
G52CON: 
Concepts of Concurrency 

 
Lecture 8 Semaphores II"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 2	

Outline of this lecture"
•  problem solving with semaphores	

•  solving Producer-Consumer problems using buffers:	

– single element buffer	

– bounded buffer	

•  Dining Philosophers problem	

•  exercise: semaphores	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 3	

Producer-Consumer problem"
Given two processes, a producer which generates data items, and a
consumer which consumes them, find a mechanism for passing data from
the producer to the consumer such that:	

•  no items are lost or duplicated in transit;	

•  items are consumed in the order they are produced; and	

•  all items produced are eventually consumed.	

	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 4	

Variants of the problem"
The single Producer–single Consumer problem can be generalised:	

	

•  multiple producers–single consumer	

•  single producer–multiple consumers	

•  multiple producers–multiple consumers	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 5	

Buffer-based solutions"
In multiprogramming or multiprocessing implementations of concurrency,
communication between a producer and a consumer is often implemented
using a shared buffer:	

•  a buffer is an area of memory used for the temporary storage of data
while in transit from one process to another.	

	

•  the producer writes into the buffer and the consumer reads from the

buffer, e.g., a Unix pipe.	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 6	

Interprocess communication"

Producer	

Consumer

Buffer

produce data item

put it in the buffer

take item from the buffer

consume (use) data item

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 7	

Synchronisation"
The general multiple Producer-multiple Consumer problem requires both
mutual exclusion and condition synchronisation:	

	

•  mutual exclusion is used to ensure that more than one producer or
consumer does not access the same buffer slot at the same time;	
 	

•  condition synchronisation is used to ensure that data is not read
before it has been written, and that data is not overwritten before it
has been read.	

	

Synchronisation can be achieved using any of the techniques we have
seen so far: e.g., Peterson’s algorithm, semaphores.	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 8	

General synchronisation conditions"
Buffer-based solutions to the Producer–Consumer problem should satisfy
the following conditions:	

	

•  no “items” are read from an empty buffer; 	

•  data items are read only once; 	

•  data items are not overwritten before they are read;	

•  items are consumed in the order they are produced; and	

•  all items produced are eventually consumed.	

	

in addition to the properties of Mutual Exclusion, Absence of Deadlock,
Absence of Unnecessary Delay and Eventual Entry.	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 9	

Solutions"
•  may be judged on different criteria, e.g., correctness, fairness,

efficiency	

•  may use different sizes of buffer, and different protocols for
synchronising access to the buffer	

•  a particular solution can be implemented using different
synchronisation primitives, e.g., spin locks or semaphores	

•  a particular synchronisation primitive or protocol can be implemented
in different ways, e.g., busy waiting, blocking	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 10	

Infinite buffer"
The producer and consumer communicate via an infinite shared buffer:	

•  no “items” are read from an empty buffer; 	

•  data items are read only once; 	

•  the producer may produce a new item at any time;	

•  items are consumed in the order they are produced; and	

•  all items produced are eventually consumed.	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 11	

Infinite buffer solution"
// Producer process

Object v = null;
integer in = 0;

while(true) {

 // produce data v

 ...

 buf[in] = v;

 in = in + 1;

 V(n);

}

!

// Consumer process

Object w = null;
integer out = 0;

while(true) {

 P(n);

 w = buf[out];

 out = out + 1;

 // use the data w

 ...

}!

// Shared variables
Object[] buf = new Object[∞];
general semaphore n = 0;	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 12	

Problem 1: single element buffer"
Devise a solution to Producer–Consumer problem using a single element
buffer which ensures that:	

	

•  the producer may only produce an item when the buffer is empty; and	

•  the consumer may only consume an item when the buffer is full.	

Your solution should satisfy the general synchronisation requirements for
the Producer-Consumer problem and the properties of Mutual Exclusion,
Absence of Deadlock, Absence of Unnecessary Delay and Eventual Entry.	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 13	

Infinite vs single element buffer"
•  with an infinite buffer we had only one problem—to prevent the

consumer getting ahead of the producer	

•  with a single element buffer we have two problems	

– preventing the consumer getting ahead of the producer; and	

– preventing the producer getting ahead of the consumer.	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 14	

Problem 1: first attempt"
// Producer process

Object x = null;
while(true) {

 // produce data x

 ...

 P(s);

 buf = x;

 V(s);

}

!

// Consumer process

Object y = null;
while(true) {

 P(s);

 y = buf;

 V(s);

 // use the data y

 ...

}!

// Shared variables
Object buf;
binary semaphore s = 1;	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 15	

Properties of the first attempt"
Does the first attempt satisfy the following properties:	

	

•  Mutual Exclusion: yes/no	

•  Absence of Deadlock: yes/no	

•  Absence of Unnecessary Delay: yes/no	

•  Eventual Entry: yes/no	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 16	

Properties of the first attempt"
Does the first attempt satisfy the following properties:	

	

•  Mutual Exclusion: yes	

•  Absence of Deadlock: yes	

•  Absence of Unnecessary Delay: yes	

•  Eventual Entry: yes	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 17	

First attempt 
synchronisation conditions"
	

Does the solution satisfy the following properties:	

•  no items are read from an empty buffer: yes/no	

•  data items are read only once: yes/no	

•  data items are not overwritten before they are read: yes/no	

•  items are consumed in the order they are produced: yes/no	

•  all items produced are eventually consumed: yes/no	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 19	

First attempt 
synchronisation conditions"
	

Does the solution satisfy the following properties:	

•  no items are read from an empty buffer: no	

•  data items are read only once: no	

•  data items are not overwritten before they are read: no	

•  items are consumed in the order they are produced: yes	

•  all items produced are eventually consumed: no	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 20	

Problem 1: second attempt"
// Producer process

Object x = null;
while(true) {

 // produce data x

 ...

 buf = x;

 V(s);

}

!

// Consumer process

Object y = null;
while(true) {

 P(s);

 y = buf;

 // use the data y

 ...

}!

// Shared variables
Object buf;
binary semaphore s = 0;	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 21	

Properties of the second attempt"
Does the second attempt satisfy the following properties:	

	

•  Mutual Exclusion: yes/no	

•  Absence of Deadlock: yes/no	

•  Absence of Unnecessary Delay: yes/no	

•  Eventual Entry: yes/no	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 23	

Properties of the second attempt"
Does the second attempt satisfy the following properties:	

	

•  Mutual Exclusion: no	

•  Absence of Deadlock: yes	

•  Absence of Unnecessary Delay: yes	

•  Eventual Entry: yes	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 24	

Second attempt 
synchronisation conditions"
	

Does the solution satisfy the following properties:	

•  no items are read from an empty buffer: yes/no	

•  data items are read only once: yes/no	

•  data items are not overwritten before they are read: yes/no	

•  items are consumed in the order they are produced: yes/no	

•  all items produced are eventually consumed: yes/no	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 26	

Second attempt 
synchronisation conditions"
	

Does the solution satisfy the following properties:	

•  no items are read from an empty buffer: yes	

•  data items are read only once: at most three times	

•  data items are not overwritten before they are read: no	

•  items are consumed in the order they are produced: yes	

•  all items produced are eventually consumed: no	

“Data items are read at most three times” if a V operation on a binary
semaphore which has value 1 does not increment the value of the
semaphore.	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 27	

Single element buffer solution"
// Producer process

Object x = null;
while(true) {

 // produce data x

 ...

 P(empty);

 buf = x;

 V(full);

}

!

// Consumer process

Object y = null;
while(true) {

 P(full);

 y = buf;

 V(empty);

 // use the data y

 ...

}!

// Shared variables
Object buf;
binary semaphore empty = 1, full = 0;	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 28	

Properties of the single buffer solution"
The single element buffer solution satisfies the following properties:	

	

•  Mutual Exclusion: yes	

•  Absence of Deadlock: yes	

•  Absence of Unnecessary Delay: yes	

•  Eventual Entry: yes	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 29	

Single buffer solution  
synchronisation conditions"
	

The single element buffer solution satisfies the following properties:	

•  no items are read from an empty buffer: yes	

•  data items are read only once: yes	

•  data items are not overwritten before they are read: yes	

•  items are consumed in the order they are produced: yes	

•  all items produced are eventually consumed: yes	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 30	

Applications of Single element buffers"
•  I/O to all types of peripheral devices	

•  dedicated programs running on bare machines.	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 31	

Larger buffers"
A single element buffer works well if the Producer and Consumer
processes run at the same rate:	

•  processes don’t have to wait very long to access the single buffer 	

•  many low-level synchronisation problems are solved in this way, e.g.,
interrupt driven I/O.	

	

If the speed of the Producer and Consumer is only the same on average,
and fluctuates over short periods, a larger buffer can significantly increase
performance by reducing the number of times processes block.	

	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 32	

Bounded buffers"
A bounded buffer of length n is a circular communication buffer
containing n slots. The buffer contains a queue of items which have
produced but not yet consumed. For example	

	

	

	

	

	

	

out is the index of the item at the head of the queue, and in is the index
of the first empty slot at the end of the queue.	

o5	
 o6	
 o1	
 o2	
 o3	
 o4	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

out	
in	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 33	

Problem 2: bounded buffer"
Devise a solution to Producer–Consumer problem using a bounded buffer
which ensures that:	

•  the producer may only produce an item when there is an empty slot in
the buffer; and	

•  the consumer may only consume an item when there is a full slot in
the buffer.	

Your solution should satisfy the general synchronisation requirements for
the Producer-Consumer problem and the properties of Mutual Exclusion,
Absence of Deadlock, Absence of Unnecessary Delay and Eventual Entry.	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 34	

Single element vs bounded buffer"
Note that the synchronisation conditions are really the same as for the
single element (& infinite) buffer:	

•  the producer may only produce an item when the buffer is not full; and	

•  the consumer may only consume an item when the buffer is not
empty.	

	

and the problems are the same:	

•  preventing the consumer getting ahead of the producer; and	

•  preventing the producer getting ahead of the consumer.	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 35	

Bounded buffer solution"
// Producer process

Object x = null;
integer in = 0;

while(true) {

 // produce data x

 ...

 P(empty);

 buf[in] = x;

 in = (in + 1) % n;

 V(full);

}

!

// Consumer process

Object y = null;
integer out = 0;

while(true) {

 P(full);

 y = buf[out];

 out = (out + 1) % n;

 V(empty);

 // use the data y

 ...

}!

// Shared variables
integer n = BUFFER_SIZE;
Object[] buf = new Object[n];
general semaphore empty = n, full = 0;	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 36	

Properties of the bounded buffer solution"
The bounded buffer solution satisfies the following properties:	

	

•  Mutual Exclusion: yes	

•  Absence of Deadlock: yes	

•  Absence of Unnecessary Delay: yes	

•  Eventual Entry: yes	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 37	

Bounded buffer solution  
synchronisation conditions"
	

The bounded buffer solution satisfies the following properties:	

•  data items are not overwritten before they are read: yes	

•  data items are read only once: yes	

•  no items are read from an empty buffer: yes	

•  items are consumed in the order they are produced: yes	

•  all items produced are eventually consumed: yes	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 38	

Bounded buffer solution 2"
// Producer process

Object x = null;
integer in = 0;

while(true) {

 // produce data x

 ...

 P(empty);

 buf[in] = x;

 V(full);

 in = (in + 1) % n;

}!

// Consumer process

Object y = null;
integer out = 0;

while(true) {

 P(full);

 y = buf[out];

 V(empty);

 out = (out + 1) % n;

 // use the data y

 ...

}

// Shared variables
final integer n = BUFFER_SIZE;
Object[] buf = new Object[n];
general semaphore empty = n, full = 0;	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 39	

Applications of bounded buffers"
Bounded buffers are used for serial input and output streams in many
operating systems:	

	

•  Unix maintains queues of characters for I/O on all serial character
devices such as keyboards, screens and printers.	

•  Unix pipes are implemented using bounded buffers.	

	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 40	

Dining Philosophers Problem"
The Dining Philosophers problem illustrates mutual exclusion between
processes which compete for overlapping sets of shared variables	

	

•  five philosophers sit around a circular table	

•  each philosopher alternately thinks and eats spaghetti from a dish in

the middle of the table	

•  the philosophers can only afford five forks–one fork is placed between

each pair of philosophers	

•  to eat, a philosopher needs to obtain mutually exclusive access to the

fork on their left and right	

	

The problem is to avoid starvation–e.g., each philosopher acquires one
fork and refuses to give it up. 	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 41	

Dining Philosophers Problem"

P5

P1

P2 P3

P4

fork 1

fork 2

fork 3

fork 4

fork 5

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 42	

Deadlock in the Dining Philosophers"
The key to the solution is to avoid deadlock caused by circular waiting:	

	

•  process 1 is waiting for a resource (fork) held by process 2	

•  process 2 is waiting for a resource held by process 3 	

•  process 3 is waiting for a resource held by process 4	

•  process 4 is waiting for a resource held by process 5	

•  process 5 is waiting for a resource held by process 1.	

No process can make progress and all processes remain deadlocked.	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 43	

Semaphore Solution"
// Philosopher i, i == 1-4

while(true) {

 //get right fork then left

 P(fork[i]);

 P(fork[i+1]);

 // eat ...

 V(fork[i]);

 V(fork[i+1]);

 // think ...

}!

// Philosopher 5

while(true) {

 //get left fork then right

 P(fork[1]);

 P(fork[5]);

 // eat ...

 V(fork[1]);

 V(fork[5]);

 // think ...

}!

// Shared variables
binary semaphore fork[5] = {1, 1, 1, 1, 1};	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 44	

Exercise: semaphores"
a) devise a solution to multiple Producer–multiple Consumer problem

using a bounded buffer which ensures that:	
	

–  no items are read from an empty buffer; 	

–  data items are read only once; 	

–  data items are not overwritten before they are read;	

–  items are consumed in the order they are produced; and	

–  all items produced are eventually consumed.	

	

b) does your solution satisfy the properties of Mutual Exclusion,

Absence of Deadlock, Absence of Unnecessary Delay and Eventual
Entry?	

	

c) how many classes of critical sections does your solution have?	

© Brian Logan 2014	
 G52CON Lecture 8: Semaphores II	
 45	

The next lecture"
Monitors	

	

Suggested reading:	

•  Andrews (2000), chapter 5;	

•  Ben-Ari (1982), chapter 5;	

•  Burns & Davies (1993), chapter 7, sections 7.4–7.9.	

