
G52CON: 
Concepts of Concurrency 

Lecture 2 Processes & Threads"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 2	

Outline of this lecture"
•  Java implementations of concurrency	

•  process and threads	

•  a simple ParticleApplet example	

•  ways of creating Thread objects in Java: 	

–  extending the Thread class; and 	

–  implementing the Runnable interface	

•  the lifecycle of a Thread: 	

–  starting a new Thread, 	

– while the Thread is running; and	

–  shutting it down	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 3	

Implementations of Concurrency"
We can distinguish two main types of implementations of concurrency:	

•  shared memory: the execution of concurrent processes by running
them on one or more processors all of which access a shared memory
—processes communicate by reading and writing shared memory
locations; and 	

•  distributed processing: the execution of concurrent processes by
running them on separate processors which don’t share memory—
processes communicate by message passing.	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 4	

Java Implementations of Concurrency"
Java supports both shared memory and distributed processing
implementations of concurrency:	

•  shared memory: multiple user threads in a single Java Virtual
Machine—threads communicate by reading and writing shared
memory locations; and 	

•  distributed processing: via the java.net and java.rmi
packages—threads in different JVMs communicate by message
passing or (remote procedure call)	

G52CON covers both approaches 	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 5	

Processes and Threads"
•  A process is any thread of execution or control, e.g.:	

– part of a concurrent program (lightweight process)	

– programs running in different address spaces on the same processor
(heavyweight or OS processes)	

–  running on a different processor or on a different computer	

•  A thread is a process which forms part of a concurrent program	

–  threads execute within a shared address space	

– a Java thread is a process running within a JVM (JVM is generally
run as a heavyweight or OS process)	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 6	

Threads in Java"
A thread is a single sequential flow of control within a Java program.	

Within the JVM, the threads comprising a Java program are represented
by instances of the Thread class.	

Thread A! Thread B!

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 7	

Runnable"

Thread lifecycle"

New Thread"

Dead"

Not runnable"Running"

yield"

wait"

notify"

sleep	

timeout"

blocked on I/O"

I/O completes"

start"

return"

alive"

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 8	

A Simple Example: ParticleApplet"
ParticleApplet creates n Particle objects, sets each particle in
autonomous ‘continuous’ motion, and periodically updates the display to
show their current positions:	

•  each Particle runs in its own Java Thread which computes the
position of the particle; and	

•  an additional ParticleCanvas Thread periodically checks the
positions of the particles and draws them on the screen.	

•  in this example there are at least 12 threads and possibly more,
depending on how the browser handles applets.	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 9	

ParticleApplet"
There are three classes:	

• Particle: represents the position and behaviour of a particle and
can draw the particle at its current position;	

• ParticleCanvas: provides a drawing area for the Particles,
and periodically asks the Particles to draw themselves; and

• ParticleApplet: creates the Particles and the canvas and
sets the Particles in motion.	

See also Lea (2000), chapter 1 for an alternative implementation.	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 10	

Runnable"

Thread lifecycle: creation"

New Thread"

Dead"

Not runnable"Running"

yield"

wait"

notify"

sleep	

timeout"

blocked on I/O"

I/O completes"

start"

return"

alive"

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 11	

Creating Threads"
There are two ways to create a thread:	

•  extending the Thread class and overriding its run() method; or	

•  defining a class which implements the Runnable interface and its
run() method	

public interface java.lang.Runnable {

 void run();
}

 and passing the Runnable object to the Thread constructor.	

The Thread class implements the Runnable interface.	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 12	

Extending the Thread class"
class Particle extends Thread {
 protected int x, y;
 protected final random rng = new Random(this.hashCode());

 // constructor etc…

 public void run() {
 try {
 for(;;) {

 move();
 sleep(100);

 }
 } catch (InterruptedException e) {
 return;
 }
 }
 // other methods ...

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 13	

Particle class continued"

 public synchronized void move() {

 x += (rng.nextInt() % 10);

 y += (rng.nextInt() % 10);

 }

 public void draw(Graphics g) {

 int lx, ly;

 synchronized(this) { lx = x; ly = y; }

 g.drawRect(lx, ly, 10, 10);

 }

}

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 14	

Implementing Runnable"
class ParticleCanvas extends Canvas implements Runnable {
 private Particle[] particles = new Particle[0];

 // constructor etc ...

 public void run() {
 try {
 for(;;) {

 repaint();
 Thread.sleep(100);

 }
 }

 catch (InterruptedException e) { return; }
 }

 // other methods ...

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 15	

ParticleCanvas class continued"

 protected synchronized void getParticles() {

 return particles;

 }

 // called by Canvas.repaint();

 public void paint(Graphics g) {

 Particle[] ps = getParticles();

 for (int i = 0; i < ps.length(); i++)

 ps[i].draw(g);

 }

}

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 16	

Particle threads"
public class ParticleAppletA extends Applet {

 protected final ParticleCanvas canvas = new ParticleCanvas(400);

 protected Particle[] particles; // null when not running

 protected Thread canvasThread;

 // ParticleApplet start method
 public synchronized void start() {

 int n = 10; // just for demo

 if (particles == null) { // bypass if already started

 particles = new Particle[n];

 for (int i = 0; i < n; ++i) {

 particles[i] = new Particle(200, 200);

 particles[i].setName("Particle Thread " + i);

 particles[i].start();

 }

 canvas.setParticles(particles);

 // continued ...

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 17	

ParticleCanvas thread"
public class ParticleAppletA extends Applet {

 protected final ParticleCanvas canvas = new ParticleCanvas(400);

 protected Particle[] particles; // null when not running

 protected Thread canvasThread;

 // ParticleApplet start method ...
 public synchronized void start() {

 int n = 10; // just for demo

 if (particles == null) { // bypass if already started

 // code to start particles omitted …

 canvasThread = new Thread(canvas);

 canvasThread.setName("Canvas Thread");

 canvasThread.start();

 }

 }

Calling run() … (wrong!)"

© Chris Greenhalgh, 2010	
 G52CON Lecture 2: Processes & Threads	
 18	

Calling start()… (right!)"

© Chris Greenhalgh, 2010	
 G52CON Lecture 2: Processes & Threads	
 19	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 20	

Runnable"

Thread lifecycle: running"

New Thread"

Dead"

Not runnable"Running"

yield"

wait"

notify"

sleep	

timeout"

blocked on I/O"

I/O completes"

start"

return"

alive"

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 21	

Particle.run()"
class Particle extends Thread {

 // fields, constructor etc…

 public void run() {
 try {
 for(;;) {

 move();
 sleep(100);

 }
 }
 catch (InterruptedException e) { return; }
 }

 // other methods …
}

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 22	

Particle threads"

particles[0]

move();
sleep(100);

particles[1]

move();
sleep(100);

particles[9]

move();
sleep(100);

...

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 23	

ParticleCanvas.run()"
class ParticleCanvas extends Canvas implements Runnable {

 // fields, constructor etc …

 public void run() {

 try {
 for(;;) {

 repaint();
 Thread.sleep(100);

 }
 }
 catch (InterruptedException e) { return; }
 }

 // other methods …
}

ParticleCanvas

repaint();
sleep(100);

© Brian Logan 2007,���
Chris Greenhalgh, 2010	

G52CON Lecture 2: Processes & Threads	
 24	

ParticleCanvas & AWT event threads"

particles[0]

move();
sleep(100);

particles[9]

move();
sleep(100);

paint() {
 particles[0].draw
 particles[1].draw
 .
 .
 .

 particles[9].draw
}
…

... particles[1]

move();
sleep(100);

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 25	

Runnable"

Thread lifecycle: not runnable"

New Thread"

Dead"

Not runnable"Running"

yield"

wait"

notify"

sleep	

timeout"

blocked on I/O"

I/O completes"

start"

return"

alive"

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 26	

The not runnable state"
A running Thread becomes not runnable when:	

•  it calls sleep() to tell the scheduler that it no longer wants to run; 	

•  it blocks for I/O; or	

•  it blocks in wait()for condition synchronisation.	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 27	

Examples of not runnable"
• Particle threads become not runnable when they sleep()

•  the ParticleCanvas thread becomes not runnable when it calls
sleep()

•  we’ll return to wait() and condition synchronisation in later lectures
…	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 28	

Scheduling methods"
The Thread class provides the following static scheduling methods:

• sleep(long msecs): causes the current thread to suspend for at
least msecs milliseconds.	

• yield(): requests that the JVM to run any other runnable but non-
running thread rather than the current thread.	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 29	

Thread priorities"
Threads have priorities which heuristically influence schedulers:	

•  each thread has a priority in the range Thread.MIN_PRIORITY to
Thread.MAX_PRIORITY	

•  by default, each new thread has the same priority as the thread that
created it---the initial thread associated with a main method by default
has priority Thread.NORM_PRIORITY

•  the current priority of a thread can be accessed by the method
getPriority and set via the method setPriority.	

When there are more runnable threads than CPUs, a scheduler is generally
biased in favour of threads with higher priorities.	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 30	

Runnable"

Thread lifecycle: cancellation"

New Thread"

Dead"

Not runnable"Running"

yield"

wait"

notify"

sleep	

timeout"

blocked on I/O"

I/O completes"

start"

return"

alive"

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 31	

Thread termination"
A thread terminates when its run() method completes:	

•  either by returning normally; or 	

•  by throwing an unchecked exception (RuntimeException,
Error or one of their subclasses) 	

Threads are not restartable—invoking start() more than once results
in an InvalidThreadStateException.	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 32	

Thread cancellation"
There are several ways to get a thread to stop:	

•  when the thread’s run() method returns;	

•  call Thread.stop() --- this is a bad idea, as it doesn’t allow the
thread to clean up before it dies; or	

•  interrupt() the thread.	

A multi-threaded program will continue to run until its last (non-daemon)
thread terminates. 	

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 33	

Interrupting a Thread"
Each Thread object has an associated boolean interruption status:	

• interrupt(): sets a running thread’s interrupted status to true	

• isInterrupted(): returns true if the thread has been interrupted
by interrupt()

A thread can periodically check its interrupted status, and if it is true,
clean up and exit.	

© Brian Logan 2014	

 Chris Greenhalgh 2010	

G52CON Lecture 2: Processes & Threads	
 34	

Thread (checked) exceptions"
Threads which are blocked in calls wait() and sleep() aren’t runnable,
and can’t check the value of the interrupted flag	

•  interrupting a thread which is waiting or sleeping aborts the thread and
throws an InterruptedException	

•  if the interrupt flag is set before entering sleep or wait the thread
immediately throws an InterruptedException	

synchronized <method or block>
 try {
 wait()|sleep()
 } catch (InterruptedException e) {
 // clean up and return (interrupted status false)
 }

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 35	

Stopping the ParticleApplet"
// ParticleApplet stop method (not Thread.stop) …

public synchronized void stop() {

 // Bypass if already stopped …

 if (particles != null) {

 for (int i = 0; i < particles.length; ++i)

 particles[i].interrupt();

 particles = null;

 canvasThread.interrupt();

 canvasThread = null;

 }

}

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 36	

Stopping the Particles"
// Particle run method …

public void run() {
 try {
 for(;;) {

 move();
 sleep(100);

 }
 }
 catch (InterruptedException e) { return; }
}

© Brian Logan 2014	
 G52CON Lecture 2: Processes & Threads	
 37	

The Next Lecture"
Synchronisation	

Suggested reading:	

•  Andrews (2000), chapter 2, sections 2.1, chapter 3, section 3.1;	

•  Ben-Ari (1982), chapter 2.	

