled at runtime.

1 2014/5/16

• The DSL compiler for Accelerate has to re-implement many of
the existing features that are already available in the hostlan-
guage compiler in order to handle ordinary Haskell expressions,
function composition and so on. The first versions of Accelerate
indeed had performance issues due to missing general optimiza-
tions, which are not GPU specific [13].

• The DSL approach needs a special mechanism to interface with
foreign code since they cannot directly use the FFI features
already available to the host language [5].

• Data transfers between the host program and DSL program
must be explicitly handled at runtime, as they operate in sep-
arate address spaces. With the increasing dominance of inte-
grated GPU and recent introduction of Shared Virtual Memory
(SVM) to OpenCL 2.0 standards, this becomes an unnecessary
burden.

To the best of our knowledge, this alternative approach of com-
piling a restricted subset of the host language itself to OpenCL or
CUDA and thereafter to GPU has not been tried, at least not for
any functional programming languages. With this in mind, wehave
implemented a proof of concept system for compiling a restricted
subset of Haskell to Intel’s integrated GPU. Our system is asyet
incomplete, with a number of short-cuts in place to quickly proto-
type our concept and produce preliminary results. Despite this, we
strongly believe that the results are interesting and show that this
alternative approach is viable. The majority of the shortcomings in
the work we present here are engineering related, requiringmore
time than effort to address; however, some are more serious,and
as such we discuss them below. One point in particular is worth
emphasizing—we are targeting anintegrated GPU. A number of
CPU vendors have in recent years started making processors with
both a CPU and a GPU on the same die, and these processors usu-
ally share at least the last-level cache and often also sharea coher-
ence domain, and can be considered to have a shared memory sys-
tem. This is in contrast to discrete GPUs, which typically commu-
nicate (incoherently) with the CPU across a limited interconnect,
and as such should be treated as if they possess aseparate memory
system. This difference greatly simplifies compiling to GPU, and
should be borne in mind throughout.

With those caveats, we make the following specific contribu-
tions:

1. We introduce a newcomputeG combinator to the Repa library
that offloads a parallel array computation to GPU.

2. We give a prototype implementation of compiling native Haskell
functions to OpenCL as part of the Intel Labs Haskell Research
Compiler (HRC) [11] backend.

3. We integrate our solution with the Concord compiler (a C++
based heterogeneous computing framework for integrated GPUs
that compiles to OpenCL) [2], and the latest Intel OpenCL SDK
to take advantage of the new SVM hardware features available
on the Intel Broadwell platform.

4. We demonstrate the effectiveness of this native offloading ap-
proach by comparing a set of Haskell benchmarks on both
GPUs and CPUs.

2. Offloading Repa Array Computation
2.1 Overview of Repa

The Repa library represents the state-of-the-art for data-parallel
computing with arrays in Haskell. It allows computation over high-
rank arrays to be expressed in a type-safe manner, and at the same
time enables implicit parallel execution on multi-core CPUs with
aggressive array fusion guided by indexed types [10].

Consider the following Repa programmap2:

import Data.Array.Repa as R

a :: Array U DIM2 Int
a = R.fromListUnboxed (Z :. 5 :. 10) [0..49]

b :: Array D DIM2 Int
b = R.map (^2) (R.map (*4) a)

c :: IO (Array U DIM2 Int)
c = R.computeP b

In the above program, botha andb are two-dimensional arrays,
wherea is fully manifested (type-indexed byU), andb represents
a ‘delayed’ computation (type-indexed byD) based on the input
array a. To fully computeb (i.e., to turn the delayed arrayb
into a manifest arrayc), one can use either thecomputeS or the
computeP combinators:

computeS :: (Shape sh, Unbox e) =>
Array D sh e -> Array U sh e

computeP :: (Shape sh, Unbox e, Monad m) =>
Array D sh e -> m (Array U sh e)

The difference between the above two functions is thatcomputeP
evaluates its input array in parallel by distributing the work across
a set of worker threads (which can be specified by RTS option-N at
runtime), whilstcomputeS evaluates sequentially. Besides delayed
computations, Repa supports several other kinds of representations
of typical array computations, but the gist remains the same: Repa
array computations are manifested only when they are ‘forced’,
and users do not have to specify anything other than replacing
computeS with computeP to run the computation in parallel.

Following the same design philosophy, we propose extending
the Repa API with acomputeG combinator with the same type sig-
nature ascomputeP and with the intention that instead of spawning
worker CPU threads, it offloads the actual computation—which we
will call the kernel instance—to the GPU:

computeG :: (Shape sh, Unbox e, Monad m) =>
Array D sh e -> m (Array U sh e)

In theory, with thecomputeG function added to the Repa li-
brary, it should be possible to runany Repa computation on GPU,
because semanticallycomputeG is equivalent to bothcomputeS
andcomputeP. In practice, however, it is difficult to do this without
compromise because of the differing underlying hardware architec-
tures of GPUs and CPUs. Instead, we will restrict the computations
that computeG will run. Our intention (not fully implemented) is
to detect and reject at compile time any computation that ill-suited
for compilation to GPU. To further understand the issues involved,
we first discuss OpenCL and, more generally, the GPU computing
paradigm.

2.2 Overview of OpenCL

OpenCL [8] is an open standard for cross-platform, parallelpro-
gramming of modern processors, including CPUs and GPUs, digi-
tal signal processors (DSPs), field-programmable gate arrays (FP-
GAs) and others. OpenCL includes a C99 based language, call
OpenCL C, for writingkernels that are executed on OpenCL-
compliant devices, and a set of APIs for controlling such devices.
Although both task-based and data-based parallelism are supported
by OpenCL, the latter still is the dominating programming model as
it is well matched to the hardware characteristics of most OpenCL
devices. Devices like GPUs usually consist of one or more compute

2 2014/5/16

units, each of which consists of a number of processing elements
(PEs) and local memory. The most important OpenCL API is to
request execution of akernel instance on a device. A kernel in-
stance consists of a kernel, its arguments, and anNDRange. The
latter is a contiguous rectilinear index set of integers in one, two, or
three dimensions. For each index in the space, the GPU will exe-
cute the kernel on the given arguments and the index, this execution
is called awork item. This kind of computation falls into the gen-
eral category that we call single instruction multiple data(SIMD).
NDRanges are additionally divided intowork groups, contiguous
sub-blocks of the index space of a user-requested size. Kernels have
access to a local memory that is shared amongst the work itemsof
a given work group. This local memory is limited is size, but usu-
ally much faster to access than global memory. It is often important
to exploit locality and copy data to local memory for repeated pro-
cessing.

OpenCL 2.0 is the latest iteration of the OpenCL standard, and
among the many features and enhancements is the introduction of
SVM (Shared Virtual Memory), which allows programs to directly
share pointer-containing data structures between CPU and GPU.
The ubiquity of integrated GPUs—those built on the same die as
the CPU and therefore sharing the same physical memory and
coherency domain—has significantly lowered the cost of offloading
work from CPU to GPU, and made SVM an important feature to
have in a heterogeneous programming model.

An OpenCL application typically consists of a main program
that runs on the host, and one or more kernels which run on
OpenCL devices. The main program queries the system for a list of
devices, sets them up appropriately, requests compilationof the ker-
nels, creates kernel instances, and enqueues those kernel instances
for execution on OpenCL devices. The OpenCL C language has
a number of restrictions that limit the kind of programs thatone
can write. Most implementations provide a just-in-time compiler
capable of compiling and offloading the kernel at runtime.

To illustrate, below is an example of an OpenCL kernel:

kernel void map2(global const int * restrict a,
global int * restrict b)

{
int idx = get_global_id(0):
int x = a[idx] * 4;
b[idx] = x * x;

}

The above kernel performs the same computation as the Repa
program given in Section 2.1. The main program must allocateboth
arrays, initialize the source arraya and then build and enqueue the
kernel instance for execution with an appropriate range (i.e. the size
of both arrays). Putting to the side device setup and error handling
issues for the time being, we can express this notion of data parallel
execution via the following (Haskell) type signature:

offload# :: Int -> (Int -> State# s -> State# s)
-> State# s -> State# s

Theoffload# function takes two arguments: the range of the
task to run on the external device, and the actual function, mapping
from a valid index (within the range) to a stateful computation with
the potential to read from – and write to – the main memory. Im-
plicitly, we assume a form of memory coherence between CPU and
GPU, since the function we offload could be arbitrarily constructed.
As a consequence, we will make use of the SVM feature intro-
duced in OpenCL 2.0. Furthermore, there are limitations on what
offloaded functions can actuallydo: for instance, they should ad-
here to the same set of restrictions on the kernel functions as those
for OpenCL kernels. In contrast with the DSL approach taken by
Accelerate and others, the type ofoffload# gives little guarantee

on its runtime behaviour, and so any restrictions must be enforced
either at compile time or runtime. As such, we specifyoffload#
as a primitive in the implementation and not as part of the general
API. In Section 3, we will discuss the set of restrictions again in
greater detail, and moreover how they are enforced.

2.3 Implementing computeG

Theoffload# primitive represents the line we draw between high-
level abstractions that can be implemented in a library (such as
computeG) and the lower-level implementation details that are best
handled by a Haskell compiler such as GHC.

Internal to Repa,computeP is implemented by forking a set of
native threads (called aGang), and dispatching chunked compu-
tations of the target array as individual tasks to each thread. The
implementation ofcomputeG is similar in the sense it also relies
on individually computing each chunks, but does so by offloading
work to an external device rather than by spawning CPU threads.

The actual mechanism of chunk division varies according to the
representation of the target array, and is implemented by declaring
instances of theLoad class:

class (Source r1 e, Shape sh) => Load r1 sh e where
-- | Fill an entire array sequentially.
loadS :: Target r2 e =>

Array r1 sh e -> MVec r2 e -> IO ()
-- | Fill an entire array in parallel.
loadP :: Target r2 e =>

Array r1 sh e -> MVec r2 e -> IO ()
-- | Fill an entire array in parallel via offload.
loadG :: Target r2 e =>

Array r1 sh e -> MVec r2 e -> IO ()

Here we add a newloadG method with the same type signature
as the sequentialloadS and parallelloadP. We then implement
loadG for each array representation. For example, delayed array
computations are offloaded as follows:

import GHC.IO (IO(...))

instance Shape sh => Load D sh e where
loadG (ADelayed sh getElem) mvec
= mvec ‘deepSeqMVec‘ (IO dispatch >>

touchMVec mvec)
where

dispatch s =
case size sh of

I# n -> (# offload# n f s, () #)
where

f i s =
case w of
IO m -> case m s of

(# s’, _ #) -> s’
where
w = unsafeWriteMVec mvec (I# i)
((getElem . fromIndex sh) (I# i))

In the above, we first compute the rangen of the computation
to offload, which is the size of the array to be manifested. The
actual computation which we offload maps each indexi to an
array-write operation using the utility functionunsafeWriteMVec,
which takes an array, an index, and a function that computes the
value of the element to write into the array at that index. Unlike the
computeP implementation, we need not chunk the target array into
suitable sizes beforehand, because in general the thread model is
a poor fit for GPU devices. To counter this, we specify the overall
work-range to have the same value as the destination array, and

3 2014/5/16

defer the dispatching of jobs to available compute units to the
underlining OpenCL computation.

In a similar manner we implementloadG for other array rep-
resentations (such as Cursored, Partitioned, etc). With a relatively
small set of changes, we produced a Repa library that implements
computeG via theoffload# primitive. Our goal is to be able to
replace any calls tocomputeP with calls tocomputeG, and there-
fore convert a data parallel Repa program from CPU executionto
GPU execution. We must highlight at this point that when using the
computeG combinator, no assumptions can be made regarding the
order of execution, and moreover floating point determinismcannot
be guaranteed.

3. A Heterogeneous Backend for HRC
We implementoffload# as part of the Intel Labs Haskell Research
Compiler backend. HRC uses GHC as a front-end and intercepts
the external Core before performing whole-program optimization.
The HRC also implements a multitude of optimization passes based
on a strict SSA-style internal representation called MIL, and gen-
erates code in an extension of C calledPillar [1], which is then
transformed to standard C code and compiled with either the Intel
C compiler or GCC. We choose HRC over GHC to implement an
alpha prototype of this work for a number of reasons:

1. HRC’s existing backend already generates C-like code, which
makes it easy to re-use the same compilation pipeline to target
OpenCL.

2. HRC performs a number of loop-based and representation-style
optimizations [11, 15], and is able to produce straight loopcode
for many Repa programs. This is a good fit for OpenCL because
OpenCL does not allow recursive function calls.

3. We previously conducted a performance study called the “Haskell
Gap” using a set of Repa benchmark programs compiled by
HRC for both the Xeon CPU and Xeon-Phi Co-processor [16].
We re-use the same set of benchmarks in this study to compare
performances.

Because HRC uses GHC as its frontend, we first have to modify
GHC to add theoffload# primitive by declaring its type and giv-
ing it an empty implementation. We need not implementoffload#
in GHC, as we only need GHC to compile the modified Repa li-
brary down to Core code, which is then passed to the HRC compiler
as input. Since HRC is a whole-program compiler, when compiling
a source program it will also pull in Core code from all libraries
identified by a dependency graph, and amongst them is our modi-
fied Repa library where we can find the definition ofcomputeG in
terms ofoffload#.

The overall HRC compilation pipeline works as follows. GHC
Core is first translated into a strict IR based on administrative
normal form (ANormStrict), then run through an optimizer before
being closure-converted to MIL. After the program is converted
to MIL, it goes through a number of control-flow and data-flow
based optimizations. What makes MIL unique is that it combines a
low-level CFG-based block structure with a high-level object-based
memory model. Eventually, the MIL code is translated into Pillar
and passed on to the Pillar-to-C converter, before being compiled –
and linked – by a C compiler.

There are several issues we must consider in order to both
implementoffload# in HRC and support it at runtime:

1. We need to implement runtime support for setting up OpenCL
devices, calling OpenCL kernels, and integrating SVM into the
garbage collector.

2. The two arguments passed tooffload# are the range and the
function to offload. The range argument is easy to handle, but

the function to offload could be arbitrarily composed, which
can become a problem for the code generator, i.e., we cannot
generate code from it if we do not know where the code is at
compile time.

3. If we are able to locate the function body that is passed to
offload#, it could contain arbitrary code that allocates mem-
ory, evaluates thunks, makes calls to other functions, and so on.
Therefore we either have to implement runtime support for do-
ing these things on GPU, or enforce restrictions on the kind of
code that we expect to convert to OpenCL.

To deal with this first issue, we choose to integrate with Con-
cord [2], a heterogeneous C/C++ programming framework for pro-
cessors with integrated GPUs with SVM support. Concord imple-
ments SVM in software today making it suitable for processors like
Ivy Bridge and Haswell from Intel. It enables existing multicore
applications that use pointer-based traversals to take advantage of
GPUs easily without having to marshal and un-marshal data.

The latter two issues are related to program safety and correct-
ness, and we must assess them carefully when taking the native
offload approach. We present the set of design choices and con-
cessions we have made in Table 1, and discuss their implications
below:

1. We do not attempt to offload arbitrary Haskell functions, but
rather only computations that are composed of functions and
combinators drawn from the Repa library. The authors of the
Repa library have already taken great effort to instruct GHC
to aggressively inline and fuse all array functions. We note
that whilst we explicitly preclude the calling of non-recursive
function calls within the kernel in this presentation of ourwork,
implementing a pass to inline their definitions is a technically
simple matter. As a result, more often than not what we get
by compiling Repa programs that use thecomputeG API is a
known static function passed tooffload#. As we shall see in
Section 5, this is true for all benchmarks tested, without any
modifications to their source.

2. HRC is good at turning tail-recursive calls – and even mutual
ones – into local loops, so typical Repa computations in the of-
fload kernel are not recursive. Calls to other functions are pos-
sible, but currently we do not transitively translate all functions
that are called, but instead leave them to the compiler to re-
solve. For the most part, functions concerning operations such
as arithmetic are easily resolved by the Concord/OpenCL com-
piler.

3. Unlike Accelerate or other DSL solutions, Repa is a native
Haskell library and thus must adhere to its call-by-need seman-
tics. Although most Repa computations are not lazy by design,
strictness analysis alone does not handle all cases, and some-
times one must still modify the program to make sure no resid-
ual thunk evaluations remain inside the offload kernel. Static
analysis is enough to catch these and report them at compile
time, however.

4. One early design choice was to make use of SVM to ease
memory management, but the interaction of the offloaded ker-
nel with the garbage collector can still prove difficult. Forin-
stance, only memory allocated in the SVM region is visible to
the kernel, but it is very difficult to know beforehand if a piece
of memory will be accessed by the kernel when allocating it.
Therefore, we choose to avoid this problem entirely by instruct-
ing the garbage collector toalways allocate in the SVM region.
Unfortunately, the amount of data which we can store in SVM
is restricted by the specification of OpenCL.

4 2014/5/16

Property Scope Checked at Note
Kernel function pointer Only static functions Compile time This is usually the case for Repa programs
Non-recursive function calls Not supported Compile time Can be inlined into the kernel definition
Recursion Not supported Compile time Tail-calls are already turned into loops
Foreign calls Limited Compile and link time Only safe foreign calls to OpenCL functions are allowed
Shared memory Full support By making GC always allocate in SVM space
Garbage collection Limited Run time SVM has a maximum heap size of 400MB
Memory allocation Not supported Compile time No GC runtime for OpenCL devices
Thunk-eval Not supported Compile time Strictness annotations to source code may be required

Table 1. Design choices: implementation of offload

5. Always allocating inside SVM does not solve all memory is-
sues, however, as dynamic heap allocation inside the kernel
presents another challenge. We must either callback into the
main program on CPU, or implement part of the garbage collec-
tor as GPU kernels. Since such allocations are not data-parallel
to begin with, we choose to simply rule outall kernel alloca-
tions, and report them as errors at compile time.

6. Due to the relaxed memory consistency guarantee during GPU
kernel execution, we must temporarily halt garbage collection
whilst the GPU is interacting with memory.

With these decisions, it is then straightforward to implement a
first iteration of the actualoffload# primitive as follows: intercept
all offload calls at the code generation stagebefore Pillar code is
produced. Then, for each call, we first ensure the kernel is a static
function, and then examine the body of the kernel function tocheck
for no-allocation and no-thunk-eval conformance before outputting
them as separate source files to be compiled by Concord. Finally,
we replace theoffload# call in the main program with a Concord
function that runs the kernels themselves. Finally, we ensure that
all kernels are properly compiled by Concord, and linked with the
main program together with the Concord runtime.

4. Optimization for Performance
The Repa library is known to produce high-quality code through
a set of advanced optimizations including type-indexed represen-
tation, heavy use of theINLINE pragma and GHC rules to aid in
fusing array computations. The result is particularly effective con-
sidering that Repa is not a full-blown DSL compiler but rather a
library, and as such has to rely on the GHC to do the actual opti-
mization. This kind of reliance can be fragile at times, as wecannot
be sure if an optimization really has taken place unless we examine
the generated Core code (or even lower, such as LLVM code via
the GHC LLVM backend). On the other hand, the DSL approach
taken by Accelerate and Obsidian has direct control over which
optimizations go into the DSL compiler, and how they are imple-
mented and tuned, but at the same time cannot make good use of
the optimizations already implemented in the Haskell compiler, and
as such the approach is reduced to a matter of taste. In this section
we explore ways to both help users write Repa programs appropri-
ate for GPU offloading, and aid compilers in better optimizing the
generated code.

4.1 Strictness

As discussed previously, the HRC performs static checks to en-
sure that kernel functions contain no thunk-eval instructions, which
means that as a Repa library user, we must ensure that the computa-
tion passed tocomputeG is strict. This is often the case, but some-
times the situation is more complex than appears at first glance. To
paraphrase an example given by Lippmeier, et al [10]:

diagonals :: Array U DIM1 Int
-> Array U DIM2 Int
-> Array U DIM1 Int

diagonals xs ys = computeG
(R.map (\i -> ys ‘index‘ (DIM2 i i)) xs)

One would expect that the functiondiagonals completely
evaluates the map function over the two input arraysxs and ys
when it builds the output array, and thus is strict in both arguments.
Unfortunately, this is not the case under lazy evaluation, as the array
ys is not demanded at all if the length ofxs is zero. Indeed, if
we compile this program with our compiler, it will complain about
a thunk evaluation in the kernel function, which is essentially the
lambda expression passed toR.map.

To alleviate this problem, Lippmeier, et al [10] suggest users
“add bang patterns toall array parameters for functions using the
Repa library”, and useseq when bang patterns are not sufficient.
This might come only as a minor annoyance in practice, but it
is important to know the difference, especially when DSLs like
Accelerate impose a strict semantics while Haskell and Repado
not.

4.2 Branch Avoidance

GPUs are not good at executing branch code in general. Although
the OpenCL compiler will not complain when you compile code
with branches, runtime performance suffers. To illustrate, consider
the following OpenCL kernel skeleton:

kernel void f(...)
{

...
if (C) {

A;
} else {

B;
}
...

}

Suppose this kernel is offloaded to a number of PEs for exe-
cution. As all PEs run exactly the same instruction, if some PEs
enter branchA (i.e. conditionC is satisfied), other PEscannot en-
ter branchB simultaneously, as to do so would violate the SIMD
model. These latter PEs must now either wait, or enterA but dis-
card the effect of running it. As a consequence, all compute PEs
execute both branches, a significant waste of computing cycles.

If conditionals cannot be avoided at the source level, we should
attempt to minimize the number of instructions in both branches.
Unfortunately, this is not a factor that the user can controlwhen
compiling Haskell programs with GHC, as GHC performs many
code transformations when optimizing a program, with a particular
tendency to push code towards branch leaves in the hope that

5 2014/5/16

this will reveal more opportunities for optimization. Therefore,
when examining the code generated for offloaded kernels, we often
see branches with relatively large size of code in both of them,
with most of the instructions in each branches almost identical up
to alpha-renaming of variables. This is not a problem uniqueto
GPU offloading, but also an issue previously encountered when
implementing SIMD vectorization for CPUs into HRC.

To reduce the impact of situations such as these, we implement
an algorithm that attempts to merge conditional branches using a
new conditional move (CMOV) primitive introduced to the MIL IR.
A CMOV is semantically similar to the following C expression:

c ? a : b

That is to say,c represents a boolean value, and botha and b
represent values of the same type. The expression evaluatesto a
whenc is true, and tob otherwise. Unlike in a general C expression
where only one branch needs to be evaluated, since MIL is strict we
require thata, b andc are either constants or variables, the values
of which will already have been evaluated prior to reaching the
conditional.

MIL has a CFG-based block structure, where conditional
branches are represented by a case switch that can potentially jump
to one of several destination blocks. For simplicity, we impose the
following pre-conditions for the branch merge optimization:

• The branch is a binary switch over a boolean variable. Binary
switches over non-boolean values can be easily converted into
boolean ones.

• Both branches contain only one instruction block, and these
blocks do not contain intermediate block transfers.

• Both branches must share a unique predecessor block, the block
that performs the case switch.

• Both branches must share a unique successor block to ensure
that there are no more branching transfers after the merge.

The actual merge function takes the two blocks of each branch
as input, and produces a single output block as the result. Ifthe
algorithm opts to ‘bail out’ prior to completion, no output is pro-
duced and the input code stays unchanged. The general algorithm
can be described as follows:

1. Pop one instruction from the head of each block, and check if
they are alpha-equivalent by looking up a dictionary of equiva-
lent variable names.

2. If these instructions are equivalent, we produce a new instruc-
tion in the output block after alpha-renaming, and loop backto
Step 1.

3. If these instructions differ only in their arguments, we identify
each pair of arguments that are different, and assert their equiv-
alence by making a new variable and map both arguments to
it in the equivalence dictionary. Then we produce a CMOV in-
struction for each equivalent variable to initialize them based on
the condition variable. As a result, the two instructions are now
equivalent, and we loop back to Step 2.

4. If the instructions are indeed different, we count this asa mis-
match. We check if one of them can be appended to the end
of the output block by checking whether it has no side-effects.
If this is the case, the instruction is safe to run regardlessof
control flow.

5. If the check in Step 4 fails, we bail out of the algorithm. Ifit
succeeds, we push the side-effect free instruction to the end of
output block, push the other instruction back to the top of its
input block, and loop back to Step 1.

The above algorithm terminates successfully if we process all
instructions from both input blocks. We also set a thresholdof
how many mismatches are allowed, and bail out if this threshold
is exceeded. This is a heuristic to ensure that we don’t over-merge
branches that are indeed substantianlly different from each other.
Ideally, we should check instruction equivalence modulo instruc-
tion re-ordering when permitted by side-effect constraints, but we
choose not to implement this and adhere to the existing instruction
order in the input blocks. The actual equivalence check is more
complicated than we describe here due to the variety of instruction
types, but we omit the details for simplicity.

4.3 Better Index Calculation

The Repa library internally represents all arrays as a single con-
tinuous memory block. In order to read from a multi-dimensional
array, we first convert a N-dimensional index into a row-major lin-
ear index, and read the data from the underlining memory block
using this linear index. Usually this is not a problem, but ifwe re-
call the definition ofloadG in Section 2, we assume that the range
argument passed to theoffload# primitive is the same as the lin-
ear size of the underlining array block, and the kernel function also
expects a linear index as its first parameter. Consequently,to ob-
tain the value to be written to the output array, we first convert the
linear index to the appropriate shape specified by the abstract rep-
resentation usingfromIndex. An issue arises if the linear index is
used to both read from and write to multi-dimensional arraysof the
same size, as it is first converted to a multi-dimensional oneand
then immediately converted back.

The problem is evident when we compile themap2 example
seen in Section 2 using HRC. The OpenCL kernel code is given
below:

kernel void map2(global const int * restrict a,
global int * restrict b)

{
int idx0 = get_global_id(0):
int i = idx0 / 5;
int j = idx0 % 10;
int idx1 = i * 5 + j;
int x = a[idx1] * 4;
b[idx0] = x * x;

}

We can immediately tell thatidx1 is equal toidx0. Further-
more, there are 4 redundant arithmetic operations within a kernel
that only comprises 2 multiplications. We might expect a quality
OpenCL compiler to be capable of reasoning about the equality of
the two indices and optimize away redundant arithmetic operations.
In practice, we still find it beneficial to add adivMod optimization
to HRC as part of the MIL optimizer, as being able to derive in-
dex equality is a powerful result that may trigger optimizations that
may not be viable otherwise. In Section 5 we will inspect some
benchmarks that demonstrate the effectiveness of this simple opti-
mization.

4.4 Cache Locality

A topic related to multi-dimensional array representations is how
to best make use of cache locality, avoiding memory latencies
incurred by cache misses. Repa uses a row-major representation for
multi-dimensional arrays, so it is best to structure innermost loops
along the rows, and use blocking techniques to structure theouter
loops so as to maximize the use of the cache-line. For example,
the Repa library already implements explicit memory blocking in
the load function for its cursored array representation. Italso tries
to make use of the Global Value Numbering (GVN) optimization
that is available in GHC’s LLVM backend by loop unrolling and

6 2014/5/16

relative index calculation [9]. This proves to be quite effective in
practice.

Cache locality optimization in general applies to both CPUsand
GPUs, however there are also GPU specific techniques. For exam-
ple, we know that PEs are grouped into compute units on device,
and that PEs in the unit can share local memory. Therefore, instead
of using a linear global ID, it is best to address PEs using a scheme
that is close to their physical structure, and arrange memory access
pattern in the kernel so that all PEs internal to the same unitwork
on a contiguous memory region, and two units work on different
memory regions. Unfortunately we cannot make use of this kind
of cache locality optimization because ouroffload# primitive as-
sumes a range linear in its type, and once a multi-dimensional index
is collapsed to a linear one, its structural information is lost.

5. Benchmark Results
We measure the performance of native offloading to GPU using
a set of benchmarks written using the Haskell Repa library. The
majority of these benchmarks originate from the “Haskell Gap”
study [16], with three new benchmarks added: matrix multiplica-
tion, 7-point stencil, and 2D-to-3D back projection. We briefly de-
scribe the benchmarks and their runtime parameters in Table2,
wherein the iteration count refers to the number of iterations of
the kernel function per program run. This iteration count serves
to amortize the cost of compilation and initiating GPU offload, as
some of the benchmark kernels take milliseconds to complete. We
refer interested readers to the Haskell Gap paper for a more thor-
ough study of these benchmarks on both the Xeon CPU and Xeon
Phi co-processors.

5.1 GPU vs CPU performance

All benchmarks presented here are compiled using HRC with GHC
7.6.1 as its frontend, the Intel C/C++ Compiler version 13.1.3.198
as its CPU backend, and Intel OpenCL SDK 3.0 with the latest ver-
sion of Concord as the GPU backend. We only measure time spent
in kernel computations when running the benchmarks, excluding
time spent preparing inputs and producing output. We run these
benchmarks on the following hardware:

Processor Cores Clock Hyperthread Peak Perf.

HD4600 (GPU) 20 1.3GHz N.A. 432 GFLOPs
Core i7-4770 4 3.4GHz Yes 435 GFLOPs
Xeon E5-4650 32 2,7GHz No 2970 GFLOPs

It must be noted that the above peak GFLOPs for each pro-
cessor are calculated based on their hardware specifications, and
hence shall only be considered as theoretical limits. Although the
HD4600 GPU has about the same peak GFLOPs as Core i7-4770,
its Cores are of a much simpler design. We do not expect to get
better performance by offloading to HD4600, but for the same per-
formance we do expect less energy conumption through GPU of-
floading.

For the Core i7, we run each benchmark with 1, 4 and 8 OS
threads with hyper-threading enabled. For the Xeon, we run each
benchmark with 1, 4, 8, 16 and 32 OS threadswithout hyper-
threading. We do not include numbers for GHC-compiled bench-
marks in part due to GHC not supporting SIMD vectorizations on
CPUs, as all but one benchmarks we present contain a kernel that
can be vectorized by HRC. We refer our readers to the work by
Petersen et al for details on the HRC vectorizer [17].

The relative kernel performance is given in Figure 1 and Fig-
ure 2, where all numbers are normalized to a baseline speed cor-
responding to the execution time of a Core i7 CPU running a sin-
gle thread without vectorization (which we call thebaseline). All

benchmarks are ordered in the ascending order of their max CPU
performances, and split into two figures for clarity on theirrelative
scale. In the remainder of this section, we will speak of the relative
performance of a particular configuration for a given benchmark as
a single number, for example4.7× means it’s 4.7× faster than the
baseline.

xxxxxx
xxxxxx
xxxxxx

xxxxxxx
xxxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxx
xxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

0

10

20

30

40

50

60

70

80

1d-convolution nbody

x GPU

x
CPU(i7,1)

x
x CPU(i7,4)

x CPU(i7,8)

x CPU(Xeon,1)

x
CPU(Xeon,4)

x
x CPU(Xeon,8)

x CPU(Xeon,16)

x CPU(Xeon,32)

154

Figure 1. Kernel Speedups Relative to Core i7 (bigger is better)

Figure 1 shows two high-performing benchmarks with very
effective speedups on multi-core CPU. From left to right, wehave:

1d-convolutionThis benchmark has a tight inner loop that iterates
over the same input stencil array of 8192 elements, which can
all fit into cache. 256-bit wide AVX2 vectorization gives very
good speedup of almost 8×. Over-subscribing the Core i7 CPU
with 8 hyper-threads also brings a little speedup. It scaleslin-
early to the number of CPU cores, and at 32-core, Xeon (154×)
significantly outperforms GPU (11×).

nbody This benchmark is computation intensive, since the entire
input arrays can all fit into cache, and over-subscribing the
Core i7 CPU with 8 hyper-threads actually slows it down.
Vectorization brings 4.7× speedup. It also scales linearly on
CPU, Its GPU speedup is pretty good (20×), but still no match
for 32-core Xeon (57×).

Figure 2 shows the rest seven benchmarks. From left to right,
we have:

matrix-mult This benchmark is both computation intensive and
sensitive to cache misses, since the inner loop has to traverse
both a row from one matrix, and a column from the other. The
inner loop vectorizes on CPU, but the vectorization is inef-
fective due to strided loads being software-emulated instead
of hardware-accelerated on AVX2 architecture. This actually
gives a slow down on Core i7 at 0.75× compared to non-
vectorized version. Over-subscribing the Core i7 CPU with
8 hyper-threads boosts the performance quite significantly.
Its GPU performance is good (21×), which significantly out-
performs Core i7 (max at 4×), and is close to the performance
of 32-core Xeon (21×).

blackscholesThis benchmark is memory bound, and is limited
by the available memory bandwidth, which explains the signifi-
cant speedup brought by over-subscribing the Core i7 CPU. As
witnessed by the Xeon performance, it does not scale linearly to
the number of cores due to memory I/O saturation. GPU perfor-
mance is good at 19×, comparable to the Core i7 (20×) and the
Xeon (19×), which is another indication of memory bandwidth
bound application.

treesearch This benchmark does little computation in its in-
ner loop, and is sensitive to cache misses. It’s also heavy on
branches, which are translated to CMOV instruction on CPU by

7 2014/5/16

Name Parameter iteration Description
1d-convolution 3M pixels 10 1D convolution with 8192-point stencil
2d-convolution 3200×4000 pixels 100 2D convolution with a 5x5 stencil
7pt-stencil 256×256×160 pixels 100 3D convolution with 7-point stencil
backprojection 256×256×256 pixels 100 2D to 3D image projection
blackscholes 10M options 100 Black Scholes algorithm for put and call options
matrix-mult 2K×2K matrix 1 Matrix multiplication
nbody 200K bodies 1 Nbody simulation
treesearch 16-level tree, 20M inputs 50 Binary tree search
volume-rendering 1M input rays 1000 Volumetric rendering

Table 2. Benchmarks and their parameters

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

0

5

10

15

20

matrixmult blackscholes treesearch backprojection 7pt-stencil volume-rendering 2d-convolution

x
x GPU

x
CPU(i7,1)

x CPU(i7,4)

x
x

CPU(i7,8)

x
CPU(Xeon,1)

x CPU(Xeon,4)

x
CPU(Xeon,8)

x
CPU(Xeon,16)

x CPU(Xeon,32)

Figure 2. Kernel Speedups Relative to Core i7 (bigger is better)

HRC. CPU vectorization is rather ineffective as a result: 0.9×
on Core i7 for single-thread, and 1.3× on Xeon (not shown in
the figure). Likewise, its GPU performance is not great either
(5.5×). It scales linearly on Xeon with a peak performance of
17× at 32-cores.

backprojection This benchmark is both computation intensive
and sensitive to cache misses when indexing its input 2D array.
It contains strided loads in the inner loop, which hampers vec-
torization on CPU (1.6× on single-thread Core i7). The GPU
speedup is modest at 7.5×. It scales linearly on Xeon with a
peek performance of 17× at 32-cores.

7pt-stencilThis benchmark is light on computation, and very sen-
sitive to cache misses. The program is written as a naive traver-
sal of its input 3D array because Repa does not yet provide
domain-specific operators for 3D stencil. Vectorization isin-
effective due to strided loads and cache misses, which brings a
significant slowdown (0.65× on single-thread Core i7). Like-
wise, its GPU performance is poor (3.87×). It scales linearly
on Xeon with peak performance of 8× on 32-cores.

volume-rendering This benchmark has an irregular inner loop
with two early loop exits, and HRC is unable to vectorize it, so
for this one benchmark, the CPU numbers shown in Figure 2
are without vectorization. It scales linearly on Xeon but the
performance is not great (7× at 32-cores). Its GPU performance
is also poor (2×).

2d-convolution This benchmark is memory bound, and sensitive
to cache misses. Repa gives special treatment to 2D stencils
using a cursored representation, which when compiled with
HRC optimizations, is able to vectorize effectively on CPU (4×
on single-thread Core i7). Its Xeon performance does not scale
linearly, but appears to be limited by memory bandwidth. On

the other hand, its GPU performance is very poor at only 1.1×
speedup. We discuss this benchmark further in Section 5.3.

In all nine of the benchmarks we have studied, HD4600 ei-
ther matches or beats Core i7 performance on six of them. It
does reasonably well for for 1d-convolution, but fares poorly for
the volume-rendering and 2d-convolution benchmarks. for volume-
rendering, its performance is not bad given that the irregular kernel
is more challenging for GPU. In all benchmarks, the 32-core Xeon
still out-performs the 20-core GPU, which is not surprisinggiven
that the Xeon is a server-grade CPU with a significantly higher the-
oretical peak performance, and it is a lot more expensive too. We
summarize by giving the geometric means of the best relativeper-
formance of all benchmarks on the three architectures:

HD4600 (GPU) Core i7-4770 Xeon E5-4650

Geometric Mean 6.9 7.0 18.8

By showing that we can achieve expected performance on in-
tegrated GPU by offloading Haskell Repa programs, hopefullywe
have demonstrated the viability and promise of the native approach.
With shared memory support already in place, our system can be
further extended to combine both CPU and GPU to achieve even
greater performance, which is left to future work.

5.2 Performance Factors

Our benchmark study is focused on Haskell programs written us-
ing the Repa library. Despite all being categorized as data-parallel
in general, these programs have different performance factors con-
tributing or limiting their performances, and most of them are ap-
plicable to both CPU and GPU hardware settings. We make the
following important observations:

8 2014/5/16

Benchmark Description
haskell-1 Haskell program with a kernel that computes only one output pixel
haskell-row Haskell program with a kernel that computes an entire outputrow
ocl-naive A native OpenCL implementation that reads 5x5 stencil from an array
ocl-const Similar to ocl-naive, but specifies constant memory for stencil array
ocl-unrolled Similar o naive-const, but with stencil loop unrolled
ocl-specialized Similar to ocl-unrolled, but with stencil values specialized as constants
ocl-localmem Similar to ocl-specialized, but use 20x20 local memory to cache inputs
ocl-linear A OpenCL implementation ported from the generated kernel ofhaskell-1

Table 3. OpenCL and Haskell Benchmarks for 2D Convolution

• Thread-level or multi-core parallelism usually brings linear
scale-up for regular workloads under a shared memory model.
This is true for most of our benchmarks, and especially effec-
tive for computation intensive ones such as 1d-convolutionand
nbody. A notable exception is that when the memory bandwidth
is fully saturated, adding more threads or cores will no longer
help with the speed, and sometimes may result in slowdowns.
This is evident for the blackscholes and 2d-convolution bench-
mark.

• Making good use ofmemory locality is crucial for applications
to gain performance, Applications perform best when most its
input data can fit into cache (e.g., nbody, 1d-convolution),but
it is not always possible. Grouping data together for sequential
access (e.g., AOS to SOA conversion as in blackscholes), and
cache blocking are two frequently used techniques (treesearch,
2d-convolution) to help memory locality.

• Over-subscribing with hyper-threads will help applications
to improve performance by amortizing the cost of memory I/O
due to cache misses (e.g., matrix-mult and blackscholes), but
will not help those that are already computation intensive (e.g.,
nbody).

• SIMD vectorization is an effective means to gain perfor-
mance when the inner loop is regular and can be vectorized
(1d-convolution, nbody, blackscholes, and 2d-convolution). Al-
though AVX2 (and older generation of SIMD hardware) cur-
rently does not support hardware-accelerated strided loads and
some of our benchmarks (matrix-mult, backprojection, 7pt-
stencil) suffer from it, future hardware (including the current
generation of Xeon Phi) will no longer have this deficiency.
Besides, algorithm change can help to turn strided loads into
sequential ones, as demonstrated by the modifications to Repa
we did for 2D stencils [16].

• Branch-avoidancehelps SIMD vectorization and gaining per-
formance on both CPU and GPU. The CMOV optimization
we implemented in HRC helps to enable vectorization for pro-
grams that have conditionals in its hot loop (blackscholes),
although its effectiveness is limited when branching cannot
be avoided (volume-rendering) and when branching cost out-
weighs computation cost (treesearch).

Most of the above mentioned techniques can and already have
been implemented as part of an optimizing compiler and/or li-
brary. For example, HRC implements automatic SIMD vectoriza-
tion. The Repa library makes it trivial to take advantage of thread-
level (or multi-core level) parallelism, and its high-level interface
enables automatic AOS-to-SOA conversion under-the-hood.It is
also easy to implement cache blocking for Repa’s abstract array
representation (cursored, partitioned, etc.). Some applications such
as treesearch require algorithmic change to implement advanced

cache blocking, and others require explicit strictness annotation or
INLINE/NOINLINE pragmas in order to achieve desirable low-
level compiled outputs. Hopefully we have shown that despite hard-
ware differences these optimization techniques are applicable to the
compilation of a data-parallel program written in a high-level lan-
guage for both CPU and GPU targets, and when the performance
is missing, which technique could be effectively applied given the
characteristics of the application.

5.3 Haskell vs OpenCL Performance

No Haskell benchmarking is complete without comparing to native
C performance, where “C” symbolizes what is possible with low-
level high-performance languages. Following the same spirit of the
“Haskell Gap” study, we believe it makes a very good comparison
between the following:

1. Idiomatic Haskell program compiled by an optimizing compiler
that targets GPGPUs;

2. the best-performing low-level program written using either
OpenCL or CUDA that targets the same hardware.

Ideally we would also like to compare Repa programs compiled
using our native offload approach with Accelerate DSL programs
compiled by an OpenCL Accelerate backend for the same hard-
ware. Unfortunately we were unable to complete this task at the
time of writing due to the lack of a fully functioning OpenCL back-
end for Accelerate that targets Intel integrated graphics cards.

Furthermore, due to our limited resources, we were unable to
port all benchmarks to OpenCL and hand optimize them for best
performance. Therefore we choose to focus on a single benchmark,
2D convolution, which is one of the worst performing benchmarks
on GPU. We obtained a sequence of hand-tuned OpenCL programs
for 2D convolution from [18], modified to work on the same inputs,
and compiled by the same Intel OpenCL SDK 3.0 that HRC (via
Concord) uses.

We summarize the set of 2D convolution benchmarks in Table 3.
We have 6 OpenCL programs ranging from naive to optimized
ones, and 2 Haskell programs, which are actually the same source
program that we have considered before, but with different Repa
library implementations. When compiled by HRC, both program
would produce an OpenCL kernel with inner stencil loop com-
pletely unrolled, and all stencil values already specialized as con-
stants. The haskell-row benchmark here is the same 2d-convolution
benchmark presented previously in Figure 2.

One important difference between Haskell and OpenCL imple-
mentations is that all OpenCL kernels (except ocl-linear) use a 2D
index consisting of bothX andY coordinates, while the Haskell
kernels use a linear index required by theoffload# primitive. All
OpenCL kernels compute only one output pixel. The ocl-linear pro-
gram is produced by hand-porting the C kernel code from compil-

9 2014/5/16

ing haskell-1 with HRC to OpenCL, and hence it also uses a linear
index.

Another difference is that our OpenCL implementations do not
handle border conditions at all, while the Haskell ones do.

0.24

0

1

2

3

4

5

6

7

8

Figure 3. 2D Convolution Kernel Speedups Relative to Core i7
(bigger is better)

Figure 3 shows the relative performance of all 7 benchmarks for
2D convolution on HD4600, where the speedup is normalized to
the same baseline we have considered previously, i.e., the Haskell
2d-convolution benchmarked running a single thread on Corei7
with vectorization turned off. This helps to compare OpenCLper-
formance on GPU with Haskell performance on CPU. All bench-
marks are run for 100 iterations on an input image of 3200x4000
pixels. We make the following observations on this set of results:

• The best performing OpenCL program (ocl-specialized) is
at 7.16×, which is slightly higher than the best performing
Haskell program on Core i7 (6.37× at 4 threads). This further
confirms that this benchmark is memory bound.

• By declaring stencil array as constant memory, we immediately
see a huge performance boost from ocl-naive (0.24×) to ocl-
const (3.56×). This is the kind of low-level OpenCL optimiza-
tion that compilers for high-level language should try to take
advantage of. By further eliminating memory reads of sten-
cil value, ocl-specialized (7.16×) is able to double the perfor-
mance.

• Explicitly doing a cache blocking using local memory doesn’t
seem to give much advantage. The overhead of filling a 20x20
cache (with a local group of 16x16) and synchronization at the
end of cache-fill actually gives a slight slowdown, as indicated
by ocl-localmem (6.34×) and ocl-specialized (7.16×), This is
contrary to the original report by Reda [18]. We suspect thisis
due to hardware architecture differences.

• There is virtually no difference between the kernels of ocl-
linear (6.74×) and of haskell-1 (2.75×), and yet there is more
than twice a performance gap. Besides border handling, there
are possibly other non-negligible overheads in the Haskellim-
plementation. Having to allocate a new array in between the
convolution iterations could be one of them. Further analysis is
required to better understand this.

• The performance difference between haskell-1 (2.75×) and
haskell-row (1.12×) also come as a surprise. Lippmeier and
Keller carefully designed the cursored representation of Repa
arrays for parallel execution, where adjacent reads from source
image can be shared when computing 4 output pixels at a time.
When we batch compute 4 output pixels with a 5x5 stencil, it
only requires 5x(5+4-1)=40 memory loads (as in haskell-row).
Compared to 5x5x4=100 memory loads when each output pixel
is computed in isolation (as in haskell-1), it was presentedas

a good optimization technique for CPUs. However, the same
doesn’t seem to apply to GPUs. As a result of the batched load
and inlining, haskell-row produces a very long kernel code.We
suspect the added overhead is due to overly unrolled loop body.
Again, further analysis is required to better understand this.

As a conclusion, there apparently is great opportunity for com-
piler and library writers to borrow some of the low-level GPUand
OpenCL optimization techniques. As a complement to the discus-
sion in Section 5.2, we have shown that not all techniques foropti-
mizing CPU programs are as effective when applied to GPU. Some-
times the performance discrepancy must be scrutinized on a case by
case basis, and it requires deep knowledge of low-level toolchain
and hardware specifics before one can begin to understand them.
We consider this as part of our future work.

6. Related and Future Work
Due to similarities between the APIs of Repa and Accelerate,we
are interested in undertaking a detailed comparison between our
native approach and the DSL approach taken by Accelerate. Un-
fortunately, Accelerate does not have a fully functional OpenCL
backend to compile and run the benchmarks in Table 2, and more-
over other DSL based frameworks for GPGPU programming (such
as Obsidian [19] and Nikola [12]) only target CUDA. As a re-
sult, a direct performance comparison upon the same hardware is
not possible. Obsidian’s DSL uses a lower-lever abstraction that
exposes more details of the hardware hierarchy by only targeting
one-dimensional arrays of limited size. At the high level, Nikola is
similar to Accelerate, with more targeted optimizations only sup-
porting first-order array functions, and also makes use of meta-
programming to allow DSL programs to be compiled statically
when the host program is being compiled, avoiding the overhead
of having to compile them at runtime. More generally, Gasterand
Morris [6] implement a direct embedding of OpenCL in GHC, of-
fering a way to program GPGPUs in a high-level language for ap-
plications outside the domain of data-parallel array programming.

Furthermore, we intend to study irregular workloads, as there
is nothing constraining us from using theoffload# primitive to
compile programs beyond those written using the Repa library. In
particular, the Concord compiler [2] which we use in this work has
beendesigned to target irregular workloads. By focusing only on
programs written in Repa, we are not fully exercising the power of
Concord. There are still many issues surrounding the nativeoffload
of arbitrary Haskell functions, however, especially considering the
lack of garbage collector support and thunk-evaluation forGPU
runtimes. It remains to be seen whether a compromise exists for
capturing irregular GPU workloads by way of an abstraction be-
tween array-based data-parallel programming and the call-by-need
semantics of Haskell.

In conclusion, this work presents a technique for directly of-
floading computations written in the Repa library of Haskellto
GPGPUs via OpenCL without requiring extensive API changes.
We support the latest shared virtual memory model between the
host and associated OpenCL devices, avoiding unnecessary data
movement between them. The Repa library provides just the right
kind of data-parallel abstraction required, and by implementing a
GPU backend in the Haskell Research Compiler, most programs
written using Repa can be compiled down to a strict kernel func-
tion comprising straight loop code, which is ideal for execution on
GPGPUs. We demonstrate the feasibility of the native offloadap-
proach by presenting a detailed analysis of nine benchmarkscon-
trasting the performance of GPU and two CPUs.

10 2014/5/16

References
[1] T. A. Anderson, N. Glew, P. Guo, B. T. Lewis, W. Liu, Z. Liu,L. Pe-

tersen, M. Rajagopalan, J. M. Stichnoth, G. Wu, and D. Zhang.Pillar:
A parallel implementation language. InLCPC, pages 141–155, 2007.

[2] R. Barik, R. Kaleem, D. Majeti, B. T. Lewis, T. Shpeisman,
C. Hu, Y. Ni, and A.-R. Adl-Tabatabai. Efficient mapping of
irregular c++ applications to integrated gpus. InProceedings
of Annual IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO ’14, pages 33:33–33:43, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2670-4. . URL
http://doi.acm.org/10.1145/2544137.2544165.

[3] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Oder-
sky, and K. Olukotun. A heterogeneous parallel framework for
domain-specific languages. InProceedings of the 2011 Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’11, pages 89–100, Washington, DC, USA, 2011.
IEEE Computer Society. ISBN 978-0-7695-4566-0. . URL
http://dx.doi.org/10.1109/PACT.2011.15.

[4] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and
V. Grover. Accelerating haskell array codes with multicoregpus. In
M. Carro and J. H. Reppy, editors,DAMP, pages 3–14. ACM, 2011.
ISBN 978-1-4503-0486-3.

[5] R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, and
G. Keller. Embedding foreign code. In M. Flatt and H.-F. Guo,edi-
tors,PADL, volume 8324 ofLecture Notes in Computer Science, pages
136–151. Springer, 2014. ISBN 978-3-319-04131-5.

[6] B. R. Gaster and J. G. Morris. Embedding OpenCL in GHC haskell.
2013.

[7] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. L. P.Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in haskell.
In P. Hudak and S. Weirich, editors,ICFP, pages 261–272. ACM,
2010. ISBN 978-1-60558-794-3.

[8] Khronos Group. The OpenCL specification, version: 2.0, 2013. See
https://www.khronos.org/opencl/.

[9] B. Lippmeier and G. Keller. Efficient parallel stencil convolution in
haskell. In K. Claessen, editor,Haskell, pages 59–70. ACM, 2011.
ISBN 978-1-4503-0860-1.

[10] B. Lippmeier, M. M. T. Chakravarty, G. Keller, and S. L. P. Jones.
Guiding parallel array fusion with indexed types. In J. Voigtländer,
editor,Haskell, pages 25–36. ACM, 2012. ISBN 978-1-4503-1574-6.

[11] H. Liu, N. Glew, L. Petersen, and T. A. Anderson. The Intel Labs
Haskell research compiler. InHaskell Symposium, pages 105–116,
Boston, Massachusetts, USA, 2013. ACM. ISBN 978-1-4503-2383-3.

[12] G. Mainland and G. Morrisett. Nikola: embedding compiled gpu
functions in haskell. In J. Gibbons, editor,Haskell, pages 67–78.
ACM, 2010. ISBN 978-1-4503-0252-4.

[13] T. L. McDonell, M. M. T. Chakravarty, G. Keller, and B. Lippmeier.
Optimising purely functional gpu programs. In G. Morrisettand
T. Uustalu, editors,ICFP, pages 49–60. ACM, 2013. ISBN 978-1-
4503-2326-0.

[14] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with cuda.Queue, 6(2):40–53, Mar. 2008. ISSN 1542-
7730. . URLhttp://doi.acm.org/10.1145/1365490.1365500.

[15] L. Petersen and N. Glew. GC-safe interprocedural unboxing. In Com-
piler Construction, pages 165–184, Tallinn, Estonia, 2012. Springer-
Verlag.

[16] L. Petersen, T. A. Anderson, H. Liu, and N. Glew. Measuring the
Haskell gap. InPost Symposium Submission to The 25th Interna-
tional Symposium on Implementation and Application of Functional
Languages, Aug. 2013.

[17] L. Petersen, D. Orchard, and N. Glew. Automatic SIMD vectorization
for Haskell. In ICFP, pages 25–36, Boston, Massachusetts, USA,
2013. ACM. ISBN 978-1-4503-2326-0.

[18] K. Reda. A study of OpenCL image con-
volution optimization, April 2012. See
http://www.evl.uic.edu/kreda/gpu/image-convolution.

[19] J. Svensson, M. Sheeran, and K. Claessen. Obsidian: A domain
specific embedded language for parallel programming of graphics
processors. In S.-B. Scholz and O. Chitil, editors,IFL, volume 5836 of
Lecture Notes in Computer Science, pages 156–173. Springer, 2008.
ISBN 978-3-642-24451-3.

11 2014/5/16

