Programming Macro Tree Transducers

Patrick Bahr *

Department of Computer Science
University of Copenhagen

paba@diku.dk

Abstract

A tree transducer is a set of mutually recursive functions transform-
ing an input tree into an output tree. Macro tree transducers extend
this recursion scheme by allowing each function to be defined in
terms of an arbitrary number of accumulation parameters. In this
paper, we show how macro tree transducers can be concisely rep-
resented in Haskell, and demonstrate the benefits of utilising such
an approach with a number of examples. In particular, tree trans-
ducers afford a modular programming style as they can be easily
composed and manipulated. Our Haskell representation generalises
the original definition of (macro) tree transducers, abolishing a re-
striction on finite state spaces. However, as we demonstrate, this
generalisation does not affect compositionality.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

Keywords recursion schemes, deforestation, modularity

1. Introduction

Tree automata [5] describe restricted forms of computations on
trees. The simplest tree automata are known as acceptors, which
— analogously to finite state string automata — are used to describe
a set of (potentially infinite) trees. Other types of automata, called
transducers, describe binary relations between trees, in general, or
total functions on trees, in the case of total, deterministic transduc-
ers, which we consider in this paper.

Tree automata are widely applied in the fields of logic [31], term
rewriting [32], XML processing [16], natural language process-
ing [20]. The restrictions upon such automata affords them many
desirable meta-properties such as decidability of equality [S] and
reversability [24].

In this paper, we aim to utilise the properties of tree automata in
order to structure functional programs. In this sense, this paper fol-
lows a line of work [1-3] in which we explore the use of recursion
schemes derived from tree automata to build highly modular pro-
grams that manipulate tree structures. In particular, our goal is to

* This work was done while the author was visiting the Functional Program-
ming Laboratory at the University of Nottingham; the work was supported
by the Danish Council for Independent Research.

[Copyright notice will appear here once ’preprint’ option is removed.]

Laurence E. Day

Functional Programming Laboratory
University of Nottingham

led@cs.nott.ac.uk

extend the expressive power of this approach by using macro tree
transducers (MTTs) [9].

1.1 Contributions

In previous work [1], we considered both top-down tree transduc-
ers (DTTs) and bottom-up tree transducers (UTTs) [27, 30]. Intu-
itively, DTTs represent a set of mutually recursive functions, and
MTTs generalise this recursion scheme by allowing each function
to include an arbitrary number of additional accumulator parame-
ters. In this paper we show how to represent MTTs in Haskell using
a free monad type.
In particular, the contributions are as follows:

e Starting from the representation of DTTs in Haskell, we illus-
trate a restriction upon the state space derived from the types
(Section 3.1). In contrast to the original intent of MTTs, this
observation is independent from the availability of accumula-
tion parameters.

e We show how this restriction of DTTs in Haskell is mitigated
by moving to a polymorphic state space (Section 3.2).

e We illustrate that the generalisation to a polymorphic state
space corresponds to the generalisation from DTTs to MTTs
in automata theory (Section 4).

e Our representation of tree transducers in Haskell generalises
their automata theoretic definitions, since we do not require a
finite state space. We illustrate the benefit of this generalisation
(Section 2.5) and show that the compositional properties of
MTTs and DTTs are maintained in this setting (Section 6).

e We also represent a recursion scheme that combines top-down
and bottom-up state propagation, namely MTTs with regular
look-ahead (Section 7).

The recursion schemes presented in this paper have been imple-
mented as part of the compdata Haskell library [4]. This imple-
mentation combines the recursion schemes with Swierstra’s data
types a la carte [29] and other modular constructs [1]. The only cru-
cial Haskell extension that we need for our representation is rank-2
polymorphism.

1.2 Why Transducers?

Before diving into the technical details, we highlight the benefits of
using tree transducers in Haskell in the first place.

As alluded to in the introduction, tree transducers lend them-
selves to a highly modular programming style. In previous work [1]
we have demonstrated that tree transducers allow us to leverage
modularity along multiple, independent dimensions.

The primary notion of modularity is that of sequential compo-
sition. Given two transformations, one of type A — B and one of
type B — C, we are able to construct a single transformation of
type A — C by combining the underlying transducers. This allows

2013/7/26

us to split complex transformations — as seen in compilers, for ex-
ample — into sequential phases and combine them without incurring
undue performance penalties. This proves a powerful mechanism
when performing deforestation [22, 23, 37], for example.

Secondly, we can modularise the types of the input trees. Given
a transducer defined over trees of signature F and one over G, we
can compose the two to obtain a transducer defined over trees of
signature F & G. This is done via the data types a la carte [29]
technique of Swierstra. But one should note that this construction
is not always straightforward, as subtle interactions between sig-
natures may exist. However, our proposed technique allows for a
flexible composition that accounts for these problems (see [1] for a
number of examples).

The third aspect of modularity is the fact that we can compose
simpler automata to obtain more complex ones. For example, a
transducer may perform a transformation (e.g. inlining) that is de-
pendent on information that is provided by other automata inde-
pendently (e.g. information about the occurrences of bound vari-
ables). This flexible approach not only reduces the complexity of
individual automata, but ensures that they can be substituted easily
regardless of the context in which they operate.

Modularity aside, the structure of tree transducers permits other
operations that manipulate computations on trees. A simple but
powerful class of such operations is the automatic generation and
propagation of annotations. For example, given an code generator
(as an MTT) as part of a compiler, a lifting can be defined that
automatically propagates annotations of the input (e.g. annotations
indicating the originating line in a source file) [2]. Section 5 demon-
strates this lifting for the case of MTTs.

2. Top-Down Tree Transducers

In this section, we briefly explain the concept of top-down tree
transducers, which is the type of automata that we shall built upon
subsequently.

2.1 First-Order Terms

The tree automata that we consider in this paper operate on terms
over some signature JF, which is a set of function symbols with
a fixed arity. We write f/n € F to indicate that f is a function
symbol in F of arity n. Given a signature F and some set X, the
set of terms over F and X, denoted T (F, X), is the smallest set
T such that X C T and if f/n € F and ¢1,...,t, € T then
f(t1,...,tn) € T. Instead of T (F, D) we write 7 (F) and call its
elements terms over F. Tree automata run on terms in 7 (F).

We will use the words “tree” and “term” interchangeably. In
general, we will use the words “term” and “subterm”, but in certain
contexts it is beneficial to think of the tree representation of a term.
For example, we shall use depictions of terms in the form of trees in
order to illustrate the workings of the tree automata we consider. In
this context it is convenient to talk about nodes and edges of the tree
representation. For example, for a term of the form f(¢1,...,tx),
we think of a tree rooted in a node n labelled by f, with k outgoing
ordered edges to nodes ni,...,nk. These nodes are called the
successor nodes of n, and each n; is the root node of a tree that
represents the term ¢;.

Each of the tree automata that we describe in this paper con-
sists at least of a finite set) of states and a set of rules according
to which input terms are transformed into an output terms. While
performing such a transformation, these automata maintain state in-
formation, which is stored as annotations in the intermediate results
of the transformation. To this end each state ¢ € (@ is considered as
a unary function symbol and a subterm ¢ is annotated with state g
by writing ¢(t). For example, f(qo(a), ¢1(b)) represents the term
f(a,b), where the two subterms a and b are annotated with states
qo and q1, respectively.

The rules of the tree automata in this paper will all be of the form
Il = rwithl,r € T(F,X), where F' = F W {q/kq|q€Q}.
For the simple tree automata, the arity k, of each state ¢ will be just
1. We shall see later in Section 4, that this restriction is lifted for
macro tree transducers. The rules can be read as term rewrite rules,
i.e. the variables in ! and r are placeholders that are instantiated
with terms when the rule is applied. Running an automaton is then
simply a matter of applying these term rewrite rules to a term. The
different kinds of tree automata only differ in the set of rules they
allow.

In general, tree transducers induce a relation on trees that pairs
each input tree with each of its corresponding outputs. That is, tree
transducers may be non-deterministic and partial. Since we are only
interested in tree transformations that are functions, in particular
transformations that occur in compilers, we shall only consider
total, deterministic automata. Roughly speaking, “deterministic”
means that, in each “situation”, there is at most one rule applicable,
while “total” means that there is at least one rule applicable.

2.2 Top-Down Tree Transducers

Top-down tree transducers (DTTs) are able to produce transforma-
tions that depend on a top-down flow of information. To do this,
the rules of a DTT specity, for each function symbol f, (1) how a
state is propagated from a node (labelled with f) to its successor
nodes, and (2) a tree that replaces the node (labelled with f). More
formally, a (deterministic and total) DTT from signature F to sig-
nature G consists of a finite set of states (), an initial state go € Q
and a set of transduction rules of the form

q(f(z1,...,2n)) > u foreach f/n € Fandq € Q

where the right-hand side u € 7(G, Q(X)) is a term over G and
Q(X) = {p(z:) |p € Q,1 <i < n}. That is, the right-hand side
is a term that may have subterms of the form p(z;) with z; a
variable from the left-hand side and p a state in Q). In other words,
each occurrence of a variable on the right-hand side is given a
successor state. We only consider DTTs that are deterministic and
total, which means that for each f € F and ¢ € @ there is exactly
one rule with left-hand side g(f(z1,...,2n)). A DTT from F to
G defines a function 7 (F) — T(G).

Figure 1 illustrates the shape of the transduction rules of a DTT.
On the left-hand side, we find a node with a function symbol f € F
annotated by a state ¢ € (. Furthermore, we find the successor
nodes (indicated by orange circles), which are represented by vari-
ables z; in the above notation. Intuitively, these variables are place-
holders, which are instantiated when the rule is applied. On the
right-hand side we find a tree over G that may also contain place-
holders taken from the left-hand side. However, each such place-
holder has to be annotated with a successor state.

When applying such a rule, the placeholders are instantiated
by the actual successor nodes of an f-labelled node in the input
tree. The application of a rule at the root of a tree is illustrated
in Figure 2. The tree has an f-labelled root node annotated with
a state ¢, and each of its successor nodes is the root of a tree that
represents the corresponding subterm. The rule application replaces
the root node with a tree that contains subtrees of the original tree
as specified in the rule. After this first application of a transduction
rule, the process is repeated recursively at each node annotated with
a state. In Figure 2, this is the case for the states ¢1 and g2.

In order to run a DTT on a term ¢ € 7 (F), we have to provide
an initial state go and then apply the transduction rules to go(t) in a
top-down fashion. Eventually, this yields a result term ¢’ € T(G).

Example 1. Consider the signature 7 = {or/2,and/2,not/1,
tt/0, ff/0,b/0}. Terms over F are supposed to represent Boolean
expressions with a single Boolean variable b. We construct a DTT
from F to F that implements the transformation of Boolean ex-

2013/7/26

o O

Figure 1. Top-down tree transduction rule.

o
AY) A

Figure 2. Application of top-down tree transduction rule.

pressions into negation normal form, in which negation is only al-
lowed to be applied directly to a variable. The DTT operates on the
set of states @ = {qo, g1} with initial state go and the following
transduction rules:

go(and(z,y)) — and(qo(z),q0(y)) go(not(z)) — q1(x)

qi(and(z, y)) — or(q1(z), ¢1(y)) q1(not(z)) — qo(x)
qo(or(z,y)) — or(qo(z), qo(y)) qo(b) —
q1(or(z,y)) = and(q1(z), q1(y)) q1(b) = not()

qo(tt) = tt qo(ff) = ff qu(tt) = ff g (ff) —tt

The transformation that the above DTT performs is straightfor-
ward: it moves the operator not inwards, applying De Morgan’s
laws when it encounters conjunctions and disjunctions. For in-
stance, applied to the expression not(and(not(b), or(tt,b))), the
automaton yields the following derivation (where superscripts on
the arrows indicate the number of transition steps that have been
performed simultaneously):

qo q 2 3
not —— and e —_— —_— or
L / \1 q1 / \ q1 (IU P/ \ r/ \1
and not or not or and b and
Y\ b/ \ b/ \ a’ \a /\
not or b tt b tt tt b ff not
VAN |
b tt b b

Note that while states appear as function symbols in the transduc-
tion rules we have indicated the states rather as annotations in the
derivation above.

In order to start the run of a DTT, the initial state go has to
be explicitly inserted at the root of the input term. The run of
the automaton is completed as soon as all states in the term have
vanished; there is no final state.

2.3 Terms in Haskell

In Haskell, we represent signatures as (regular) functors. For in-
stance the signature F from Example 1 is represented in Haskell as
follows:

data Fa=Oraa|Andaa|Nota|TT|FF|B

Terms over F' are then represented as the free monad F'* of F,
which is defined as follows:

data f* a=Rea | In (f (f* a))

That is, given a functor F' that represents the signature F and a type
X that represents the set X', we use the type F* X to represent the
set of terms over F and X.

For each functor f, the type f* comes with the following generic
fold operation:

type Algfa=fa—a

fold, :: Functor f = (a = ¢) 2> Algf c— ffa—c¢
fold, ret alg (In t) = alg (fmap (fold, ret alg) t)
fold, ret = (Rex)=retz

We shall make use of the fact that f* indeed forms a monad:

instance Functor f = Functor (f*) where
fmap f = fold, (Reof) In

instance Functor f = Monad (f*) where
return = Re
m>=f=fold, f Inm

The bind operation of this monad (>>=) implements a substitution
operation: ¢ >= f is obtained from ¢ by replacing each subterm
Rezintby f z.

Note that, while we use Haskell as an implementation language,
we assume a set-theoretic semantics. That is, all functions are as-
sumed to be total. This assumption is important since we are in-
terested in representing total tree transducers only. The full im-
portance of the set theoretic semantics will become apparent when
we describe the compositionality of transducers since the composi-
tionality results of (top-down) tree transducers do not hold for tree
transducers that are not total [30].

The set theoretic semantics allows us to derive the representa-
tion of the set 7 (F) from the free monad using an empty type:

data Empty
type pf = f* Empty

The type Empty comes with a canonical mapping empty :
Empty — a, which allows us to derive the fold operation on pf:

fold, :: FPunctor f = Alg f ¢ — pf — ¢
fold,, = fold, empty

We may use the fold to obtain an embedding of nf into f* a:

toFree :: Functor f = uf — f* a
toFree = fold,, In

2.4 Top-Down Transduction Functions

We now turn to the representation of DTTs in Haskell. As we
have seen in Section 2.2, the transduction rules of a DTT use
placeholder variables x1, x2, etc. in order to refer to arguments of
function symbols. These placeholder variables can then be used on
the right-hand side of a transduction rule. This mechanism makes
it possible to rearrange, remove and duplicate the terms that are
matched against these placeholder variables. On the other hand,
it is not possible to inspect them. For instance, in Example 1,
go(not(ff)) — tt would not be a valid transduction rule as we
are not allowed to pattern match on the argument of not.

When representing transduction rules as Haskell functions, we
have to be careful in order to maintain the restriction described
above. In their categorical representation, Hasuo et al. [15] recog-
nised that the restriction due to placeholder variables in the trans-
duction rules can be enforced by a naturality condition. Naturality,
in turn, can be represented in Haskell’s type system as parametric

2013/7/26

polymorphism. Following this approach, we represent DTTs from
signature functor f to signature functor g with state space ¢ by the
following type:

type Transo f ¢ g =V a.(q,f a) = g" (¢, a)

In the definition of tree automata, states are used syntactically as
a unary function symbol; a placeholder variable = with state ¢ is
written as ¢(z). In the Haskell representation, we use pairs and
simply write (g,).

In the type Transp, the type variable a represents the type of the
placeholder variables. The universal quantification over a makes
sure that these placeholders cannot be scrutinised; they can only be
taken from the left-hand side and inserted on the right-hand side
without alteration.

Example 2. The representation of the signature F and the state
space () from Example 1 is straightforward:

data Fa=Oraa|Andaa|Nota|TT|FF|B

data Q = Q0 | Q!
For the definition of the transduction function, we use smart con-
structors ¢And, iNot, ¢TT, iF'F and 1B for the constructors of the
signature F'. These smart constructors additionally apply the con-
structor In of the free monad type. For example:

iAnd = F* a - F*a— F" a

iAnd x y = In (And = y)

The transduction function is then defined as follows:

trans :: Transp F Q F
trans (Q0, TT) =iTT;
trans (Q1, TT) = iFF,
trans (Q0, B) = iB
trans (Q1, B) = iNot iB

(trans (QO0, FF) = iFF
(
(
(
trans (Q0, Not z) = Re (Q1,z)
(
(
(
(

trans (Q1, FF) =TT

trans (Q1, Not) = Re (Q0, z)
trans (Q0, And z y) = Re (Q0,z) ‘iAnd‘ Re (Q0,y
trans (Q1,And z y) = Re (Q1,z) ‘iOr* Re (Q1,y
trans (Q0, Or =z y) = Re (Q0,z) ‘iOr* Re (Q0,y
trans (Q1,O0r =z y) = Re (Q1,z) ‘iAnd‘ Re (Q1,y)
The definition of the transduction function ¢rans is a one-to-one
translation of the transduction rules of the DTT from Example 1.

)

)
)
)

Running a top-down tree transducer on a term is a straightfor-
ward affair:

[l :: (Functor f, Functor g) =
Transp f ¢ g — q = pf — ug

[trlp gt = run (q,t) where
run (g, In t) = tr (q,t) >=run

A top-down transducer is run by applying its transduction function
— tr (gq,t) — then recursively running the transformation in the
places where the transduction produced placeholders annotated
with successor states using the bind of the free monad.

With the thus defined semantics of DTTs in Haskell we can
derive the transformation into negation normal form from the DTT
given in Example 2:

negNorm :: pF' — pF
negNorm = [trans], Q0
2.5 Infinite State Space

The Haskell representation of DTTs generalises the definition of
DTTs as it does not put any restriction on the state space: the state

space ¢ in the type Transp f q g does not have to be finite. As a
consequence, we can express transformations that go beyond DTTs
in the traditional sense, e.g. substitution:

Example 3. We consider an expression language with let bindings:
type Var = String
data Sig a = Add a a | Val Int | Let Var a a | Var Var

Like in Example 2, we assume corresponding smart constructors
1Add, 1Val, iLet, and ¢ Var.

The DTT in works on a state space of type Map Var 11Sig, i.e.
finite maps from variables to terms over Sig:

transsubst :: Transp Sig (Map Var pSig) Sig
transswst (m, Var v) = case Map.lookup v m of
Nothing — iVar v
Justt — toFreet
transsupst (m, Let v b s) = iLet v (Re (m, b))
(Re (m\ v, 5))
transsubst (m, Val n) =iValn
transsust (m, Add z y) = Re (m,z) ‘tAdd‘ Re (m,y)

The notation m \ v denotes the removal of the mapping for v from
m. We thus obtain the substitution function as follows:

subst :: Map Var pSig — pSig — pSig
subst = [transsubst]p

The initial state for the DTT is simply the substitution that is
supposed to be applied to the input term.

The restriction to finite state spaces is necessary to obtain cer-
tain decidability results, e.g. the decidability of equivalence for de-
terministic DTTs [8, 28, 38]. However, our interest in tree trans-
ducers here is not the decidability of meta properties but rather the
compositionality of tree transducers. In particular, tree transducers
are closed under sequential composition [27]. That is, there is an
effective procedure that takes two (total, deterministic, top-down)
tree transducers A (from F to G) and B (from G to ‘H), and pro-
duces a tree transducer C' (from F to H) with [C] = [B] o [A].
i.e. executing C is equivalent to first executing A and then B. This
construction provides a means to perform program transformations
in order to avoid constructing intermediate results, which often re-
sults in improved performance [21-23, 34, 35].

These compositionality results make use of the finiteness of the
transducers’ state spaces in order to construct compositions. We
shall see in Section 6, however, that compositionality is maintained
even in the case of infinite state spaces. In particular, we show a
composition operator

-op-::Transp g p h — Transp f ¢ g — Transp f (¢,p) h
such that
[tr2 oo trily (g1, q2) = [tr2]p geo [trillp @1

This generalised compositionality also holds for bottom-up tree
transducers as well as macro tree transducers, which we shall dis-
cuss in Section 3 and 4.

3. Tree Transducers with Parametric State Space

The generalised notion of top-down tree transducers that we obtain
in Haskell is quite expressive due to the availability of arbitrary
state spaces. However, when working with them one quickly re-
alises an unexpected restriction in using these state spaces.

3.1 The Problem

Let us reconsider the Haskell DTT from Example 3, which per-
forms substitution. Inspired by this DTT, we would like to define

2013/7/26

another one that performs inlining of let bindings. This transforma-
tion works similarly to the substitution; it only differs in the case of
let bindings:

transinine :: Transp Sig (Map Var uSig) Sig
transinine (m, Var v) = case Map.lookup v m of
Nothing — iVar v
Just e — toFree e
transinine (M, Let v y) = Re (m[v — z],y)
transiniine (m, Val n) =4iValn
transinine (m, Add z y) = Re (m,z) ‘iAdd‘ Re (m,y)

In the case of Let, the DTT simply returns the subterm that
is in the scope of the let binding, viz. y, and updates the sub-
stitution to include the mapping v + z. The problem is, how-
ever, that this definition does not work as it is not well-typed.
The right-hand side Re (m [v — z], y) of the offending equation
has type Free Sig (Map Var a,a) instead of the required type
Free Sig (Map Var uSig,a). The problem is that the Haskell
variable z, which we want to put into the substitution, is of type a.

Let us recall the type of DTTs in Haskell:

type Transp f g 9=V a.(q,f a) > g" (¢, a)

This type was designed such that placeholder variables like the
abovementioned variable z can only be put into the free monad
structure on the right-hand side, guarded by a successor state. In
particular, we cannot put such a placeholder variable ’into’ a state,
which means that it is not possible to store subterms — such as the
right-hand side of a let binding — into the state and retrieve it later.

3.2 The Solution

In order to allow placeholder variables to be put into the state we
have to use a state space that is parametric, i.e. not a type but a type
function of kind % — *:

type Trans f g g=Va.(qa,f a) > g" (¢ a,a)

Using this type, the definition of {ransinine is well-typed — with
q = Map Var. However, this type breaks one of the key properties
that we have for DTTs, namely that each placeholder variable x that
occurs on the right-hand side of a transduction rule is guarded by a
state ¢, which is represented in Haskell as a pair (g,). We do not
have this property in the above type. In particular, the placeholder
variables that might be used to construct a value of type ¢ a are not
guarded by a state themselves.

We could address this issue by using a recursive type P that
makes sure that all placeholder variables are guarded by a state:

dataPga=P(q(Pga))a

We could then use P to define the type for transducers with a
parametric state space:

type Trans f g g =V a.(qa,f a) = g" (P qa)

But even this type would not work out right. The problem is that
now not only placeholder variables stemming from f a have to be
guarded by a state but also placeholder variables that have been
extracted from the state of type ¢ a. We want to avoid the latter,
since the terms put into the states already have been transformed;
thus there is no need to give them a successor state. This problem
could be solved by introducing a second type variable b in order to
distinguish the two types of placeholder variables. But at this point
the resulting type would become much too complicated.

Instead, we will use the type variable a to encode placeholder
variables that need not be guarded by a state and the function type
q a — a for those that do need to be guarded by a state:

type Trans f qg=Va.qa—f(qga—a)— g a

This encoding also allows us to get rid of the type P. Moreover,
note that we changed to a curried style instead of using a pair as
the first argument. The pair type was used before only in order to
stress the representation of state annotations by pairing, which we
are about to change now.

We can further generalise this type: as it stands, we can only
put placeholder variables into states, which is overly restrictive. In
general we should be able to put in arbitrary terms that may contain
placeholder variables. We thus arrive at the following type:

type Transm f g g=Va.qa—f(q¢(g"a)—>a)—>g" a

Before defining the semantics of this transducer, which will turn out
to represent macro tree transducers, we shall look at an example
implementing the inlining transformation that we started with in
this section:

transiniine :: Transm Sig (Map Var) Sig
transinine m (Var v) = case Map.lookup v m of
Nothing — iVar v
Just e — Ree
transinine m (Let v z y) = Re (y (m’ [v — Re (z m')]))
where m’' = fmap Re m
transinine m (Val n) =iValn
transinine m (Add © y) = Re (x m') ‘iAdd‘ Re (y m')
where m’' = fmap Re m

The first change that we can observe in the above code is that
occurrences of the placeholder variables on the right-hand side are
assigned a state not by pairing them with a state — (m’, z) — but by
applying them to a state — (z m’).

The implementation of ¢ransinine illustrates the power of the
Transwm recursion scheme in the case for Let: first it passes the
current state 7’ unaltered to z, which is then used to add a variable
assignment to the state m’, which is then passed to y. In general,
this nesting of recursion can be arbitrarily deep. The type Transm
encodes this arbitrarily deep nesting of recursion by using the type
q (g* a) — a for its input placeholder variables.

3.3 A More Concise Notation

While we can express the inline transformation with this trans-
ducer, it is quite tedious to do so. Since we have to inject the place-
holder variables (of type a) from the left-hand side into the term
structure of the right-hand side (type Sig™ a), the code is riddled
with applications of Re. However, the encoding of state propaga-
tion affords us the opportunity to avoid this explicit plumbing: the
only thing we can do with placeholder variables of type a is to in-
ject them into the type Sig* a via Re. We can build this into the
recursion scheme, which gives us the following variant of Transm:

type Transy f gg=Va.q (9" a) >
flg(g"a)—=g"a)—g"a
We replaced the two “naked” occurrences of the type variable a by
9" a. The following function translates transducers of this more
convenient type into the original Transm type by applying Re at
the appropriate places:

ftm ::(Functor f, Functor q) =
Transy f ¢ g — Transm f q g
ftm tr g t = tr (fmap Re q) (fmap (Reo) t)
With this more convenient type, the inline transformation is
implemented without syntactic noise:

transinine :: Transy Sig (Map Var) Sig

transinine m (Var v) = case Map.lookup v m of
Nothing — iVar v
Just e — e

2013/7/26

transinine m (Let v z y) = y (m[v — z m])
transinine m (Val n) =iValn
transinine m (Add z y) =z m “4Add‘y m

3.4 The Semantics of Transy

To better understand the semantics of Transwm, we shall reconsider
transducers of type Transp first. But we alter the type slightly such
that it uses the same style of passing along states as Transw, i.e.
using a function type instead of pairing:

type Transp f gg=Va.q—f(¢g—a)—>g" a
[1p :: (Functor f, Functor g) =
Transp f ¢ g — ¢ — pf — pg

[trlp ¢ t = run t ¢ where
run (In t) g = join (tr q (fmap run t))

There are no essential differences between this type and the old
one; one can give a semantics preserving bijection between the two.

In the above definition, join is the multiplication operation of
monads, which can be derived from the bind operation:

join x =z >=1id

Specialised to the free monad constructor, its type is
join :: Functor f = f* (f* a) = f* a
We finally turn to the semantics of Transm.

[l i (Functor g, Functor f, Functor q) =
Transm [q g — q pg — pf — pg

[trly g t = run t ¢ where
run (In t) ¢ = join (tr q (fmap run’ t))
run’ t q = run t (fmap join q)

The semantics of Transw differs from the definition of the DTT
semantics [-] only slightly. The only significant difference is the
use of the auxiliary function run’ in order to apply fmap join
to the states. The necessity of this can be observed in the type
definition of Transwm, where the states of type ¢ a are transformed
into states of type ¢ (¢* a) before being assigned to a placeholder
variable. In the instantiation of this type that is used in the definition
of [-], this means that ¢ g is transformed into ¢ (g™ pg). In
order to use these states of type g (¢g* pg) recursively, they have to
be turned into states of type ¢ g, which is exactly what fmap join
does.

With this semantics we can finally define the inlining transfor-
mation, giving the empty mapping () as the initial state:

inline :: pSig — uSig
inline = [fim transinine]y 0

As a final remark we note that the new type for Transp allows
us to avoid the use of explicit Re applications for DTTs as well:

type Transp f qg=Va.q—f(¢g—>g"a)— g a
o ::Functor f = Transp f ¢ g — Transp f q g
o tr gt =tr q (fmap (Reo) t)

For example, the definition of the substitution transducer now
looks like this:

transsupst 2 Transp Sig (Map Var pSig) Sig

transsusse m (Var v) = case Map.lookup v m of
Nothing — iVar v
Just t — toFree t

transsubse m (Let v b s) = iLet v (b m) (s (m \ v))

transsupst m (Val n) =iValn

transsupse m (Add z y) =z m ‘iAdd‘y m

aq q q q —

S<«~—0~—o>
S <

S0 «— > «— 9
S« <0
S«~— Q< <0

Figure 3. Run of an MTT.

subst :: Map Var pSig — pSig — pSig
subst = [fip transsubst]p

In the following section we shall see that the transducer type
Transm represents a well-studied extension of top-down (and
bottom-up) tree transducers, namely macro tree transducers.

4. Macro Tree Transducers

Macro tree transducers (MTTs) [9] generalise DTTs by adding
accumulation parameters to states. A simple example of using an
accumulation parameter is the implementation of the reversal of
lists. For simplicity we encode lists as terms over the signature
F ={a/1,b/1,¢/1,n/0}, where a, b and c are the list elements
and n is the empty list. For example the list containing the elements
a, b and c is represented by the term a(b(c(n))).

Example 4. The reversal transformation is implemented using a
single state g, with a single accumulation parameter. Accumulation
parameters are added to states by simply increasing their arities. In
DTTs, states are represented by unary function symbols. For MTTs,
we increment the arity for each additional accumulation parameter.
In the case of the reversal transformation, g, has arity two. The
elements of the list are put into the accumulator one by one, and
once the end of the original list is reached, the accumulator holds
the reversal of the list.

qr(n,y) =y

The semantics of MTTs is similar to the semantics of DTTs:
simply apply the rules as rewrite rules. For example starting with
the term a(b(c(n))), state ¢ and accumulator n, we obtain the
following run:

gr(a(b(c(n))),n) = ¢-(b(c(n)), a(n)) = gr(c(n), b(a(n)))
= qr(n, ¢(b(a(n)))) — c(b(a(n))).
A graphical representation of this run is given in Figure 3. Again
we depict the states as annotations rather than nodes in the tree. The
difference compared to DTTs is that the each state has a fixed num-
ber of memory slots (viz. the accumulation parameters) in which to
store trees. In this example, the state ¢, has a single memory slot,

which is depicted as a blue box in the figure. The result of running
the transducer on a(b(c(n))) is the reversal c(b(a(n))).

In general, a macro tree transducer (MTT) from signature F to
signature G consist of a signature () of states with arity > 0, and a
set of transduction rules of the form

foreach f/n € F
andg/(m+1) € Q

where u is an element of the set RH Sy, ,, which is inductively de-
fined by the formation rules in Figure 4. In short, the right-hand side

q(f(x17~-~,mn),yh---,ym) —u

2013/7/26

1<i<m g/k€G wui,...,upr € RHSnm
Yi S RHSH’"L g(u1, e 7uk) S RHSn,nL

1<i<n p/(k+1)€Q wui,...,ur € RHSn m
p(zi,ut,...,ug) € RHS, m

Figure 4. Inductive definition of RH Sy, m.

Figure 5. Macro tree transduction rule.

may contain accumulation variables y;, a function symbol applica-
tion g(u1,...,ux) or input variables x; guarded by a successor
state p with appropriate accumulation arguments 1, . . . Uk.

The shape of the transduction rules of MTTs is depicted in Fig-
ure 5. It is instructive to compare this depiction with the depiction
of DTT transduction rules in Figure 1. The basic shape of a MTT
transduction rule is similar to the DTT transduction rules. The only
aspect that changes is that states have more structure: each state has
a fixed number of “memory cells” in which accumulation param-
eters can be stored and retrieved. Accumulation variables are indi-
cated by green squares. They appear in the state on the left-hand
side and can be used in building trees on the right-hand side. The
difference compared to the input variables (indicated by orange cir-
cles as for DTTs) is that accumulation variables are not guarded by
a successor state. Moreover, each state on the right-hand side may
also have a number of “memory cells”, which must be filled with
trees as well. These trees have the same structure again, containing
input variables guarded by states as well as accumulation variables.
This nesting of trees can be arbitrarily deep, thus allowing an arbi-
trarily deeply nested recursion.

Similarly to DTT transduction rules, when applying MTT trans-
duction rules, the placeholder variables (both the input variables
and the accumulation variables) are instantiated with concrete trees.

With the type Transm we are able to represent MTTs. As for
DTTs, the signatures F and G are represented as Haskell functors.
In the same way also the state space is represented as a functor.

dataFa=Aa|Ba|Cal|N
data Q a = Qra

The representation of the input signature is straightforward. Since
the original MTT only has one state g, the type) also has only one
constructor. The constructor Q7 has one argument as the state g, in
the original MTT has one accumulation parameter.

For the definition of the MTT in Haskell we again assume
appropriate smart constructors for the target signature; in this case
1A, 1B, 1C and iN:

transey, :: Transy F Q F
transre, (Qr y) (A z)
transeey (Qr y) (B z)
transrey (Qr y) (C x)
transrey (Qr y) N

z (Qr (id y))
z (Qr (iB y))
z (Qr (iC y))
y

The above definition is a one-to-one translation of the transduc-
tion rules of the original MTT. We thus obtain the implementation
of reverse as follows:

reverse :: uF' — puF
reverse = [ftm transwe]y (Qr iN)

The MTT given in Example 4 illustrates that states in MTTs cor-
respond to recursively defined functions. The state ¢, is a function
that performs the reversal of lists, with the help of an additional ac-
cumulation parameter. Multiple states, then correspond to several
mutually recursively defined functions, e.g. the two states go and
¢1 in Example 1 correspond to two mutually recursive functions. In
our Haskell representation, however, we view the states of MTTs
really as states. Hence, potentially infinite state spaces arise natu-
rally. This aspect differentiates our work from the typical view of
tree transducers as (restricted) functional programs [21-23].

5. Annotating Trees

Before discussing the aspect of compositionality of MTTs, we give
a brief example that illustrates the flexibility that the use of MTTs
affords us.

When working with abstract syntax trees (AST), e.g. in a com-
piler, it is common that the that the AST produced by the parser
has addition annotations attached to each node, e.g. the location in
a source file from which the node originated. This information can
then be used for giving useful error and warning messages.

We can easily extend a functor f to a functor an :&: f that
contains annotations of type an:

data (an :&: f) a = an :&: (f a)

Trees of type wu(an :&: f) are like trees of type uf, but additionally
each node is annotated with an annotation of type an.

However, many operations on ASTs typically ignore the anno-
tation information as it is not needed. The structure of transducers
makes it quite easy to lift them from an arbitrary source signature
to a source signature with annotations.

ignoreAnn :: (Functor g, Functor q, Functor f) =
Transm f q¢ g — Transm (an & f) q g
ignoreAnn tr q (—:&:t) =1tr qt

In other cases, the annotations should be in principle ignored
but nevertheless propagated to the result. For example, it we want
to use our inlining transformation from Section 3.3 in a compiler
we may want to extend it such that annotations are preserved. We
have shown previously [2] that such a lifting can be performed
generically for rather simple transformations known as tree homo-
morphisms', which for example occur in the form of desugaring
transformations. The same idea can also be applied to MTTs. To
this end, we need a function that adds a given annotation to every
node in a tree:

addAnn :: Functor f = an — f* a — (an & f)* a
addAnn an (In t) = In (an :&: fmap (addAnn an) t)
addAnn _ (Re z) = Re z

This transformation can in fact be described as a DTTs with a
singleton state space. We can then use this function to construct
the lifting of MTTs such that they propagate annotations:

propAnn :: (Functor g, Functor q, Functor f) =
Transm f ¢ g — Transm (an :&: f) ¢ (an &: g)
propAnn tr q (an :&: t) = addAnn an
(tr q (fmap addAnn’ t))
where addAnn' f ¢’ = f (fmap (addAnn an) ¢')

! Tree homomorphisms are simply DTTs with a singleton state space

2013/7/26

As expected we simply use addAnn to annotate the result of the
original MTT ¢r with the annotation an. However, due to the natrue
of MTTs, we have to also propagate the annotaion to the trees that
are put into accumulation parameters. This task is achieved by the
addAnn’ function.

Using the thus defined lifting function, we derive the following
variant of the inlining transformation that propagates annotations
faithfully:

inlineAnnotated :: p(an &: Sig) — p(an &: Sig)
inlineAnnotated = [propAnn (ftm transinine)]yy 0

We close this section with a small example that shows how
to generically annotate a tree with unique labels so as to track
changes made by subsequent transformations. In particular, we
shall annotate each node with a list of type [Int] that describes
its access path, i.e. the path one has to take from the root in order
to reach the node. For example, in the tree representing the term
iLet "x" (iVal 1 ‘“4Add* iVal 2) (iVar "x" ‘4Add‘ iVar "x"),
the node representing the subterm ¢ Val 2 has the access path [0, 1].
We perform this transformation using the type class Traversable,
which for each instance Traversable t provides the method

mapM :: Monad m = (a - m b) -t a— m (tb)

generalising the mapM function on lists to other functors. In-
stances of Traversable can be derived mechanically in GHC, in
particular for the class of regular functors that we consider here.
Using this generalised mapM function we can use a state monad to
number the arguments of each constructor of a (traversable) func-
tor:

number :: Traversable f = f a — [(Int, a)
number = = fst (runState (mapM run z) 0) where
run b = do n <+ get; put (n + 1); return (n, b)

For example, applied to Let v r e, the function number produces
Let v (0,7) (1, e).

Equipped with this tool, we can finally define the DTT that
performs the desired transformation:

transpath = Traversable f = Transp f [Int] ([Int] :&: f)

transpatn ¢ t = inFree (g :&: fmap (A(n,s) — s (n:q))
(number t))

inFree :: FPunctor f = f a— f* a

inFree t = In (fmap Re t)

We thus arrive at the following transformation function, which
adds path annotations to any tree:

pathAnn :: Traversable f = pf — p([Int] :&: f)
pathAnn = [transpam]p []

In the next section, we shall see how to compose tree transduc-
ers, which will allow us to combine ¢ranspath With other transduc-
ers in order to track the transformations they perform.

6. Composition of Tree Transducers

In this section we demonstrate the compositionality of tree trans-
ducers in Haskell. Before discussing the composition of MTTs, we
have a look at the composition of DTTs.

6.1 Composition of DTTs

The sequential composition of two tree transformations expressed
as DTTs is itself expressible as a DTT, which can be effectively
constructed from the two original DTTs [27]. The idea behind this
construction is quite simple: given two DTTs A; (from F to G)
and As (from G to H) we construct a DTT A (from F to H)
that performs the composition of A2 and A; by taking all the

transduction rules from .4; and transform their right-hand sides by
running the DTT A2 on them. That is for each rule

a(f(z, ...

and state p in A5, we produce the rule

(q1, QQ)(f(CI?h) xn)) - [[-A2]] (q2,u)

Note that the state space of A is the product Q1 X Q2 of the state
spaces of A; and As. The additional state information ¢ is used
as the initial state for running the transducer .45 on the right-hand
side u. Technically, the transducer A2 has to be modified slightly
since the term w may contain states from .A. This is done by adding
rules of the form

,Tn)) — u in Ay

@2(q1(x)) = (q1,42)()

to Az, which simply combine the states from the two transducers
to get a state in the compound state space Q1 X Q2.

The construction in Haskell follows the same idea. In order to
simplify the presentation and the subsequent correctness proof we
shall reformulate the definition of the DTT semantics [-] as a fold
of an algebra constructed as follows:

algp :: Functor g = Transp f q g — Alg f (¢ — ¢ a)
algp tr ¢t ¢ = join (tr q t)
[:: (Functor f, Functor g) =
Transp f ¢ g — q = pf — g
[trlp g t = fold, (algp tr) t q

The function algp, turns a DTT transduction function into the alge-
bra that describes its semantics. The semantics [-] is then simply
the fold of this algebra. Using the same algebra, we generalise the
semantics -], in a way that corresponds to the addition of rules of
the form g2(q1(x)) — (q1, ¢2)(z) as described above:

(‘Do :: (Functor f, Functor g) =
Transp f g9 —>q— " (¢g—a)—> g a
(tr)o g t = fold, (Aa ¢ — Re (a q)) (algp tr) t q

This semantics generalises [-], in the sense that it works on
f* (¢ — a) not only pf. In analogy to the automata theoretic
construction sketched above, we will use (-)p in order to run a DTT
on the right-hand side of the transduction rules of another DTT. The
composition of DTTS is thus constructed as follows:

-op - ::(Functor f, Functor g, Functor h) =
Transp g @2 h — Transp f ¢ ¢ — Transp f (q1, ¢2) h
tro op tr1 (g1, g2) t = (tr2)o g2 (tr1 ¢ (fmap curry t))

The right-hand side of the first DTT ¢r; is obtained by applying
it to its component ¢; of the compound state space as well as the
input pattern ¢. Note that we have to apply currying in order to
transform the input pattern for the compound DTT, which is of type
f ((q1, ¢2) — a), into an input pattern suitable for the first DTT,
viz. of type f (q1 — g2 — a). After this application, the second
DTT tr2 is run on the thus obtained right-hand side of ¢r;.

This construction is the same as the automata-theoretic con-
struction as first shown by Rounds [27]. Since the accompanying
soundness proof of Rounds does not make use of the finiteness of
the state space, it follows that that also our composition construc-
tion is sound. That is, we have the following theorem:

Theorem 1 (Soundness of DTT composition). For all tri, tra, qi,
G2, t of appropriate type, we have the following equality:

[trap @2 (Ttrillp @1 t) = [tr2 0o tri]p (@1, ¢2) ¢

However, we can give a rather compact direct proof of this
soundness theorem without referring the automata-theoretic proof.

2013/7/26

Proof of Theorem 1. Let a1, az and a be the algebras of ¢ri, tro
and ¢rz op tr1 according to algp. Unfolding the definition of [-],
we can reformulate the claimed equality as follows:

f (fold, a1 t) (a1, g2) = fold, at (qu,q2) (D
where f is defined by the equation

f9(q,q)=fold, a2 (9 ¢1) g
By the fusion law for folds it suffices to prove the following equal-
ity instead:
V. fold, az (a1 z q1) g2 = a (fmap f 2) (¢1,¢2) (2)
In order to prove this, we take advantage of the observation that
join commutes with fold,,:>

Lemma 1. Let e = Az ¢ — Re (z q) and b = algp tr for some
tr. Then the following holds for all x and q:
fold,, b (join z) q = join (fold, e b (fmap (fold, b)) q)
The proof of (2) follows:

a (fmap f x) (q1, ¢2)
= { a = algp (tr2 op tr1) and definition of algp }

join ((trz oo tr1) (@1, @2) (fmap f x))
= { Definition of - op - and (-)p }

join (fold, e a2 (tr1 ¢1 (fmap (curryof) z)) gz2)
= {curryof =Xg q1 g2 — fold, a2 (9 ¢1) ¢= }

join (fold, e az (tr1 qi (fmap (fold, a20) x)) g2)
= { Parametricity }

join (fold, e az (fmap (fold,, a2) (tr1 1 z)) ¢2)
= {Lemmal}

fold,, az (join (tr1 q1 z)) g2
= { a1 = algp tr1 and definition of algp }

fold,, az (a1 = q1) ¢

The equation labelled “Parametricity” follows from the equality

Vg q.fmap gotr g =tr qofmap (go)

which holds for all ¢r of type Transp f q g because of parametric-
ity [36]. O

Note that in the application of the fusion law for folds we
make use of the set theoretic semantics. In a CPO semantics, the
function f would also need to satisfy a strictness side condition
for the fusion law [25]. This strictness condition does in fact not
hold for f. However, this should be expected since the closure of
DTTs under composition is restricted to fotal, deterministic DTTs.
Indeed, Thatcher [30] gives a counterexample for the composition
with a deterministic DTT that is not total.

6.2 Composition of MTTs

Unlike DTTs, MTTs are in general not closed under composi-
tion [9]. That is, a transformation that is expressible as the com-
position of two MTT-expressible transformations cannot always be
expressed as a single MTT. However, for a large class of cases the
composition of two MTTs does again yield an MTT. In particular,
the composition of an MTT with a DTT (and vice versa) can be ex-
pressed as a single MTT, which can be effectively constructed [9].

Similar to the case for DTTs described above, we shall refor-
mulate the semantics of MTTs as a fold:

2 We omit the proof of this lemma; it can be found in the associated material
on the authors’ websites.

algy :: (Functor g, Functor f, Functor q) =
Transm f q g — Alg f (q (9" a) = g" a)

algy tr t ¢ = join (tr g (fmap (o fmap join) t))

[y 2 (Functor g, Functor f, Functor q) =

Transw f q g = q g — pf — pg
[trly g t = fold, (algy tr) t q

We use the algebra to define a generalised semantics as well:

(-Dm :: (Functor g, Functor f, Functor q) =
Transm f q g = q (9" a) > " (¢ (9" a) > a) = g" a
(trdm ¢ t = fold, (Aa ¢ — Re (a q)) (algy tr) t q

We first consider the simpler case of the composition, viz. a
DTT followed by an MTT. To this end we shall use the direct
construction given by Kiithnemann [22]. This construction follows
essentially the same idea as the composition construction for DTTs
described in Section 6.1: we take the rules of the first transducer and
transform their right-hand sides by running the second transducer
on them. The only difference is that since we are dealing with an
MTT, the state space of one of the transducers is a functor. Thus we
have to replace pairing with the following type constructor:

data (¢1 :&: @) a = ¢ :&: (g2 a)

We have already seen this construction in Section 5 where it was
used for adding annotations to trees.

The definition of the composition operator - omp - then follows
the same pattern as - op -:

-omp - ::(Functor f, Functor g, Functor h, Functor p) =
Transm g p h — Transp f g g — Transm f (¢ :&: p) h
tro omp tr1 (¢1 :&: q2) t = (tr2)m (fmap Re ¢2)
(tr1 1 (fmap curryF t))

where curryF' is a variant of curry defined on the type constructor
:&: instead:

curryF :: ((¢:&:p)a—b) > q¢g—pa—b
curryF f qp=f (¢ :&: p)

Since the construction given by - omp - follows the correspond-
ing automata-theoretic construction and since the accompanying
soundness proof [9] does not use the finiteness of the state space,
we can conclude the soundness of our construction:

Theorem 2 (Soundness of MTT-DTT composition). For all tri,
tra, q1, q2, t of appropriate type, we have the following equality:

[tra omp tri]y (g1 :&: g2) t = [tr2]y ¢ ([tr1lp @ t)

Example 5. As a simple example, we combine the inlining MTT
with the DTT that adds annotations:

trans :: Transm Sig ([Int] :&: (Map Var)) ([Int] :&: Sig)
trans = (propAnn (fim transinine)) oOMp transpatn

Here we use propAnn to lift the original inlining MTT to propa-
gate annotations. We thus obtain the following transformation func-
tion by supplying the appropriate initial state:

inlineTrack :: pSig — p([Int] :&: Sig)
inlineTrack = [[trans]y, ([]:&: 0)

Finally, we consider the composition of an MTT followed by a
DTT. This case is slightly more complicated. It is not sufficient
to simply run the DTT on the right-hand sides of the rules of
the MTT. In the transduction rules of an MTT, the accumulation
variables are used directly on the right-hand side without being
guarded by a successor state. The reason for this is the fact that the
trees that are stored in the accumulation parameters have already
been transformed by the MTT. Hence, in order to achieve the same

2013/7/26

invariance for the composition of an MTT followed by a DTT,
we have to make sure to also run the DTT on the trees in the
accumulation parameters.

In the original automata-theoretic construction of Engelfriet and
Vogler [9], this nested run of the DTT is achieved by replacing each
accumulation parameter of the original MTT with k copies, where
k is the number of states in the DTT. The rules of the MTT are then
manipulated such that the i-th copy of an accumulation parameter
contains the original accumulation parameter but transformed by
running the DTT on it using the ¢-th state as initial state.

This construction makes direct use of the fact that the state space
of the DTT is finite as each state with n accumulation parameters in
the MTT is replaced by a state with n x k accumulation parameters.
However, we can apply the same construction for our generalised
transducers with potentially infinite state spaces. To this end we
exploit the fact that our representation of MTTs does not restrict
the number of accumulation parameters to be finite. Given the state
space g1 of an MTT, we achieve the construction of producing a
copy of each accumulation parameter for each state in the state
space g2 of the DTT by using the type Exzp ¢1 ¢2:

type Ezp q1 @2 a = ¢1 (@2 — a)

The nested function type makes sure that there is a copy of each
accumulation parameter for each state in ga.

We then obtain the state space of the compound transducer by
pairing the above exponentiated state space with the state space go
of the DTT, which yields the type g :&: FExp ¢1 g2. We combine
this construction in a single definition as follows:

data (¢1 :\: @2) a = ¢1 (g2 = a) A g2

We thus arrive at the following construction of the composition
of DTTs and MTTs:

-opm - ::(Functor f, Functor g, Functor h, Functor q) =
Transp g p h — Transm f g g — Transm f (g :A\:p) h
tro opm tr1 (g1 A q2) t =
(tr2)o g2 (tr1 (fmap (3) q1) (fmap (nested trz) t))

In this case, simple currying is not sufficient for preparing the input
pattern ¢. As explained above, we have to run the DTT also on the
accumulation parameters. The function nested does exactly that:

nested tr f 1 @@ = f (fmap (As p — (tr)p p s) ¢1 :A\: @)

To achieve this, nested makes use of the fact that we expand the
state space using exponentiation. Thus, we can run the DTT on the
tree s using the supplied state p as initial state of the run.

Again, we appeal to the automata-theoretic proof of Engelfriet
and Vogler [9] to conclude that the above composition operator
- opM - is sound:

Theorem 3 (Soundness of MTT-DTT composition). For all tri,
tra, q1, g2, t of appropriate type, we have the following equality:

[tra oom tri]y, (g1 A g2) t = [tr2]y g2 [tri]y @t
where ¢y = fmap (As ¢ — [tr2]p ¢ 5) @1

For phrasing the soundness theorem for - opm - we have to
perform the same manipulation on the states of the MTT as in
the definition of - opwm - itself: we have to run the DTT on the
accumulation parameters, thus transforming ¢; into ¢} akin to the
transformation in nested.’

Note that the three theorems stating the soundness of the com-
position of tree transducers can be read as fusion rules. Read from

3 Technically, the initial state of a tree transducer is part of the transducer
itself. Thus, the construction of the initial state (qi :A: q2) for the compound
transducer is actually part of the composition construction.

right to left, these rules describe how to fuse two transducer runs
into a single one. Using GHC’s rewrite rules facility [17], these
fusion rules can be implemented as optimisation rules in GHC.

7. Macro Tree Transducers with Regular
Look-Ahead

MTTs are quite expressive, more expressive than one might con-
sider after a first glance. As illustrated in Section 3 and 4, MTT
emerge as a generalisation of DTT. As such, MTTs also retain the
top-down flow of state information from DTTs. Naturally, there is
also bottom-up version of DTTs, unsurprisingly called bottom-up
tree transducers (UTTs). The expressive power of DTTs and UTTs
is incomparable [7], i.e. there are transformations that can be ex-
pressed using one of the two kinds of transducer but not the other.
Since MTTs generalise DTTs they can express any transformation
expressible as a DTT. Surprisingly, however, MTTs can also ex-
press all transformations expressible as a UTTs* [9].

The underlying reason is that MTTs are closed under addition
of regular look-ahead [9]: roughly speaking, an MTT with regular
look-ahead (MTTL) is an MTT which has access to additional
information that is provided by a second automaton that propagates
states bottom-up. Intuitively, the run of such an MTTL can be
thought of as a two-phase computation: in the first phase, the
bottom-up tree automaton is run, annotating each node of the tree
with the state that it computes for it. Afterwards, in the second
phase, the MTT is run on this annotated tree and has therefore
access to the state information that was provided by the bottom-
up automaton in the first phase.

7.1 An Example

To illustrate why such a look-ahead is useful, we reconsider the
inlining transformation from Section 3. We want to make this
transformation a bit smarter by only performing the inlining for
bound variables occurring exactly once in their scope. That means,
when transforming a let binding, we first compute the number of
occurrences of the bound variable in the scope of the let binding.
This counting of variable occurrences is a bottom-up computation.

Bottom-up tree automata (UTA), also know as bottom-up tree
acceptors, only propagate state information (upwards) without per-
forming a transformation. In Haskell such an automaton is repre-
sented by the following type:

type Statey f q=f g — ¢q

The alert reader will notice that this is exactly the type for f-
algebras with carrier type ¢. And indeed running a UTA on a term
is simply the fold of this algebra:

[[]]3 :: Functor f = Statey f q = uf — q
[st]]fJ = fold,, st

The UTA that counts free occurrences of variables is then de-
fined as follows:

Staumrv :: Statey Sig (Map Var Int)
Stoumpv (Add zy) =zdy
StnumFV (VCLl 7) = @

Stoumev (Let vz y) =2 & (y \ v)
Stoumev (Var v) ={v— 1}

where @ adds up the variable counts of two mappings:

-® - ::0rd a = Map a Int — Map a Int — Map a Int
z @y = Map.unionWith (+) z y

4Both for the case of unrestricted transducers, and for the case of total,
deterministic transducers, which we are interested in here.

2013/7/26

But we do not want to actually run this automaton on its own;
we want to combine it with a variant of an MTT that can read the
state information provided by a UTA. Before we do this, let us step
back and have a look at the type representing MTTs again:

type Transm f qg=Va.qa—
flg(g"a)=a)—=g"a

The type of MTTs with regular look-ahead (MTTLs) has an
additional type variable p that refers to the state space of the UTA
that provides the bottom-up state information:

type Transiy f qpg=Va.qa—
fla(ga) = a,p) =g a

The type p is added in only one place, viz. paired with the type
of input variables. This gives the transduction rules the ability to
observe the state of the successor nodes of the current node. Before
we consider the semantics, let us look at an example. We shall now
implement the smart inline translation that only inlines let bindings
whose variable occurs exactly once in its scope:

transsmart :: Tmns'kﬂ Sig (Map Var) (Map Var Int) Sig
transsmarr m (Var v) = case Map.lookup v m of
Nothing — iVar v
Juste —e
transsmar m (Let v (z,) (y, yvars)) =
case Map.findWithDefault 0 v yvars of
0—=ym
1=y (mve—zm])
_—iLet v (x m) (y m)
transsmart m (Val n) =iValn
transsmare m (Add (z,-) (y,—)) =z m ‘4Add‘ y m

The transducer coincides with the simpler original transinine in
all cases except for Let. In the Let case the transducer consults
the bottom-up state yvars of the y argument, which contains the
numbers of occurrences of free variables in the term represented
by y. Depending on how many times the variable v occurs, the
transducer simply removes the let binding, performs inlining or
performs no transformation at all.

Note that in the above definition, we did not use the type
Transk, but instead Tmns'kﬂ, which lets us avoid explicit applica-
tions of Re by packaging “naked” occurrences of a into g* a:

type Trans'y f qp g =V a.q (3" a) —
f(g(g"a)—=g"ap)—g"a

As for previous transducer types, also this convenience type can
be lifted to its original form by applying Re in the right places:

i =:(FPunctor q, Functor f) =
Tmns'kﬂ fqpg— Transiy f qp g
fi tr gt = tr (fmap Re q)
(fmap (A(f,p) = (Reof,p)) t)

7.2 The Semantics

The easiest way to verbally describe the semantics of MTTLs is via
a two-phase execution as alluded to above. At first the UTA is used
to annotate the input term with the bottom-up state information,
and then the MTTL is run on the annotated tree. However, the
implementation in Haskell is best described as a fold:

algk,, :: (Functor f, Functor q, Functor g) =
Statey f p — Transy f g p g — Alg f (q pg — pg,p)
algky st tr t = (Aq — join (tr q t'), st (fmap snd t'))
where t' = fmap (A(res, p) — (res o fmap join, p)) t

[ﬂk/l it (Functor g, Functor f, Functor q) =
Statey f p — Transk, f qp g = q g — pf — pg
[st, 1fr]]k,l q t = fst(fold, (algy st tr) t) q

The algebra is defined so as to run the transducer allong with the
bottom up state transition. To this end, the carrier of the algebra is
a product, whose second component is the state space of the UTA.
Note that in order to apply the transition function of the UTA, we
have to project to this second component using fmap snd. The
semantics of the MTTL is then given by the fold over this algebra
followed by a projection to the first argument of the resulting pair.
We thus obtain the smart inlining transformation:

inlineSmart :: pSig — uSig
inlineSmart = [[Stnumpv,ﬂkA tmnssma,t]]k/l 1]

As we have mentioned in the beginning of this section, MTTs
with regular look-ahead can be transformed to ordinary MTTs [9].
This astonishing property of MTTs is, however, mostly of theoreti-
cal interest. The MTT that one gets from this construction basically
tries out every possible value of the state that the UTA would pro-
vide and then checks during the traversal which of the alternatives
was actually the correct one. This happens at every node of the in-
put tree. Thus, there is an exponential increase in the run-time in
terms of the size of the state space of the UTA. Moreover, this con-
struction does not work for infinite state spaces such as the state
space Map Var Int, which we used in our example of the smart
inlining transformation.

As a consequence, compositionality properties of MTTs do not
immediately carry over to MTTLs represented in Haskell. Never-
theless, we can indeed generalise the composition - opwm - to work
on MTTs as well. For the converse order, a DTT followed by an
MTTL, it is not clear whether such a composition can be defined in
a sound way. The problem is that the UTA that is part of the MTTL
has to be transformed properly such that it works for the source sig-
nature of the DTT. The situation, however, changes when we con-
sider bottom-up tree transducers (UTTs) instead of DTTs. We can
indeed effectively construct the composition of MTTLs and UTTs,
and vice versa.

8. Discussion
8.1 Related Work

The transformations performed by tree transducers are closely re-
lated to attribute grammars [26]. In particular, the combination of
a top-down and a bottom-up flow of information found in MTTs
with regular look-ahead are likewise found in attribute grammars
in the form of inherited and synthesised attributes. Viera et al. [33]
have shown that attribute grammars can be embedded in Haskell as
a library. Attribute grammars can be translated into recursive pro-
gram schemes [6], which can be expressed as MTTs. Thus, MTTs
subsume attribute grammars. Moreover, attributed tree transduc-
ers [10], a class of tree automata that has been introduced to study
the properties of attribute grammars has been shown to be sub-
sumed in expressivity by MTTs [11].

Upwards and downwards accumulations [12, 13] generalise the
scanl and scanr functions on lists to regular data types. The prop-
agation of state information in a tree automaton follows the same
mechanics. As recently pointed out by Gibbons [14], there is also a
strong connection between accumulations and attribute grammars:
complete attribute evaluation can be expressed as an upwards accu-
mulation followed by a downwards accumulation. The same idea is
used in the definition of MTTs with regular look-ahead.

Our work on representing tree transducers in Haskell was influ-
enced by the category theoretic definition of bottom-up tree trans-
ducers of Hasuo et al. [15]. For their definition, the authors intro-

2013/7/26

duce the idea of representing the placeholder variables in trans-
duction rules as naturality conditions. We use the same idea in our
representation, merely replacing naturality with parametric poly-
morphism. Jiirgensen [18, 19] gives a categorical definition of top-
down transducers and proves the soundness of their composition.

8.2 Future Work

When working with transducers in Haskell, one soon notices the
need for an extension to monadic computations. For example,
to make full use of the access path annotation transformation
transpath, which we discussed in Section 5, one also needs a cor-
responding query function that, given an access path, returns the
subtree at that access path. Naturally, such a transformation is not
total as a given access path may not be present in an input tree.
Thus, the (top-down) transduction rules should be instead of type

q—f(g—a)—=m(g"a)

for some monad m. The semantics of DTTs can be easily gener-
alised to this monadic form (using the Traversable type class men-
tioned in Section 5). However, for the case of the Maybe monad,
this type corresponds to partial, deterministic DTTs, which are
known to not be closed under composition [30]. But we conjecture
that a slight change in the type recovers compositionality:

q—f(¢g—>ma)—=m(g" a)

This type allows us to observe the effect in a placeholder variable
without using its result.

References

[1] P. Bahr. Modular tree automata. In J. Gibbons and P. Nogueira, editors,
MPC ’12, volume 7342 of LNCS, pages 263-299. Springer, 2012.

[2] P. Bahr and T. Hvitved. Compositional data types. In WGP ’11, pages
83-94. ACM, 2011.

[3] P. Bahr and T. Hvitved. Parametric compositional data types. In
J. Chapman and P. B. Levy, editors, MSFP ’12, volume 76 of EPTCS,
pages 3-24, 2012.

[4] P. Bahr and T. Hvitved. compdata Haskell library, 2013.
http://hackage.haskell.org/package/compdata.
Data.Comp.MacroAutomata.

[5] H. Comon, M. Dauchet, R. Gilleron, C. Loding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques and
Applications. 2007. Draft.

[6] B. Courcelle and P. Franchi-Zannettacci. Attribute grammars and
recursive program schemes 1. Theor. Comput. Sci., 17(2):163 — 191,
1982.

[7] J. Engelfriet. Bottom-up and top-down tree transformations— a com-
parison. Math. Syst. Theory, 9(2):198-231, 1975.

[8] J. Engelfriet and S. Maneth. The equivalence problem for determinis-
tic MSO tree transducers is decidable. Inf. Process. Lett., 100(5):206
—212, 2006.

[9] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System
Sci., 31(1):71 — 146, 1985.
[10] Z. Fiilop. On attributed tree transducers. Acta Cybernet., 5:261-279,
1981.

[11] Z. Fiilop and H. Vogler. A characterization of attributed tree trans-
formations by a subclass of macro tree transducers. Theory Comput.
Syst., 32(6):649-676, 1999.

[12] J. Gibbons. Upwards and downwards accumulations on trees. In
R. Bird, C. Morgan, and J. Woodcock, editors, MPC ’93, volume 669
of LNCS, pages 122—-138. Springer, 1993.

[13] J. Gibbons. Generic downwards accumulations. Sci. Comput. Prog.,
37(1-3):37-65, 2000.

[14] J. Gibbons. Accumulating attributes (for Doaitse Swierstra, on his
retirement). In J. Hage and A. Dijkstra, editors, Een Lawine van

URL
module

Ontwortelde Bomen: Liber Amicorum voor Doaitse Swierstra, pages
87-102. 2013.

[15] 1. Hasuo, B. Jacobs, and T. Uustalu. Categorical views on computa-
tions on trees (extended abstract). In L. Arge, C. Cachin, T. Jurdzin-
ski, and A. Tarlecki, editors, ICALP ’07, volume 4596 of LNCS, pages
619-630. Springer, 2007.

[16] H. Hosoya. Foundations of XML Processing — The Tree-Automata
Approach. Cambridge University Press, 2010.

[17] S. Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as
a practical optimisation technique in GHC. In Haskell Workshop 01,
page 203, 2001.

[18] C. Jiirgensen. Categorical semantics and composition of tree trans-
ducers. PhD thesis, Technischen Universitit Dresden, 2003.

[19] C. Jiirgensen and H. Vogler. Syntactic composition of top-down tree
transducers is short cut fusion. Math. Structures Comput. Sci., 14(2):
215-282, 2004.

[20] K. Knight and J. Graehl. An overview of probabilistic tree transducers
for natural language processing. In A. Gelbukh, editor, Computational
Linguistics and Intelligent Text Processing, volume 3406 of LNCS,
pages 1-24. Springer, 2005.

[21] A. Kiihnemann. Benefits of tree transducers for optimizing functional
programs. In V. Arvind and S. Ramanujam, editors, Foundations of
Software Technology and Theoretical Computer Science, volume 1530
of LNCS, pages 146—157. Springer Berlin / Heidelberg, 1998.

[22] A. Kiihnemann. Comparison of deforestation techniques for func-
tional programs and for tree transducers. In A. Middeldorp and T. Sato,
editors, FLOPS ’99, volume 1722 of LNCS, pages 114—-130. Springer,
1999.

[23] A. Kithnemann and J. Voigtldnder. Tree transducer composition as de-
forestation method for functional programs. Technical report, Dresden
University of Technology, 2001.

[24] K. Matsuda, K. Inaba, and K. Nakano. Polynomial-time inverse
computation for accumulative functions with multiple data traversals.
In PEPM ’12, pages 5-14. ACM, 2012.

[25] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In J. Hughes, editor,
FPCA 91, volume 523 of LNCS, pages 124—144. Springer, 1991.

[26] J. Paakki. Attribute grammar paradigms - a high-level methodology in
language implementation. ACM Comput. Surv., 27(2):196-255, 1995.

[27] W. C. Rounds. Mappings and grammars on trees. Math. Syst. Theory,
4(3):257-287, 1970.

[28] H. Seidl. Equivalence of finite-valued tree transducers is decidable.
Math. Syst. Theory, 27(4):285-346, 1994.

[29] W. Swierstra. Data types a la carte. J. Funct. Program., 18(4):423—
436, 2008.

[30] J. W. Thatcher. Transformations and translations from the point of
view of generalized finite automata theory. In STOC ’69, pages 129—
142. ACM, 1969.

[31] W. Thomas. Handbook of formal languages, vol. 3. chapter Lan-
guages, automata, and logic, pages 389-455. Springer-Verlag, 1997.

[32] S. Tison. Tree automata and term rewrite systems. In L. Bachmair,
editor, RTA "00, volume 1833 of LNCS, pages 27-30. Springer, 2000.

[33] M. Viera, S. D. Swierstra, and W. Swierstra. Attribute grammars fly
first-class. In ICFP ’09, pages 245-246. ACM Press, 2009.

[34] J. Voigtlander. Conditions for efficiency improvement by tree trans-
ducer composition. In S. Tison, editor, RTA ’02, volume 2378 of
LNCS, pages 57-100. Springer, 2002.

[35] J. Voigtldnder. Formal efficiency analysis for tree transducer compo-
sition. Theory Comput. Syst., 41(4):619-689, 2007.

[36] P. Wadler. Theorems for free! In FPCA '89, pages 347-359. ACM,
1989.

[37] P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theor. Comput. Sci., 73(2):231-248, 1990.

[38] Z. Esik. Decidability results concerning tree transducers I. Acta
Cybernet., 5:1-20, 1981.

2013/7/26

copL- =V fghaq g p.(Functor f, Functor g, Functor h, Functor ¢.) =
Transp g g2 b — Transky f ¢ p g — Transky f (g1 A q2) p b
tro opL tr1 (g1 A @2) t = (tr2)p g2 (tr1 (fmap (Ma g5 — a g5) q1) (fmap reshape t))
where reshape :: ((q1 :A: ¢2) (h* a) = a,p) = (1 (¢" (g2 = a)) = ¢2 — a,p)
reshape (f,p) = (Aq1 ¢z = f (fmap (Xs ¢"5 — (tra)o ¢"5 s) g1 :A: q2), p)

Figure 6. Composition of an MTTL followed by a DTT.

A. Proof of Lemma 1 B. Composition of MTTLs
Lemma 1. Let e = Az ¢ — Re (z q) and b = algp tr for some The definition of -op - given in Figure 6 constructs the composition
tr. Then the following holds for all x and q: of an MTTL followed by a DTT.

fold,, b (join x) q = join (fold, e b (fmap (fold, b) z) q)
Proof of Lemma 1. We proceed by induction on z :: f* puf.

e Case x = Re y for some z :: uf.
join (fold, e b (fmap f (fold, b) (Re y)) q)
= { Definition of fmap }
join (fold, e b (Re (foldu by))q)
= { Definition of fold, }
Jjoin (e (fold,, b y) q)
= { Definition of e }
join (Re (fold,, by q))
= { Definition of join }
Jold, byq
= { Definition of join }
fold,, b (join (Re y)) q
e Case x = In y for some y :: f uf.
join (fold, ¢ b (fmap (fold,, b) (In y)) 4)
= { Definition of fmap }
join (fold, ¢ b (In (fmap (fmap (fold, 1)) y)) q)
= { Definition of fold,; functor law }
join (b (fmap (fold, € bo fmap (fold, b)) y) q)
= { Definition of b and algp }
join (join (tr q (fmap (fold, e bo fmap (fold, b)) y)))
= { Monad law: join o join = join o frmap join }
join (fmap join (tr g (fmap (fold, e bo fmap (fold, b)) y)))
= { Parametricity; functor law }
join (tr q (fmap ((joino)o fold, e bo fmap (fold, b)) y))
= { Induction hypothesis }
join (tr q (fmap (fold, bojoin) y))
= { Definition of b and algp, }
b (fmap (fold, bo join) y) q
= { Functor law; definition of fold, }
fold,, b (In (fmap join y)) q
= { Definition of join }
fold,, b (join (In y)) q

13 2013/7/26

