
G52CON: 
Concepts of Concurrency 

Lecture 11: Semaphores I"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 2	

Outline of this lecture"
•  problems with Peterson’s algorithm

•  semaphores

•  implementing semaphores

•  using semaphores

– for Mutual Exclusion

– for Condition Synchronisation

•  semaphores and Java

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 3	

Petersonʼs algorithm"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

crit2;

// exit protocol

c2 = false;

rem2;

}

// shared variables
bool c1 = c2 = false;
integer turn == 1;	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 4	

Problems with Petersonʼs algorithm"
Peterson’s algorithm is correct, however it is complex and inefficient:

•  solutions to the Mutual Exclusion problem for n processes are quite
complex

•  it uses busy-waiting (spin locks) to achieve synchronisation, which is
often unacceptable in a multiprogramming environment

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 5	

Overhead of spin locks"

Process A	

Process B	
 time	

critical section

critical section

Process B spinning

entry protocol

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 6	

Overhead of spin locks"
•  time spent spinning is necessary to ensure mutual exclusion

•  it is also wasted CPU—Process B can do no useful work while
Process A is in its critical section

•  however, the scheduler doesn’t know this, and will (repeatedly) try to
run Process B even while process A is in its critical section

•  if the critical sections are large relative to the rest of the program, or
there are a large number of processes contending for access to the
critical section, this will slow down your concurrent program

•  e.g., with 10 processes competing to access their critical sections, in
the worst case we could end up wasting 90% (or more) of the CPU

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 7	

Overhead of spin locks"

Process A	

Process B	
 time	

critical section

Process C	

Process D	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 8	

Overhead of spin locks"

Process B spinning	
 time	

Process A’s critical section

Process C spinning	

Process D spinning	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 9	

Semaphores"
A semaphore s is an integer variable which can take only non-negative
values. Once it has been given its initial value, the only permissible
operations on s are the atomic actions:

P(s) : if s > 0 then s = s – 1, else suspend execution of the process that
called P(s)

V(s) : if some process p is suspended by a previous P(s) on this
semaphore then resume p, else s = s + 1

A general semaphore can have any non-negative value; a binary
semaphore is one whose value is always 0 or 1.

Note on terminology"
•  in some textbooks P is called wait and and V is called signal

•  I’ll call them P and V to avoid confusion with two different operations
called wait and signal which are defined on monitors (later lecture)

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 10	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 11	

Semaphores as abstract data types"
A semaphore can be seen as an abstract data type:

•  a set of permissible values; and

•  a set of permissible operations on instances of the type.

However, unlike normal abstract data types, we require that the P and V
operations on semaphores be implemented as atomic actions.

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 12	

P and V as atomic actions"
Reading and writing the semaphore value is itself a critical section:

•  P and V operations must be mutually exclusive

•  e.g., suppose we have a semaphore, s, which has the value 1, and two
processes simultaneously attempt to execute P on s:

– only one of these operations will be able to complete before the
next V operation on s;

– the other process attempting to perform a P operation is
suspended.

•  Semaphore operations on different semaphores need not be mutually
exclusive.

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 13	

V on binary semaphores"
•  effects of performing a V operation on a binary semaphore which has

a current value of 1 are implementation dependent:

– operation may be ignored

– may increment the semaphore

– may throw an exception

•  we will assume that a V operation on a binary semaphore which has
value 1 does not increment the value of the semaphore.

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 14	

Resuming suspended processes"
Note that the definition of V doesn’t specify which process is woken up if
more than one process has been suspended on the same semaphore

•  this has implications for the fairness of algorithms implemented using
semaphores and properties like Eventual Entry.

•  we will come back to this later …

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 15	

Implementing semaphores"
To implement P and V as atomic actions, we can use any of the mutual
exclusion algorithms we have seen so far, e.g.:

•  Peterson’s algorithm
•  special hardware instructions (e.g. Test-and-Set)
•  disabling interrupts

There are several ways a processes can be suspended:

•  busy waiting–this is inefficient
•  blocking: a process is blocked if it is waiting for an event to occur

without using any processor cycles (e.g., a not-runnable thread in
Java).

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 16	

Using semaphores"
We can think if P and V as controlling access to a resource:

•  when a process wants to use the resource, it performs a P operation:
–  if this succeeds, it decrements the amount of resource available and the

process continues;
–  if all the resource is currently in use, the process has to wait.

•  when a process is finished with the resource, it performs a V
operation:

–  if there were processes waiting on the resource, one of these is woken up;
–  if there were no waiting processes, the semaphore is incremented

indicating that there is now more of the resource free.
–  note that the definition of V doesn’t specify which process is woken up if

more than one process has been suspended on the same semaphore.

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 17	

Semaphores for mutual exclusion
and condition synchronisation"
Semaphores can be used to solve mutual exclusion and condition
synchronisation problems:

•  semaphores can be used to implement the entry and exit protocols of
mutual exclusion protocols in a straightforward way

•  semaphores can also be used to implement more efficient solutions to
the condition synchronisation problem

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 18	

General form of a solution"
We assume that each of the n processes have the following form,
i = 1, …, n

// Process i

initi;

while(true) {

// entry protocol

criti;

// exit protocol
remi;

}

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 19	

Mutual exclusion using a  
binary semaphore"
binary semaphore s = 1; // shared binary

 // semaphore

// Process i

initi;

while(true) {

P(s); // entry protocol

criti;

V(s); // exit protocol

remi;

}

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 20	

An example trace 1"
// Process 1

init1;

// Process 2

init2;

s == 1	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 21	

An example trace 2"
// Process 1

init1;

while(true)!

// Process 2

init2;

s == 1	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 22	

An example trace 3"
// Process 1

init1;

while(true) {

 P(s);

}

// Process 2

init2;

s == 0	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 23	

An example trace 4"
// Process 1

init1;

while(true) {

 P(s);

 crit1;

}

// Process 2

init2;

while(true)

s == 0	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 24	

An example trace 5"
// Process 1

init1;

while(true) {

 P(s);

 crit1;

}

// Process 2

init2;

while(true) {

 P(s);

}!

s == 0	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 25	

An example trace 6"
// Process 1

init1;

while(true) {

 P(s);

 crit1;

}

// Process 2

init2;

while(true) {

 P(s);

}!

s == 0	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 26	

An example trace 7"
// Process 1

init1;

while(true) {

 P(s);

 crit1;

 V(s);

}

// Process 2

init2;

while(true) {

 P(s);

}!

s == 0	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 27	

An example trace 8"
// Process 1

init1;

while(true) {

 P(s);

 crit1;

 V(s);

 rem1;

}

// Process 2

init2;

while(true) {

 P(s);

 crit2;

}!

s == 0	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 28	

Properties of the semaphore solution"
The semaphore solution has the following properties:	

•  Mutual Exclusion: yes	

•  Absence of Deadlock: yes	

•  Absence of Unnecessary Delay: yes	

•  Eventual Entry: guaranteed for 2 processes; if there are > 2
processes, eventual entry is guaranteed only if the semaphores are fair.	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 29	

Other advantages"
In addition:

•  the semaphore solution works for n processes;

•  it is much simpler than an n process solution based on Peterson’s
algorithm; and

•  it avoids busy waiting.

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 30	

Garden

Example: Ornamental Gardens "

A large ornamental garden is open to members of the public who can
enter through either of two turnstiles.	

•  the owner of the garden writes a computer program to count how
many people are in the garden at any one time	

•  the program has two processes, each of which monitors a turnstile and
increments a shared counter whenever someone enters via that
processes’ turnstile.	

West"
turnstile"

East"
turnstile"

Counter"

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 31	

Solving the Ornamental Gardens"
// East turnstile

init1;

while(true) {

 // wait for turnstile

 count = count + 1;

 // other stuff ...

}

// West turnstile

init2;

while(true) {

 // wait for turnstile

 count = count + 1;

 // other stuff ...

}!

integer count == 0	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 32	

Solving the Ornamental Gardens"
// East turnstile

init1;

while(true) {

 // wait for turnstile

 P(s);

 count = count + 1;

 V(s);

 // other stuff ...

}

// West turnstile

init2;

while(true) {

 // wait for turnstile

 P(s);

 count = count + 1;

 V(s);

 // other stuff ...

}!
binary semaphore s == 1
integer count == 0	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 33	

Comparison with Petersonʼs algorithm"
// Process 1

init1;

while(true) {

 // entry protocol
 c1 = true;
 turn = 2;
 while (c2 && turn == 2) {};
 count = count + 1;

 // exit protocol
 c1 = false;
 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol
c2 = true;
turn = 1;
while (c1 && turn == 1) {};
count = count + 1;

// exit protocol
c2 = false;
rem2;

}

// shared variables
bool c1 = c2 = false;
integer turn == 1;	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 34	

Comparison with Dekkerʼs algorithm"
// Process 1

init1;

while(true) {

c1 = 0; // entry protocol
while (c2 == 0) {

if (turn == 2) {
c1 = 1;
while (turn == 2) {};

c1 = 0;
}

}
count = count + 1;

turn = 2; // exit protocol
c1 = 1;

}!

// Process 2

init2;

while(true) {

c2 = 0; // entry protocol
while (c1 == 0) {

if (turn == 1) {
c2 = 1;
while (turn == 1) {};

c2 = 0;
}

}
count = count + 1;

turn = 1; // exit protocol
c2 = 1;

}

c1 == 1 c2 == 1 turn == 1
integer count == 0;	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 35	

Selective mutual exclusion with
general semaphores"
If we have n processes, of which k can be in their critical section at the
same time:

semaphore s = k; // shared general semaphore

// Process i

initi;

while(true) {

P(s); // entry protocol
criti;

V(s); // exit protocol

remi;

}

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 36	

Semaphores and condition
synchronisation"
Condition synchronisation involves delaying a process until some boolean
condition is true.

•  condition synchronisation problems can be solved using busy
waiting:

–  the process simply sits in a loop until the condition is true

–  busy waiting is inefficient

•  semaphores are not only useful for implementing mutual exclusion,
but can be used for general condition synchronisation.

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 37	

Producer-Consumer with an  
infinite buffer"
Given two processes, a producer which generates data items, and a
consumer which consumes them:

•  we assume that the processes communicate via an infinite shared
buffer;

•  the producer may produce a new item at any time;
•  the consumer may only consume an item when the buffer is not

empty; and
•  all items produced are eventually consumed.

This is an example of a Condition Synchronisation problem: delaying a
process until some Boolean condition is true.

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 38	

Infinite buffer solution"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

 in = in + 1;

 V(n);

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

 w = buf[out];

 out = out + 1;

 // use the data w

 ...

}!

// Shared variables
Object[] buf = new Object[∞];
semaphore n = 0;	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 39	

An example trace 1"
// Producer process

Object v = null;

// Consumer process
Object w = null;

n == 0 buf == []

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 40	

An example trace 2"
// Producer process

Object v = null;
integer in = 0;

// Consumer process
Object w = null;
integer out = 0;

n == 0 buf == []

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 41	

An example trace 3"
// Producer process

Object v = null;
integer in = 0;

// Consumer process
Object w = null;
integer out = 0;
while(true)

n == 0 buf == []

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 42	

An example trace 4"
// Producer process

Object v = null;
integer in = 0;

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

}!

n == 0 buf == []

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 43	

An example trace 5"
// Producer process

Object v = null;
integer in = 0;

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

}!

n == 0 buf == []

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 44	

An example trace 6"
// Producer process

Object v = null;
integer in = 0;

while(true)!

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

}!

n == 0 buf == []

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 45	

An example trace 7"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

}!

n == 0 buf == [o1]

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 46	

An example trace 8"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

 in = in + 1;

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

}!

n == 0 buf == [o1]

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 47	

An example trace 9"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

 in = in + 1;

 V(n);

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

}!

n == 0 buf == [o1]

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 48	

V with blocked processes"
Once the Producer has placed an item in the buffer, it performs a V
operation on the semaphore.

•  this wakes up the suspended Consumer, which resumes at the point at
which it blocked.

•  note that the value of n remains unchanged – n would only have been
incremented by the V operation if there were no processes suspended
on n.	

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 49	

An example trace 10"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

 w = buf[out];

}!

n == 0 buf == [o1, o2] X

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 50	

An example trace 11"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

 in = in + 1;

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

 w = buf[out];

 out = out + 1;

}!

n == 0 buf == [o1, o2] X

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 51	

An example trace 12"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

 in = in + 1;

 V(n);

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

 w = buf[out];

 out = out + 1;

}!

n == 1 buf == [o1, o2] X

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 52	

An example trace 13"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

 w = buf[out];

 out = out + 1;

 // use the data w

 ...

}!

n == 1 buf == [o1, o2 , o3] X

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 53	

An example trace 14"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

 in = in + 1;

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

 w = buf[out];

 out = out + 1;

 // use the data w

 ...

}!

n == 1 buf == [o1, o2 , o3] X

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 54	

An example trace 15"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

 in = in + 1;

 V(n);

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

 w = buf[out];

 out = out + 1;

 // use the data w

 ...

}!

n == 2 buf == [o1, o2 , o3] X

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 55	

An example trace 16"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

 w = buf[out];

 out = out + 1;

 // use the data w

 ...

}!

n == 2 buf == [o1, o2 , o3] X

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 56	

An example trace 17"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

}

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

}!

n == 1 buf == [o1, o2 , o3] X

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 57	

Semaphores in Java"
•  as of Java 5, Java provides a Semaphore class in the package
java.util.concurrent

•  supports P and V operations (called acquire() and release() in the
Java implementation)

•  the constructor optionally accepts a fairness parameter

–  if this is false, the implementation makes no guarantees about the order in
which threads are awoken following a release()

–  if fairness is true, the semaphore guarantees that threads invoking any of
the acquire methods are processed first-in-first-out (FIFO)

•  Java implementation of semaphores is based on higher-level concurrency
constructs called monitors

© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 58	

The next lecture"
Semaphores II

Suggested reading:

•  Andrews (2000), chapter 4, sections 4.1–4.2;
•  Ben-Ari (1982), chapter 4;
•  Burns & Davies (1993), chapter 6.

