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Outline of this lecture"
•  problems with Peterson’s algorithm 

•  semaphores 

•  implementing semaphores 

•  using semaphores 

– for Mutual Exclusion 

– for Condition Synchronisation 

•  semaphores and Java 
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Petersonʼs algorithm"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

crit2; 

// exit protocol 

c2 = false; 

rem2; 

} 

// shared variables 
bool c1 = c2 = false;  
integer turn == 1;	
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Problems with Petersonʼs algorithm"
Peterson’s algorithm is correct, however it is complex and inefficient: 

•  solutions to the Mutual Exclusion problem for n processes are quite 
complex 

•  it uses busy-waiting (spin locks) to achieve synchronisation, which is 
often unacceptable in a multiprogramming environment 
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Overhead of spin locks"

Process A	


Process B	
 time	


critical section 

critical section 

Process B spinning 

entry protocol 
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Overhead of spin locks"
•  time spent spinning is necessary to ensure mutual exclusion 

•  it is also wasted CPU—Process B can do no useful work while 
Process A is in its critical section 

•  however, the scheduler doesn’t know this, and will (repeatedly) try to 
run Process B even while process A is in its critical section 

•  if the critical sections are large relative to the rest of the program, or 
there are a large number of processes contending for access to the 
critical section, this will slow down your concurrent program 

•  e.g., with 10 processes competing to access their critical sections, in 
the worst case we could end up wasting 90% (or more ) of the CPU 



© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 7	


Overhead of spin locks"

Process A	


Process B	
 time	


critical section 

Process C	


Process D	
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Overhead of spin locks"

Process B spinning	
 time	


Process A’s critical section 

Process C spinning	


Process D spinning	
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Semaphores"
A semaphore s is an integer variable which can take only non-negative 
values.  Once it has been given its initial value, the only permissible 
operations on s are the atomic actions: 

P(s) : if s > 0 then s = s – 1, else suspend execution of the process that 
called P(s) 

V(s) : if some process p is suspended by a previous P(s) on this 
semaphore then resume p, else s = s + 1 

A general semaphore can have any non-negative value; a binary 
semaphore is one whose value is always 0 or 1. 



Note on terminology"
•  in some textbooks P is called wait and and V is called signal 

•  I’ll call them P and V to avoid confusion with two different operations 
called wait and signal which are defined on monitors (later lecture) 
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Semaphores as abstract data types"
A semaphore can be seen as an abstract data type: 

•  a set of permissible values; and  

•  a set of permissible operations on instances of the type.   

However, unlike normal abstract data types, we require that the P and V 
operations on semaphores be implemented as atomic actions. 
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P and V as atomic actions"
Reading and writing the semaphore value is itself a critical section: 

•  P and V operations must be mutually exclusive 

•  e.g., suppose we have a semaphore, s, which has the value 1, and two 
processes simultaneously attempt to execute P on s: 

– only one of these operations will be able to complete before the 
next V operation on s; 

– the other process attempting to perform a P operation is 
suspended.   

•  Semaphore operations on different semaphores need not be mutually 
exclusive. 
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V on binary semaphores"
•  effects of performing a V operation on a binary semaphore which has 

a current value of 1 are implementation dependent: 

– operation may be ignored 

– may increment the semaphore 

– may throw an exception 

•  we will assume that a V operation on  a binary semaphore which has 
value 1 does not increment the value of the semaphore. 
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Resuming suspended processes"
Note that the definition of V doesn’t specify which process is woken up if 
more than one process has been suspended on the same semaphore 

•  this has implications for the fairness of algorithms implemented using 
semaphores and properties like Eventual Entry.   

•  we will come back to this later … 
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Implementing semaphores"
To implement P and V as atomic actions, we can use any of the mutual 
exclusion algorithms we have seen so far, e.g.: 

•  Peterson’s algorithm 
•  special hardware instructions (e.g. Test-and-Set) 
•  disabling interrupts 

There are several ways a processes can be suspended:  

•  busy waiting–this is inefficient 
•  blocking: a process is blocked if it is waiting for an event to occur 

without using any processor cycles (e.g., a not-runnable thread in 
Java). 
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Using semaphores"
We can think if P and V as controlling access to a resource: 

•  when a process wants to use the resource, it performs a P operation: 
–  if this succeeds, it decrements the amount of resource available and the 

process continues;   
–  if all the resource is currently in use, the process has to wait.  

•  when a process is finished with the resource, it performs a V 
operation:  

–  if there were processes waiting on the resource, one of these is woken up;   
–  if there were no waiting processes, the semaphore is incremented 

indicating that there is now more of the resource free.  
–  note that the definition of V doesn’t specify which process is woken up if 

more than one process has been suspended on the same semaphore. 
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Semaphores for mutual exclusion 
and condition synchronisation"
Semaphores can be used to solve mutual exclusion and condition 
synchronisation problems: 

•  semaphores can be used to implement the entry and exit protocols of 
mutual exclusion protocols in a straightforward way 

•  semaphores can also be used to implement more efficient solutions to 
the condition synchronisation problem 
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General form of a solution"
We assume that each of the n processes have the following form,  
i = 1, …, n 

// Process i 

initi; 

while(true) { 

// entry protocol 

criti; 

// exit protocol 
remi; 

} 
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Mutual exclusion using a  
binary semaphore"
binary semaphore s = 1;   // shared binary  

                          // semaphore 

// Process i 

initi; 

while(true) { 

P(s);              // entry protocol 

criti; 

V(s);              // exit protocol 

remi; 

} 
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An example trace 1"
// Process 1 

init1; 

// Process 2 

init2; 

s == 1	
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An example trace 2"
// Process 1 

init1; 

while(true)!

// Process 2 

init2; 

s == 1	
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An example trace 3"
// Process 1 

init1; 

while(true) { 

    P(s); 

} 

// Process 2 

init2; 

s == 0	
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An example trace 4"
// Process 1 

init1; 

while(true) { 

    P(s); 

    crit1; 

} 

// Process 2 

init2; 

while(true) 

s == 0	
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An example trace 5"
// Process 1 

init1; 

while(true) { 

    P(s); 

    crit1; 

} 

// Process 2 

init2; 

while(true) { 

    P(s); 

}!

s == 0	
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An example trace 6"
// Process 1 

init1; 

while(true) { 

    P(s); 

    crit1; 

} 

// Process 2 

init2; 

while(true) { 

    P(s); 

}!

s == 0	
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An example trace 7"
// Process 1 

init1; 

while(true) { 

    P(s); 

    crit1; 

    V(s); 

} 

// Process 2 

init2; 

while(true) { 

    P(s); 

}!

s == 0	
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An example trace 8"
// Process 1 

init1; 

while(true) { 

    P(s); 

    crit1; 

    V(s); 

    rem1; 

} 

// Process 2 

init2; 

while(true) { 

    P(s); 

    crit2; 

}!

s == 0	
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Properties of the semaphore solution"
The semaphore solution has the following properties:	


•  Mutual Exclusion: yes	


•  Absence of Deadlock: yes	


•  Absence of Unnecessary Delay: yes	


•  Eventual Entry: guaranteed for 2 processes; if there are > 2 
processes, eventual entry is guaranteed only if the semaphores are fair.	
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Other advantages"
In addition: 

•  the semaphore solution works for n processes; 

•  it is much simpler than an n process solution based on Peterson’s 
algorithm; and 

•  it avoids busy waiting. 
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Garden 

Example: Ornamental Gardens "

A large ornamental garden is open to members of the public who can 
enter through either of two turnstiles.	


•  the owner of the garden writes a computer program to count how 
many people are in the garden at any one time	


•  the program has two processes, each of which monitors a turnstile and 
increments a shared counter whenever someone enters via that 
processes’ turnstile.	


West"
turnstile"

East"
turnstile"

Counter"
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Solving the Ornamental Gardens"
// East turnstile 

init1; 

while(true) { 

  // wait for turnstile 

  count = count + 1;   

  // other stuff ... 

} 

// West turnstile 

init2; 

while(true) { 

  // wait for turnstile 

  count = count + 1;   

  // other stuff ... 

}!

integer count == 0	
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Solving the Ornamental Gardens"
// East turnstile 

init1; 

while(true) { 

  // wait for turnstile 

  P(s); 

  count = count + 1;   

  V(s); 

  // other stuff ... 

} 

// West turnstile 

init2; 

while(true) { 

  // wait for turnstile 

  P(s); 

  count = count + 1;   

  V(s); 

  // other stuff ... 

}!
binary semaphore s == 1 
integer count == 0	
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Comparison with Petersonʼs algorithm"
// Process 1 

init1; 

while(true) { 

    // entry protocol 
  c1 = true; 
  turn = 2; 
  while (c2 && turn == 2) {}; 
  count = count + 1; 

  // exit protocol 
  c1 = false; 
  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 
c2 = true; 
turn = 1; 
while (c1 && turn == 1) {}; 
count = count + 1; 

// exit protocol 
c2 = false; 
rem2; 

} 

// shared variables 
bool c1 = c2 = false;  
integer turn == 1;	
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Comparison with Dekkerʼs algorithm"
// Process 1 

init1; 

while(true) { 

c1 = 0;   // entry protocol 
while (c2 == 0) {      

if (turn == 2) { 
c1 = 1; 
while (turn == 2) {}; 

c1 = 0; 
} 

} 
count = count + 1; 

turn = 2; // exit protocol 
c1 = 1; 

}!

// Process 2 

init2; 

while(true) { 

c2 = 0;   // entry protocol 
while (c1 == 0) {      

if (turn == 1) { 
c2 = 1; 
while (turn == 1) {}; 

c2 = 0; 
} 

} 
count = count + 1; 

turn = 1; // exit protocol 
c2 = 1; 

} 

c1 == 1 c2 == 1 turn == 1 
integer count == 0;	
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Selective mutual exclusion with 
general semaphores"
If we have n processes, of which k can be in their critical section at the 
same time: 

semaphore s = k;      // shared general semaphore 

// Process i 

initi; 

while(true) { 

P(s);              // entry protocol 
criti; 

V(s);              // exit protocol 

remi; 

} 



© Brian Logan 2013	
 G52CON Lecture 11: Semaphores	
 36	


Semaphores and condition 
synchronisation"
Condition synchronisation involves delaying a process until some boolean 
condition is true. 

•  condition synchronisation problems can be solved using busy 
waiting:  

–  the process simply sits in a loop until the condition is true 

–  busy waiting is inefficient 

•  semaphores are not only useful for implementing mutual exclusion, 
but can be used for general condition synchronisation.   
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Producer-Consumer with an  
infinite buffer"
Given two processes, a producer which generates data items, and a 
consumer which consumes them: 

•  we assume that the processes communicate via an infinite shared 
buffer;  

•  the producer may produce a new item at any time; 
•  the consumer may only consume an item when the buffer is not 

empty; and 
•  all items produced are eventually consumed. 

This is an example of a Condition Synchronisation problem: delaying a 
process until some Boolean condition is true. 
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Infinite buffer solution"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

    buf[in] = v; 

    in = in + 1; 

    V(n); 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

    w = buf[out]; 

    out = out + 1; 

    // use the data w  

    ... 

}!

// Shared variables 
Object[] buf = new Object[∞]; 
semaphore n = 0;	
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An example trace 1"
// Producer process 

Object v = null; 

// Consumer process 
Object w = null; 

n == 0 buf == [] 
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An example trace 2"
// Producer process 

Object v = null; 
integer in = 0; 

// Consumer process 
Object w = null; 
integer out = 0; 

n == 0 buf == [] 
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An example trace 3"
// Producer process 

Object v = null; 
integer in = 0; 

// Consumer process 
Object w = null; 
integer out = 0; 
while(true)  

n == 0 buf == [] 
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An example trace 4"
// Producer process 

Object v = null; 
integer in = 0; 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

}!

n == 0 buf == [] 
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An example trace 5"
// Producer process 

Object v = null; 
integer in = 0; 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

}!

n == 0 buf == [] 
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An example trace 6"
// Producer process 

Object v = null; 
integer in = 0; 

while(true)!

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

}!

n == 0 buf == [] 
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An example trace 7"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

    buf[in] = v; 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

}!

n == 0 buf == [o1] 
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An example trace 8"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

    buf[in] = v; 

    in = in + 1; 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

}!

n == 0 buf == [o1] 
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An example trace 9"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

    buf[in] = v; 

    in = in + 1; 

    V(n); 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

}!

n == 0 buf == [o1] 
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V with blocked processes"
Once the Producer has placed an item in the buffer, it performs a V 
operation on the semaphore. 

•  this wakes up the suspended Consumer, which resumes at the point at 
which it blocked. 

•  note that the value of n remains unchanged  – n would only have been 
incremented by the V operation if there were no processes suspended 
on n.	
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An example trace 10"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

    buf[in] = v; 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

    w = buf[out]; 

}!

n == 0 buf == [o1, o2] X 
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An example trace 11"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

    buf[in] = v; 

    in = in + 1; 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

    w = buf[out]; 

    out = out + 1; 

}!

n == 0 buf == [o1, o2] X 
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An example trace 12"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

    buf[in] = v; 

    in = in + 1; 

    V(n); 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

    w = buf[out]; 

    out = out + 1; 

}!

n == 1 buf == [o1, o2] X 
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An example trace 13"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

    buf[in] = v; 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

    w = buf[out]; 

    out = out + 1; 

    // use the data w  

    ... 

}!

n == 1 buf == [o1, o2 , o3] X 
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An example trace 14"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

    buf[in] = v; 

    in = in + 1; 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

    w = buf[out]; 

    out = out + 1; 

    // use the data w  

    ... 

}!

n == 1 buf == [o1, o2 , o3] X 
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An example trace 15"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

    buf[in] = v; 

    in = in + 1; 

    V(n); 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

    w = buf[out]; 

    out = out + 1; 

    // use the data w  

    ... 

}!

n == 2 buf == [o1, o2 , o3] X 
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An example trace 16"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

    w = buf[out]; 

    out = out + 1; 

    // use the data w  

    ... 

}!

n == 2 buf == [o1, o2 , o3] X 
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An example trace 17"
// Producer process 

Object v = null; 
integer in = 0; 

while(true) { 

    // produce data v 

    ... 

} 

// Consumer process 

Object w = null; 
integer out = 0; 

while(true) { 

    P(n); 

}!

n == 1 buf == [o1, o2 , o3] X 
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Semaphores in Java"
•  as of Java 5, Java provides a Semaphore class in the package 
java.util.concurrent 

•  supports P and V operations (called acquire() and release() in the 
Java implementation) 

•  the constructor optionally accepts a fairness parameter 

–  if this is false, the implementation makes no guarantees about the order in 
which threads are awoken following a release() 

–  if fairness is true, the semaphore guarantees that threads invoking any of 
the acquire methods are processed first-in-first-out (FIFO) 

•  Java implementation of semaphores is based on higher-level concurrency 
constructs called monitors  
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The next lecture"
Semaphores II 

Suggested reading: 

•  Andrews (2000), chapter 4, sections 4.1–4.2; 
•  Ben-Ari (1982), chapter 4; 
•  Burns & Davies (1993), chapter 6. 


