
G52CON: 
Concepts of Concurrency 

Lecture 1: Introduction  

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 2	

Outline of this lecture"
•  why concurrency ...	

•  applications of concurrency	

•  sequential vs concurrent programs	

•  module aims & objectives	

•  scope of the module & outline syllabus	

•  assessment	

•  suggested reading	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 3	

Example: ParticleApplet"
ParticleApplet creates n Particle objects, sets each particle in
autonomous ‘continuous’ motion, and periodically updates the display to
show their current positions:	

•  the applet runs in its own Java thread;	

•  each particle runs in its own Java thread which computes the position
of the particle;	

•  an additional thread periodically checks the positions of the particles
and draws them on the screen;	

•  in this example there are at least 12 threads and possibly more,
depending on how the browser handles applets.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 4	

Why concurrency ..."
It is often useful to be able to do several things at once:	

•  when latency (responsiveness) is an issue, e.g., server design, cancel
buttons on dialogs, etc.;	

•  when you want to parallelise your program, e.g., when you want to
distribute your code across multiple processors;	

•  when your program consists of a number of distributed parts, e.g.,
client–server designs.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 5	

… but I only have a single processor"
Concurrent designs can still be effective even if you only have a single
processor/core:	

•  many sequential programs spend considerable time blocked, e.g.
waiting for memory or I/O	

•  this time can be used by another thread in your program (rather than
being given by the OS to someone else’s program)	

•  even if your code is CPU bound, it can still be more convenient to let
the scheduler (e.g. JVM) work out how to interleave the different parts
of your program than to do it yourself	

•  it’s also more portable, if you do get another processor/more cores	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 6	

Example: file downloading"
Consider a client–server system for file downloads (e.g. BitTorrent, FTP)	

•  without concurrency	

– it is impossible to interact with the client (e.g., to cancel the

download or start another one) while the download is in progress	

– the server can only handle one download at a time—anyone else
who requests a file has to wait until your download is finished	

•  with concurrency	

– the user can interact with the client while a download is in

progress (e.g., to cancel it, or start another download)	

– the server can handle multiple clients at the same time	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 7	

More examples of concurrency"
•  GUI-based applications: e.g., javax.swing	

•  Mobile code: e.g., java.applet	

•  Web services: HTTP daemons, servlet engines, application servers	

•  Component-based software: Java beans often use threads internally	

•  I/O processing: concurrent programs can use time which would
otherwise be wasted waiting for slow I/O	

•  Real Time systems: operating systems, transaction processing
systems, industrial process control, embedded systems etc.	

•  Parallel processing: simulation of physical and biological systems,
graphics, economic forecasting etc.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 8	

All programs are sequential in that they execute a sequence of instructions
in a pre-defined order:	

Sequential programs"

There is a single thread of execution or control.	

LOAD x
ADD 1
STORE x x = x + 1

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 9	

Concurrent programs"
A concurrent program is one consisting of two or more processes —
threads of execution or control	

Each process is itself a sequential program. 	

Process A! Process B!

LOAD x
ADD 1
STORE x

LOAD x
STORE y

x = x + 1 y = x

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 10	

Aspects of concurrency"
We can distinguish between:	

•  whether the concurrency is required (by the specification) or optional
(a design choice made by the programmer);	

•  the granularity of the concurrent program, application or system; and	

•  how the concurrency is implemented.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 11	

Concurrency in specification vs
implementation"
Concurrency is useful both when we want a program to do several things
at once, and as an implementation strategy:	

•  in real-time systems concurrency is often implicit in the specification
of the problem, e.g., cases where we can’t allow a single thread of
control to block on I/O;	

•  in parallel programming, e.g., weather forecasting, SETI@home, etc.,
there may be no concurrency in the problem requirements—however a
concurrent implementation may run faster or allow a more natural
problem decomposition.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 12	

Granularity of concurrency"
The processes in a concurrent program (or more generally, concurrent
application or concurrent system) can be at different levels of granularity:	

•  threads within a single program, e.g., Java threads within a Java
program running on a JVM (lightweight processes);	

•  programs running on a single processor or computer (heavyweight or
OS processes)—this is not usually a concern for applications
programmers;	

•  programs running on different computers connected by a network.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 13	

Implementations of concurrency"
We can distinguish two main types of implementations of concurrency:	

•  shared memory: the execution of concurrent processes by running
them on one or more processors all of which access a shared memory
—processes communicate by reading and writing shared memory
locations; and 	

•  distributed processing: the execution of concurrent processes by
running them on separate processors—processes communicate by
message passing.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 14	

Java Implementations of Concurrency"
Java supports both shared memory and distributed processing

implementations of concurrency:	

•  shared memory: multiple user threads in a single Java Virtual
Machine—threads communicate by reading and writing shared
memory locations; and 	

•  distributed processing: via the java.net and java.rmi
packages—threads in different JVMs communicate by message
passing or remote procedure call	

G52CON covers both approaches 	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 15	

Shared memory implementations"
We can further distinguish between:	

•  multiprogramming: the execution of concurrent processes by
timesharing them on a single processor (concurrency is simulated);	

•  multiprocessing: the execution of concurrent processes by running
them on separate processors which all access a shared memory (true
parallelism as in distributed processing).	

… it is often convenient to ignore this distinction when considering shared
memory implementations. 	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 16	

Cooperating concurrent processes"
The concurrent processes which constitute a concurrent program must
cooperate with each other:	

•  for example, downloading a file in a web browser generally creates a
new process to handle the download	

•  while the file is downloading you can also continue to scroll the
current page, or start another download, as this is managed by a
different process	

•  if the two processes don’t cooperate effectively, e.g., when updating
the display, the user may see only the progress bar updates or only the
updates to the main page.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 17	

Synchronising concurrent processes"
To cooperate, the processes in a concurrent program must communicate
with each other:	

•  communication can be programmed using shared variables or
message passing;	

– when shared variables are used, one process writes into a shared
variable that is read by another;	

– when message passing is used, one process sends a message that is
received by another;	

•  the main problem in concurrent programming is synchronising this
communication	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 18	

Competing processes"
Similar problems occur with functionally independent processes which
don’t cooperate, for example, separate programs on a time-shared
computer:	

•  such programs implicitly compete for resources;	

•  they still need to synchronise their actions, e.g., two programs can’t
use the same printer at the same time or write to the same file at the
same time.	

In this case, synchronisation is handled by the OS, using similar
techniques to those found in concurrent programs.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 19	

Structure of concurrent programs"
Concurrent programs are intrinsically more complex than single-threaded
programs:	

•  when more than one activity can occur at a time, program execution is
necessarily nondeterministic;	

•  code may execute in surprising orders—any order that is not explicitly
ruled out is allowed 	

•  a field set to one value in one line of code in a process may have a
different value before the next line of code is executed in that process; 	

•  writing concurrent programs requires new programming techniques	

A large ornamental garden is open to members of the public who can
enter through either of two turnstiles	

•  the owner of the garden hires a student to write a concurrent program
to count how many people are in the garden at any one time	

•  the program has two processes, each of which monitors a turnstile and
increments a shared counter whenever someone enters via that
processes’ turnstile	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 20	

Garden

Example: the Ornamental Gardens problem"

West"
turnstile"

East"
turnstile"

Counter"

Why we need a module on
concurrent programming"
Advantages of concurrency	

•  concurrent programs are often more flexible or responsive than single-

threaded programs	

•  a concurrent design is more natural for many applications 	

•  a concurrent design may make better use of system resources	

Potential problems of concurrency	

•  concurrent programs are often more complex than single-threaded

programs	

•  a concurrent design may entail a performance overhead (though this is

often over-stated) 	

•  concurrency introduces new kinds of bugs – testing is much less useful

in identifying defects	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 21	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 22	

Module aims"

•  to convey a basic understanding of the concepts, problems, and
techniques of concurrent programming 	

•  to show how these can be used to write simple concurrent programs in
Java	

•  to develop new problem solving skills	

This course introduces the basic principles of concurrent programming
and their use in designing programs	

Aims	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 23	

Module objectives"
•  judge for what applications and in what circumstances concurrent

programs are appropriate;	

•  design concurrent algorithms using a variety of low-level primitive
concurrency mechanisms;	

•  analyse the behaviour of simple concurrent algorithms with respect to
safety, deadlock, starvation and liveness; 	

•  apply well-known techniques for implementing common producer-
consumer and readers-and-writers applications, and other common
concurrency problems; and	

•  design concurrent algorithms using Java primitives and library
functions for threads, semaphores, mutual exclusion and condition
variables.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 24	

Scope of the module"
•  will will focus on concurrency from the point of view of the

application programmer;	

•  we will focus on problems where concurrency is implicit in the
problem requirements;	

•  we will only consider imperative concurrent programs;	

•  we will focus on programs in which process execution is
asynchronous, i.e., each process executes at its own rate; and	

•  we won’t concern ourselves with whether concurrent programs are
executed in parallel on multiple processors or whether concurrency is
simulated by multiprogramming.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 25	

Outline syllabus"
The course focuses on four main themes:	

•  introduction to concurrency;	

•  design of simple concurrent algorithms in Java;	

•  correctness of concurrent algorithms; and	

•  design patterns for common concurrency problems.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 26	

Assessment"
Assessment is by examination:	

•  a two hour examination, worth 100%	

There are also several unassessed exercises.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 27	

Reading list"
•  Andrews (2000), Foundations of Multithreaded, Parallel and

Distributed Programming, Addison Wesley.	

•  Lea (2000), Concurrent Programming in Java: Design Principles and

Patterns, (2nd Edition), Addison Wesley.	

•  Ben-Ari (1982), Principles of Concurrent Programming, Prentice
Hall.	

•  Andrews (1991), Concurrent Programming: Principles & Practice,
Addison Wesley.	

•  Burns & Davis (1993), Concurrent Programming, Addison Wesley.	

•  Magee & Kramer (1999), Concurrency: State Models and Java

Programs, John Wiley.	

© Brian Logan 2014	
 G52CON Lecture 1: Introduction	
 28	

The next lecture"
Processes and Threads	

Suggested reading for this lecture:	

•  Andrews (2000), chapter 1, sections 1.1–1.2;	

•  Ben-Ari (1982), chapter 1.	

Suggested reading for the next lecture:	

•  Lea (2000), chapter 1.	

Java Tutorial, Threads	

docs.oracle.com/javase/tutorial/essential/concurrency	

