
G52CON: Exercise 6, CTL
Consider the concurrent program consisting of the two processes shown below:

boolean turn = r1 = r2 = false
process 1 process 2

while(true) { while(true) {
r1 = turn; r2 = turn;
if (!r1) { if (r2) {

<crit1>; <crit2>;
turn = true; turn = false;

} }
} }

States are described by the following propositional variables:

• t for turn equals true;

• r1 for r1 equals true;

• r2 for r2 equals true;

• c1 for process 1 is in its critical section;

• c2 for process 2 is in its critical section;

The starting state is s0 = (¬t,¬r1,¬r2,¬c1,¬c2). Each process performs the following sequence of
actions: copy the value of variable turn into its local variable r1 or r2; evaluate the if statement;
depending on the outcome, either do its critical section and set turn to be true (false), or return to the
first step. Actions can be arbitrarily interleaved. As usual we assume that assignment is an atomic
operation. If we are in a state where for example r1 holds and t does not and process 1 executes
atomic action r1 = turn we make a transition to a state where ¬r1 holds. In this example we can
also assume that evaluating the if statement is an atomic operation since the value of the local variable
can’t be changed by another process. So if we are in the state where ¬r1 holds and process 1 evaluates
the condition of its if statement, we move to a state where c1 is true.

Questions:

(a). Draw the state transition diagram.

(b). Write a CTL formula expressing the following property: it is impossible that r1 is true and
process 1 is in its critical section. Is this formula true at the start state of the transition system
you drew? Justify your answer using the truth definition for CTL formulas.

(c). Write a CTL formula expressing the property of non-strict scheduling: process 1 and process
2 don’t always take turns at entering critical section, but instead for example process 1 can go
into critical section several times in a row. (Hint: you may need to use Until operator.) Is this
formula true at the start state of the transition system you drew? Justify your answer using the
truth definition for CTL formulas.

1



Answer:

(a). The following states are possible:

s0 = (¬t,¬r1,¬r2,¬c1,¬c2)

s1 = (¬t,¬r1,¬r2, c1,¬c2)

s2 = (t,¬r1,¬r2,¬c1,¬c2)

s3 = (t, r1,¬r2,¬c1,¬c2)

s4 = (t,¬r1, r2,¬c1,¬c2);

s5 = (t, r1, r2,¬c1,¬c2);

s6 = (t,¬r1, r2,¬c1, c2);

s7 = (t, r1, r2,¬c1, c2);

s8 = (¬t, r1, r2,¬c1,¬c2);

s9 = (¬t,¬r1, r2,¬c1,¬c2);

s10 = (¬t, r1,¬r2,¬c1,¬c2);

s11 = (¬t,¬r1, r2, c1,¬c2);

Transitions:

(s0, s0) by process 1 executing first assignment; by process 2 executing first assignment; by
process 2 evaluating if.

(s0, s1) by process 1 evaluating if.

(s1, s2) by process 1 executing second assignment.

(s1, s1) by process 2 evaluating if.

(s2, s3) by process process 1 executing first assignment.

(s2, s4) by process process 2 executing first assignment.

(s3, s5) by process process 2 executing first assignment.

(s3, s3) by process 1 evaluating if.

(s4, s6) by process 2 evaluating if.

(s4, s5) by process process 1 executing first assignment.

(s5, s7) by process 2 evaluating if.

(s5, s5) by process 1 evaluating if, executing first assignment.

(s6, s9) by process 2 executing second assignment.

(s6, s7) by process 1 executing first assignment.

(s7, s8) by process 2 executing second assignment.

(s7, s7) by process 1 evaluating if, executing first assignment.

(s8, s9) by process 1 executing first assignment.

(s8, s10) by process 2 executing first assignment.

(s9, s11) by process 1 evaluating if.

(s9, s0) by process 2 executing first assignment.

2



(s10, s0) by process 1 executing first assignment.

(s10, s11) by process 1 evaluating if.

(s11, s4) by process 1 executing second assignment.

(s11, s1) by process 2 executing first assignment.

(b). AG(¬(r1 ∧ c1)). This is true since all states satisfy ¬(r1 ∧ c1).

(c). EF (c1 ∧ EXE(¬c2Uc1)) (there exists a path such that c1 is true at some point on that path
and later (not at the same point) c1 is true again and in between c2 is not true). The statement is
false: there is no path where critical sections don’t alternate.

3


