
G52CON: 
Concepts of Concurrency 

Lecture 3: Synchronisation"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 2	

Outline of this lecture"
•  mutual exclusion and condition synchronisation	

•  modelling concurrency as interleaving	

•  the problem of interference	

•  example: a shared buffer 	

•  example: loss of increment	

•  the need for mutual exclusion between critical sections	

•  the archetypical mutual exclusion problem	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 3	

Synchronising concurrent processes"
To cooperate, the processes in a concurrent program must communicate
with each other:	

•  communication can be programmed using shared variables or
message passing;	

– when shared variables are used, one process writes into a shared
variable that is read by another;	

– when message passing is used, one process sends a message that is
received by another;	

•  the main problem in concurrent programming is synchronising this
communication	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 4	

Synchronisation"
There are two main synchronisation problems in concurrent programming:	

•  Mutual Exclusion: ensuring that statements in different processes
cannot execute at the same time.	

•  Condition Synchronisation: delaying a process until some Boolean
condition is true. This is usually implemented by having one process
wait for an event that is signalled by another process.	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 5	

Example: a shared memory location"
Communication between a process that produces data and a process which
uses it, can be implemented using a shared memory location	

•  one process (the producer) writes data to the memory location 	

•  the other (the consumer) reads data from the memory location	

Producer	

Consumer	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 6	

Shared memory synchronisation"
Synchronisation conditions for the shared memory location:	

•  mutual exclusion is necessary to ensure that the producer and
consumer do not access the memory location at the same time—i.e.,
that partial data is not read or that partially read data is not
overwritten;	

•  condition synchronisation may be necessary to ensure that the
consumer doesn’t get too far ahead of the producer and vice versa—
i.e., data is not read before it has been written or read twice, and that
data is not overwritten before it has been read.	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 7	

Condition synchronisation"
Of the two problems, condition synchronisation is the easier to solve. 	

•  the simplest solution is to use busy waiting–the process simply sits in a
loop until the condition is true	

–  e.g., in the shared buffer problem, the consumer can loop
repeatedly checking to see if there is a data item ready 	

•  there are other, more efficient, solutions which we will discuss in later
lectures.	

In this lecture, we will focus on the problem of mutual exclusion.	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 8	

All programs are sequential in that they execute a sequence of instructions
in a pre-defined order:	

Sequential programs"

There is a single thread of execution or control.	

LOAD x
ADD 1
STORE x x = x + 1

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 9	

Concurrent programs"
A concurrent program is one consisting of two or more processes —
threads of execution or control	

Each process is itself a sequential program. 	

Process A! Process B!

LOAD x
ADD 1
STORE x

LOAD x
STORE y

x = x + 1 y = x

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 10	

Multiprogramming"
•  if we ignore pipelining, it is not possible for a single processor to

execute more than one instruction at a time	

•  thus, on the time scale of a single instruction, concurrent processes are
not possible	

•  on a longer time scale, however, several processes may be interleaved
so that each runs for a short time, then another is run, and so on	

•  over a long enough time scale, the processes appear to run truly
concurrently, although at any given point in time, only one of them is
executing	

•  this is called multiprogramming	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 11	

Concurrent execution"
Consider a multiprogramming implementation of a concurrent program
consisting of two processes: 	

•  the switching between processes occurs voluntarily (e.g., yield() in
Java); or	

•  in response to interrupts, which signal external events such as the
completion of an I/O operation or clock tick to the processor.	

Process A	

Process B	
 time	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 12	

Interleaving"

time	

The processor executes a sequence of instructions which is an interleaving
of the instruction sequences from each process:	

Process switching does not affect the order in which instructions are
executed by each process.	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 13	

Asynchronous process execution"
•  in multiprocessing systems the processes usually have little or no

control over how they are interleaved	

•  advantage: applications programmer can ignore the problems of
timesharing the processes	

•  disadvantage: processes effectively run asynchronously—we can’t
predict the relative speed with which they run, which runs first, at
which point they will be suspended etc.	

•  this indeterminism makes debugging much more difficult than is the
case for sequential programs	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 14	

Multiprocessing implementations"
Multiprocessing implementations of concurrency can be modelled in the
same way:	

•  each program statement or machine instruction ultimately reduces to a
sequence of atomic actions on the shared memory, e.g., loading and
storing registers	

•  the effect of executing a set of atomic actions in parallel is equivalent
to executing them in some arbitrary serial order, since the state
transformations caused by an atomic action are indivisible, and hence
cannot [by definition] be affected by atomic actions executed in
parallel with it 	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 15	

Serialising parallel atomic actions"
Two processes running on different processors can write to a shared
memory location in parallel:	

•  since writing is an atomic operation, one of the writes must go first	

•  which actually goes first is determined by the Memory Management
Unit (MMU)	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 16	

Modelling concurrency"
We therefore assume that:	

•  concurrency is modelled as interleaving; 	

•  processes execute at arbitrary relative speeds—a process can take
arbitrarily long to proceed from one instruction to the next; and	

•  instructions from processes are arbitrarily interleaved.	

This is referred to as an asynchronous model of execution.	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 17	

Interference"
If instructions from different processes are arbitrarily interleaved, any
interleaving which is not explicitly prohibited is allowed 	

•  inevitably, some interleavings will have results you don’t want	

•  interference occurs when two processes read and write shared
variables in an unpredictable order, and hence with unpredictable
results	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 18	

An example of interference!
Process 1	

// initialisation code

tail = tail + 1;
queue[tail] = data1;

// other code ...

Process 2	

// initialisation code

tail = tail + 1;
queue[tail] = data2;

// other code ...

Shared datastructures	

Object queue[SIZE];
integer tail;

1	

2	

1	

2	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 19	

An example trace"
Possible interleaving	

P1:tail = tail + 1;

P2:tail = tail + 1;

P2:queue[tail] = data2;

P1:queue[tail] = data1;!

If the initial value of tail is 6	

tail == 7

tail == 8

queue[8] == data2

queue[8] == data1;

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 20	

Counting traces"
•  how many distinct traces are there of the example program?	

•  how many of these traces are safe (i.e., do not result in loss of data)?	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 21	

Counting traces"

P22	
 P12	

P12	
 P22	

P12	
 P22	

P22	
 P12	

P21	

P11	

P22	

P12	

P21	

P11	

P11	
 P12	

P21	
 P22	
 trace 1	

trace 2	

trace 3	

trace 4	

trace 5	

trace 6	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 22	

Safe traces"

trace 1 queue[7] = data1 queue[8] = data2

trace 2 queue[7] = ! queue[8] = data2

trace 3 queue[7] = ! queue[8] = data1

trace 4 queue[7] = ! queue[8] = data1

trace 5 queue[7] = ! queue[8] = data2

trace 6 queue[7] = data2 queue[8] = data1

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 23	

Garden

Explaining the Ornamental Gardens
problem"
A large ornamental garden is open to members of the public who can
enter through either of two turnstiles.	

•  the owner of the garden writes a computer program to count how
many people are in the garden at any one time	

•  the program has two processes, each of which monitors a turnstile and
increments a shared counter whenever someone enters via that
processes’ turnstile.	

West"
turnstile"

East"
turnstile"

Counter"

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 24	

Ornamental Gardens program"
// West turnstile

init1;

while(true) {

 // wait for turnstile

 count = count + 1;

 // other stuff ...

}

// East turnstile

init2;

while(true) {

 // wait for turnstile

 count = count + 1;

 // other stuff ...

}!

count == 0	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 25	

Loss of increment"

West turnstile process	

count = count + 1;	

1. loads the value of count into a CPU
register (r == 10)	

4. increments the value in its register 	

(r == 11)	

6. stores the value in its register in count
(count == 11)	

East turnstile process	

count = count + 1;

2. loads the value of count into a CPU
register (r == 10)	

3. increments the value in its register 	

(r == 11)	

5. stores the value in its register in count
(count == 11)	

// shared variable
integer count = 10;

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 26	

Avoiding interference"
To avoid interference, we need to ensure that no two processes access a
shared variable at the same time	

•  we do this by marking such sections of code as critical and requiring
that no two processes are executing critical code at the same time	

•  this is termed mutual exclusion.	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 27	

Critical sections"
A critical section is a section of code belonging to a process in a
concurrent program that:	

•  accesses a shared resource, e.g., a shared variable, shared
communication channel, shared file etc.; and	

•  for correct behaviour of the program only one process may access the
shared resource at a time.	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 28	

Interleaving critical sections"

Process A	

Process B	
 time	

critical section

critical section

interference

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 29	

Interleaving critical sections"

Process A	

Process B	
 time	

critical section

critical section

interference

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 30	

Mutual exclusion"
If processes A and B contain critical sections then the overlapped
execution of process A and process B could result in interference:	

•  mutual exclusion is the requirement that, at any given time, at most
one process in a concurrent program is executing a critical section	

•  once one process has entered a critical section, no other process may
enter a critical section until the first process has exited its critical
section.	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 31	

Mutual exclusion of critical sections!
Mutual exclusion is a constraint on the execution of processes which
applies between the process’s critical sections, not between the processes
themselves	

•  for example, the fact that A and B contain critical sections does not
mean that their execution should never overlap, only that the
execution of their critical sections should never overlap	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 32	

Enforcing mutual exclusion"
To ensure mutual exclusion, one (or more) process may have to wait to
enter their critical section(s):	

•  for example, if Process A is already in its critical section when process
B tries to enter its critical section, then Process B will have to wait	

•  this prevents interleaving of instructions in the critical sections	

•  in a multiprogramming implementation, this needn’t increase the
overall run time of the application—the same instructions are
executed, only in a different order	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 33	

Non-interleaved critical sections"

Process A	

Process B	
 time	

critical section

critical section

Process B delay

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 34	

Note that the execution of Process B can be interleaved with the execution
of Process A’s critical section, so long as B is not in it’s critical section
(and vice versa)	

Non-interleaved critical sections"

Process A	

Process B	
 time	

critical section

Process B delay

critical section

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 35	

Mutual exclusion of critical sections"

Process A	

Process B	
 time	

critical section

Process B delay

critical section

critical section

critical section

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 36	

Classes of critical sections"
In concurrent programs there are often a large number of critical sections
which do not all need to be mutually exclusive with each other:	

•  a class of critical sections is a set of critical sections, all of which must
be mutually exclusive with others in the same class 	

•  critical sections in different classes do not need to be mutually
exclusive	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 37	

Archetypical mutual exclusion"

// Process 1

init1;

while(true) {

crit1;

rem1;

}

// Process 2 ... // Process n

init2; initn;

while(true) { while(true) {

crit2; critn;

rem2; remn;

} }

Any program consisting of n processes for which mutual exclusion is
required between critical sections belonging to just one class can be written:	

where initi denotes any (non-critical) initialisation, criti denotes 	

a critical section and remi denotes the (non-critical) remainder of the 	

program, and i is 1, 2, … n.	

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 38	

We assume that init, crit and rem may be of any size:	

• crit must execute in a finite time	

• init and rem may be infinite.	

• crit and rem may vary from one pass through the while loop to
the next	

With these assumptions it is possible to rewrite any process with critical
sections into the archetypical form.	

Archetypical mutual exclusion"

© Brian Logan 2014	
 G52CON Lecture 3: Synchronisation	
 39	

The next lecture"
Atomic Actions	

Suggested reading:	

•  Andrews (2000), chapter 2, sections 2.1 and 2.4, chapter 3, section 3.2;	

•  Ben-Ari (1982), chapter 2.	

