
G52CON: 
Concepts of Concurrency 

 
Lecture 10 Monitors II"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

Outline of this lecture"
•  Readers and Writers problem	

•  selective mutual exclusion problems	

•  scheduling policies	

– readers’ preference	

– writers’ preference	

– a fair solution	

•  monitor solutions	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 2	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 3	

Readers and Writers"
Given a shared file and a collection of processes that need to access and
update the file:	

	

•  reader processes only need to read the file	

•  writer processes need to both read and write the file	

We assume that	

	

•  the file is initially in a consistent state	

•  each read or write executed in isolation transforms the file into a new
consistent state.	

	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 4	

Scope of the problem"
The Readers and Writers problem is an abstraction of a common class of
concurrency problems:	

	

•  the ‘file’ can be any shared resource, e.g., an area of memory, or a
database	

•  ‘reading’ and ‘writing’ can be any operations:	

–  reading doesn’t change the resource–readers can be allowed to proceed

concurrently	

–  writing must be mutually exclusive of all readers and all other writers	

	

	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 5	

Selective mutual exclusion"
•  a critical section is a section of code belonging to a process that

accesses shared variables, where, to ensure correct behaviour, the
critical section must be given mutually exclusive access to the shared
variables	

•  mutual exclusion is the requirement that, at any given time, at most
one process is executing its critical section	

•  mutual exclusion applies between critical sections	

In the Readers and Writers problem, reading need not be not mutually
exclusive of reading, but writing must be mutually exclusive of reading
and writing.	

	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 6	

An example"
A simple library catalogue has two kinds of users:	

	

•  borrowers who use the catalogue to search for books or to find out
whether a particular book is on loan (readers); and	

•  library staff who update the catalogue when new books are added to
the library stock or to record which books are on loan (writers).	

	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 7	

Updating the library catalogue"
If we allow all users unrestricted access to the catalogue, a borrower may
see the catalogue when it is an inconsistent state, e.g.:	

	

•  a borrower is looking for a book which has just arrived at the library	

•  a librarian is updating the catalogue to include the book, e.g., by
copying and editing an existing entry	

•  the borrower sees an inconsistent state of the catalogue, e.g., the entry
contains an incorrect shelf number.	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 8	

Correctness vs efficiency"
The Readers and Writers problem is a special case of the general problem
of a number of processes all of which may both read and write to a file: 	

	

•  any solution to the general problem will also be a correct solution to
the Readers and Writers problem	

•  however (much) more efficient solutions are possible for the Readers
and Writers problem	

In general, an efficient solution depends on the specifics of the problem.	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 9	

A simple solution"
One solution to the readers and writers problem would be to make all
accesses to the file mutually exclusive: 	

	

•  at most one process, whether reader or writer would be able to access
the file at a time.	

•  this is simple and correct but, in general, the performance of such an
approach is unacceptable, e.g., in the case of the library catalogue it
would mean that only one reader could search the catalogue at a time. 	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 10	

Synchronisation requirements"
To ensure correctness and for maximum efficiency (concurrency) and we
require that:	

	

•  if a writer is writing to the file, no other writer may write to the file
and no reader may read it; and	

•  any number of readers may simultaneously read the file.	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 11	

Readers’ Preference protocol"
Given a sequence of read and write requests which arrive in the following
order:	

	

R1 R2 W1 R3 …	

	

in a Readers’ Preference protocol: R3 takes priority over W1 	

	

R1 R2 R3 W1 … 	

	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 12	

Writers’ Preference protocol"
Given a sequence of read and write requests which arrive in the following
order:	

W1 W2 R1 W3 …	

	

in a Writers’ Preference protocol: W3 takes priority over R1 	

	

W1 W2 W3 R1 …	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 13	

Fairness"
Both Readers’ Preference and Writers’ Preference never allow a reader
and and writer or two writers to access the file at the same time	

 	

•  however they are not fair solutions:	

 	

•  for example, with Readers’ Preference, as long as a single reader is
active, no writer can gain access but other readers are allowed in. 	

– if new readers arrive in rapid succession, W1 will be indefinitely
delayed	

– the librarian would have to wait until the last user was finished
with the catalogue before they could update it.	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 14	

A fair solution"
A fair solution to the Reader’s and Writer’s problem:	

	

•  if there are waiting writers then a new reader is required to wait for the
termination of a write; and	

•  if there are readers waiting for the termination of a write, they have
priority over the next write.	

	

	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 15	

Approaches to the problem"
As a (selective) mutual exclusion problem–classes of processes compete
for access to the file:	

	

•  reader processes compete with writers; and 	

•  individual writer processes compete readers and with each other.	

	

As a condition synchronisation problem:	

	

•  reader processes must wait until no writers are accessing the file; 	

•  writer processes must wait until there are no readers or other writers
accessing the file.	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 16	

A monitor solution"
Although the file is shared, we can’t encapsulate it in a monitor, since the
readers couldn’t then access it concurrently:	

•  instead the monitor is used to arbitrate access to the file—the file itself
is global to the readers and writers. 	

	

•  this basic structure is often employed in monitor based programs. 	

	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 17	

An arbitration monitor"
The arbitration monitor grants permission to access the file:	

	

•  processes inform the monitor when they want access to the file (access
requests) and when they are finished (release requests)	

•  with two kinds of access request (read and write) and two release
requests (read and write), the monitor has four procedures:	

– startRead()
– endRead()
– startWrite()
– endWrite()	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 18	

Monitor arbitration"

Readeri	

Monitor	
1	

3	

File	

4	

2	

Writerj	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 19	

ReadersWriters monitor"
monitor ReadersWriters {

 boolean writing = false;

 integer readers = 0,

 waitingReaders = 0;

 watitingWriters = 0;

 condvar okToRead,

 okToWrite;

// monitor procedures follow ...

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 20	

Solution 1"
procedure startRead() {
 while (writing or
 waitingWriters > 0) {
 wait(okToRead);
 }
 readers++;
}

procedure endRead() {
 readers--;

 if (readers == 0)
 signal(okToWrite);
}

procedure startWrite() {
 if (writing or readers > 0 or
 waitingWriters > 0) {
 waitingWriters++;

 wait(okToWrite);
 waitingWriters--;
 }

 writing = true;
}

procedure endWrite() {
 writing = false;
 if (waitingWriters > 0)
 signal(okToWrite);
 else
 signal_all(okToRead);
}}

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 21	

Solution 2"
procedure startRead() {
 if (writing) {
 waitingReaders++;
 wait(okToRead);
 waitingReaders--;
 }
 readers++;
}

procedure endRead() {
 readers--;
 if (readers == 0)
 signal(okToWrite);
}

procedure startWrite() {
 while (writing or
 readers > 0 or
 waitingReaders > 0) {
 wait(okToWrite);
 }
 writing = true;
}

procedure endWrite() {
 writing = false;
 if (waitingReaders > 0)
 signal_all(okToRead);
 else
 signal(okToWrite);
}}

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 22	

Solution 3"
procedure startRead() {
 if (writing or
 waitingWriters > 0) {
 waitingReaders++;

 wait(okToRead);
 waitingReaders--;
 }

 readers++;
}

procedure endRead() {
 readers--;
 if (readers == 0)

 signal(okToWrite);
}

procedure startWrite() {
 if (writing or readers > 0 or
 waitingReaders > 0 or
 waitingWriters > 0) {

 waitingWriters++;
 wait(okToWrite);
 waitingWriters--;

 }
 writing = true;
}

procedure endWrite() {
 writing = false;
 if (waitingReaders > 0)

 signal_all(okToRead);
 else
 signal(okToWrite);
}}

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 23	

Exercise"
•  which solution gives preference to readers	

•  which solution gives preferences to writers	

•  which solution is ‘fair’ 	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 25	

Readers’ Preference 1"
monitor ReadersPreference {

 boolean writing = false;

 integer readers = 0,

 waitingReaders = 0;

 condvar okToRead,

 okToWrite;

// monitor procedures follow ...

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 26	

Readers’ Preference 2"
procedure startRead() {
 if (writing) {
 waitingReaders++;
 wait(okToRead);
 waitingReaders--;
 }
 readers++;
}

procedure endRead() {
 readers--;
 if (readers == 0)
 signal(okToWrite);
}

procedure startWrite() {
 while (writing or
 readers > 0 or
 waitingReaders > 0) {
 wait(okToWrite);
 }
 writing = true;
}

procedure endWrite() {
 writing = false;
 if (waitingReaders > 0)
 signal_all(okToRead);
 else
 signal(okToWrite);
}}

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 27	

Signal and continue and while/if
•  waiting readers are signalled when a writer finishes	

•  this moves the waiting readers from the okToRead delay queue to
the monitor entry queue	

•  writer then releases the monitor lock	

– newly arrived reader will proceed as writing is false	

– reader(s) on the entry queue will return from wait, decrementing
waitingReaders and incrementing readers

– newly arrived writer will wait, either because there are active or
waiting readers	

•  waiting readers do not need to recheck their delay condition	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 28	

Signal and continue and while/if
•  when the last reader finishes, it signals to one waiting writer, w	

•  writer w moves from the okToWrite delay queue to the monitor
entry queue	

•  if another reader arrives before w enters the monitor, it will set
readers > 0

•  if another writer arrives before w enters the monitor, it will set
writing to true	

•  causing w to wait again when it rechecks its delay condition	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 29	

Writers’ Preference 1"
monitor WritersPreference {

 boolean writing = false;

 integer readers = 0,

 waitingWriters = 0;

 condvar okToRead,

 okToWrite;

// monitor procedures follow ...

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 30	

Writers’ Preference 2"
procedure startRead() {
 while (writing or
 waitingWriters > 0) {
 wait(okToRead);
 }
 readers++;
}

procedure endRead() {
 readers--;

 if (readers == 0)
 signal(okToWrite);
}

procedure startWrite() {
 if (writing or readers > 0 or
 waitingWriters > 0) {
 waitingWriters++;

 wait(okToWrite);
 waitingWriters--;
 }

 writing = true;
}

procedure endWrite() {
 writing = false;
 if (waitingWriters > 0)
 signal(okToWrite);
 else
 signal_all(okToRead);
}}

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 31	

A fair solution 1"
monitor ReadersWriters {
 boolean writing = false;
 integer readers = 0,
 waitingReaders =0,

 waitingWriters = 0;

 condvar okToRead,

 okToWrite;

// monitor procedures follow ...

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 32	

A fair solution 2"
procedure startRead() {
 if (writing or
 waitingWriters > 0) {
 waitingReaders++;

 wait(okToRead);
 waitingReaders--;
 }

 readers++;
}

procedure endRead() {
 readers--;
 if (readers == 0)

 signal(okToWrite);
}

procedure startWrite() {
 if (writing or readers > 0 or
 waitingReaders > 0 or
 waitingWriters > 0) {

 waitingWriters++;
 wait(okToWrite);
 waitingWriters--;

 }
 writing = true;
}

procedure endWrite() {
 writing = false;
 if (waitingReaders > 0)

 signal_all(okToRead);
 else
 signal(okToWrite);
}}

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 33	

Efficiency"
•  in practice, exclusive writes and concurrent reads are not sufficient to

gain the necessary performance in large database systems	

•  the internal structure of the database must be used to limit the area to
which a write lock is imposed	

•  this area then behaves as if it were supporting a readers and writers
protocol	

	

	

© Brian Logan 2014	
 G52CON Lecture 10: Monitors II	
 35	

The next lecture"
Synchronisation in Java	

	

Suggested reading:	

•  Lea (2000), chapter 2.	

Sun Java Tutorial, Synchronizing Threads	

	

docs.oracle.com/javase/tutorial/essential/concurrency/sync.html	

