
G52CON: 
Concepts of Concurrency 

 
Lecture 11 Synchronisation in Java"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 2	

Outline of this lecture"
•  mutual exclusion in Java	

•  condition synchronisation in Java	

•  monitors	

–  example: BoundedBuffer monitor and Java	

	

•  exercise: semaphores in Java	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 3	

Java Memory Model"

CPU"

registers"
cache"

CPU"

registers"
cache"bus"

main memory" an object representation"

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 4	

Working memory"
Java allows threads that access shared variables to keep private working
copies of variables:	

	

•  each thread is defined to have a working memory (an abstraction of
caches and registers) in which to store values;	

•  this allows a more efficient implementation of multiple threads 	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 5	

Model properties"
The Java Memory Model specifies when values must be transferred
between main memory and per-thread working memory:	

	

•  atomicity: which instructions must have indivisible effects	

•  visibility: under what conditions are the effects of one thread visible
to another; and	

•  ordering: under what conditions the effects of operations can appear
out of order to any given thread.	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 6	

Unsynchronized code"
•  atomicity: reads and writes to memory cells corresponding to fields of

any type except long or double are guaranteed to be atomic	

•  visibility: changes to fields made by one thread are not guaranteed to
be visible to other threads	

•  ordering: from the point of view of other threads, instructions may
appear to be executed out of order	

	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 7	

volatile fields"
If a field is declared volatile, a thread must reconcile its working copy
of the field with the master copy every time it accesses the variable. 	

	

•  reads and writes to a volatile field are guaranteed to be atomic
(even for longs and doubles); 	

•  new values are immediately propagated to other threads; and	

•  from the point of view of other threads, the relative ordering of
operations on volatile fields are preserved. 	

	

However the ordering and visibility effects surround only the single read
or write to the volatile field itself, e.g, ‘++’ on a volatile field is
not atomic.	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 8	

Mutual exclusion in Java"
Java provides built-in support for mutual exclusion with the
synchronized keyword:	

•  both methods and blocks can be synchronized

•  each object has a lock (inherited from class Object)	

•  when a synchronized method (or block) is called, it waits to
obtain the lock, executes the body of the method (or block) and then
releases the lock	

•  allows the implementation of coarse grained atomic actions	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 9	

Invoking synchronized methods"
When a thread invokes a synchronized method foo() on an object x, it tries
to obtain the lock on x

•  if another thread already holds the lock on x, the thread invoking foo()
blocks	

•  when it obtains the lock, it executes the body of the method and then releases
the lock, even if the exit occurs due to an exception	

•  when one thread releases a lock, another thread may acquire it (perhaps the
same thread, if it invokes another synchronized method)—there are no
guarantees about which thread will acquire a lock next or if a thread will ever
acquire a lock	

•  locks are reentrant, i.e., per thread, not per invocation—a synchronized
method can invoke another synchronized method on the same object
without deadlocking	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 10	

synchronized methods"
•  the synchronized keyword is not part of a method’s signature, and

is not automatically inherited when subclasses override superclass
methods	

	

•  methods in interfaces and class constructors cannot be declared
synchronized

• synchronized instance methods in subclasses use the same lock as

methods in their superclasses

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 11	

synchronized blocks"
Block synchronization is lower-level than method synchronization:	

	

•  synchronized methods synchronize on an instance of the method’s
class (or the Class object for static methods) 	

•  block synchronization allows synchronization on any object	

•  this allows us to narrow the scope of a lock to only part of the code in
a method	

•  also allows us to use a different object to implement the lock	

	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 12	

Synchronized code"
•  atomicity: changes made in one synchronized method (or block)

are atomic with respect to other synchronized methods (blocks)
on the same object	

•  visibility: changes made in one synchronized method (or block)
are visible with respect to other synchronized methods (blocks)
on the same object	

•  ordering: order of synchronized calls is preserved from the point
of view of other threads	

	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 13	

A Simple Example: ParticleApplet"
ParticleApplet creates n Particle objects, sets each particle in
autonomous ‘continuous’ motion, and periodically updates the display to
show their current positions:	

•  each Particle runs in its own Java Thread which computes the
position of the particle; and	

•  an additional ParticleCanvas Thread periodically checks the
positions of the particles and draws them on the screen.	

•  in this example there are at least 12 threads and possibly more,
depending on how the browser handles applets.	

	

	

	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 14	

ParticleApplet"
There are three classes:	

	

• Particle: represents the position and behaviour of a particle and

can draw the particle at its current position;	

• ParticleCanvas: provides a drawing area for the Particles,
and periodically asks the Particles to draw themselves; and

• ParticleApplet: creates the Particles and the canvas and
sets the Particles in motion.	

	

See also Lea (2000), chapter 1 for an alternative implementation.	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 15	

Particle.run()"
class Particle extends Thread {

 // fields, constructor etc…

 public void run() {
 try {
 for(;;) {

 move();
 sleep(100);

 }

 }
 catch (InterruptedException e) { return; }
 }

 // other methods …
}

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 16	

Particle threads"

particles[0]

move();
sleep(100);

particles[1]

move();
sleep(100);

particles[9]

move();
sleep(100);

...

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 17	

ParticleCanvas.run()"
class ParticleCanvas extends Canvas implements Runnable {

 // fields, constructor etc …

 public void run() {
 try {
 for(;;) {

 repaint();
 Thread.sleep(100);

 }
 }

 catch (InterruptedException e) { return; }
 }

 // other methods …
}

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 18	

ParticleCanvas class continued"

 protected synchronized void getParticles() {

 return particles;

 }

 // called by Canvas.repaint();

 public void paint(Graphics g) {

 Particle[] ps = getParticles();

 for (int i = 0; i < ps.length(); i++)

 ps[i].draw(g);

 }

}

ParticleCanvas

repaint();
sleep(100);

© Brian Logan 2007, Chris
Greenhalgh, 2010	

G52CON Lecture 11: Synchronization in Java	
 19	

ParticleCanvas & AWT event threads"

particles[0]

move();
sleep(100);

particles[9]

move();
sleep(100);

paint() {
 particles[0].draw
 particles[1].draw
 .
 .
 .

 particles[9].draw
}
…

... particles[1]

move();
sleep(100);

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 20	

Interference in the ParticleApplet

•  need to ensure that draw() doesn’t see an incompletely updated x, y
position of a particle, e.g.	

– JVM runs a Particle thread which invokes move() which
increments x

– JVM then switches to running the ParicleCanvas thread
which invokes draw() which sees the updated x position but the
old y position	

– JVM switches back to running the Particle thread—move()
completes, updating the y position of the particle	

• Particle object is drawn in a position it never occupied	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 21	

Synchronising Particle.move"
•  we can avoid interference by making access to the x, y position of a

particle a critical section	

•  we use synchoronized to enforce mutual exclusion	

	

 // Particle move method

 public synchronized void move() {

 x += (rng.nextInt() % 10);

 y += (rng.nextInt() % 10);

 }

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 22	

Synchronising Particle.draw"
// Particle draw method

public void draw(Graphics g) {

 int lx, ly;

 synchronized (this) {

 lx = x;

 ly = y;

 }

 g.drawRect(lx, ly, 10, 10);

}

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 23	

Condition synchronisation in Java"
Java provides built-in support for condition synchronisation with the
methods wait(), notify() and notifyAll():	

	

•  to delay a thread until some condition is true, write a loop that causes
the thread to wait() (block) if the delay condition is false	

•  ensure that every method which changes the truth value of the delay
condition notifies threads waiting on the condition (using notify()
or notifyAll()), causing them to wake up and re-check the delay
condition. 	

•  Java uses a Signal and Continue signalling discipline	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 24	

wait(), notify()and notifyAll()"

• wait() , notify() and notifyAll() must be executed within
synchronized methods or blocks

• wait() releases the lock on the object held by the calling thread–the
thread blocks and is added to the wait set for the object 	

• notify() wakes up a thread in the wait set (if any);
notifyAll() wakes up all threads in the wait set (if any)	

– the thread that invoked notify() / notifyAll() continues to
hold the object’s lock	

– the awakened thread(s) remain blocked and execute at some future
time when they can reacquire the lock	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 25	

notify() vs notifyAll()"
• notify() can be used to increase performance when only one

thread needs to be woken:	

– all threads in the wait set are waiting on the same delay condition
and	

– each notification enables at most one thread to continue and	

– the possibility of an interrupt() during notify() is

handled (pre Java 5)	

• notifyAll() is required when:	

– the threads in the wait set are waiting on different conditions; or	

– a notification can satisfy multiple waiting threads	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 26	

Waking the right process"
class TicketCounter {

 long ticket = 0;

 long turn = 0;

 synchronised takeTicket() throws InterruptedException {

 long myTurn = ticket++;

 while (myTurn != turn)

 wait();

 }

 synchronised nextTurn() {

 turn++;

 notifyAll(); // wakes all processes

 }

}

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 27	

Loss of notification"
class TicketCounter { // broken - do not use ...

 long ticket = 0;

 long turn = 0;

 synchronised takeTicket() throws InterruptedException {

 long myTurn = ticket++;

 while (myTurn != turn)

 wait();

 }

 synchronised nextTurn() {

 turn++;

 notify(); // wakes an arbitrary process

 }

}

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 28	

Interrupting a Thread"
Each Thread object has an associated boolean interruption status:	

	

• interrupt(): sets the thread’s interrupted status to true	

• isInterrupted(): returns true if the thread has been interrupted
by interrupt()

A thread can periodically check its interrupted status, and if it is true,
clean up and exit.	

	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 29	

Handling interrupts"
Threads which are blocked in calls wait(), sleep() and join()
aren’t runnable, and can’t check the value of the interrupted flag	

	

•  interrupting a thread which is not runnable aborts the thread, throws an
InterruptedException and sets the thread’s interrupted status
to false	

•  calls to wait(), sleep(), or join() are often enclosed in a try
catch block:	

synchronized <method or block>

 try {

 wait()|sleep(millis)|join(millis)
 } catch (InterruptedException e) {

 // clean up and return

 }

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 30	

Approaches to mutual exclusion"
•  Mutual exclusion algorithms: pre- and post-protocols are

implemented using special machine instructions or atomic memory
accesses (e.g., Test-and-Set, Peterson’s algorithm)	

•  Semaphores: pre- and post-protocols can be implemented using
atomic P and V operations	

•  Monitors: mutual exclusion is implicit---pre- and post-protocols are
executed automatically on entering and leaving the monitor to ensure
that monitor procedures are not executed concurrently. 	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 31	

Implementing mutual exclusion in Java"
•  it is difficult to implement mutual exclusion algorithms in Java, due to

problems of visibility, ordering, scheduling and efficiency	

•  we can implement semaphores as a Java class with methods which
implement the P and V operations (see java.util.concurrent)	

•  monitors are the basis of Java’s synchronisation primitives–there is a
straightforward mapping from designs based on monitors to solutions
using synchronized classes	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 32	

Approaches to condition synchronisation"

•  Busy-waiting: the process sits in a loop until the condition is true 	

•  Semaphores: P and V operations can be used to wait for a condition
and to signal that it has occurred	

•  Monitors: condition synchronisation is explicitly programmed using
condition variables and monitor operations, e.g., wait and signal.	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 33	

Implementing condition synchronisation  
in Java"

•  it is difficult to implement busy waiting in Java, due to problems of
visibility, scheduling and efficiency	

•  we can implement semaphores as a Java class with methods which
implement the P and V operations (see java.util.concurrent)	

•  while monitors are the basis of Java’s synchronisation primitives, each
object in Java has a only a single condition variable and delay queue—
monitor operations can be implemented using wait() and
notify(), and notifyAll()

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 34	

Example: monitors"
A monitor is an abstract data type representing a shared resource.	

	

Monitors have four components:	

	

•  a set of private variables which represent the state of the resource;	

•  a set of monitor procedures which provide the public interface to the
resource; 	

•  a set of condition variables and associated monitor operations
(wait(), signal(), signal_all()) used to implement
condition synchronisation; and	

•  initialisation code which initialises the private variables.	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 37	

Monitors in Java"
Monitors can be implemented as Java classes:	

	

•  the monitor’s private variables are private fields in a class	

•  the monitor procedures are implemented using synchronized
methods —synchronized methods are executed under mutual
exclusion with all other synchronized methods on the same object	

•  condition synchronisation is implemented using wait(),
notify(), notifyAll()	

– each object has a single (implicit) condition variable and delay
queue, the wait set	

– Java uses a signal and continue signalling discipline	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 38	

Bounded buffer with monitors"
monitor BoundedBuffer {

 // Private variables …

 Object buf = new Object[n];

 integer out = 0, // index of first full slot

 in = 0, // index of first empty slot

 count = 0; // number of full slots

 // Condition variables ...

 condvar not_full, // signalled when count < n

 not_empty; // signalled when count > 0

 // continued ...

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 39	

Bounded buffer with monitors 2"
 // Monitor procedures ...

 //(signal & continue signalling discipline)

 procedure append(Object data) {

 while(count == n) {

 wait(not_full);

 }

 buf[in] = data;

 in = (in + 1) % n;

 count++;

 signal(not_empty);

 }

 // continued ...

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 40	

Bounded buffer with monitors 3"
 procedure remove(Object &item) {

 while(count == 0) {

 wait(not_empty);

 }

 item = buf[out];

 out = (out + 1) %n;

 count--;

 signal(not_full);

 }

}

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 41	

Bounded buffer in Java"
class BoundedBuffer {

 // Private variables …

 private Object buf;

 private int out = 0, // index of first full slot

 private int in = 0, // index of first empty slot

 private int count = 0; // number of full slots

 public BoundedBuffer(int n) {

 buf = new Object[n];

 }

 // continued ...

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 42	

Bounded buffer in Java 2"
 // Monitor procedures …

 public synchronized void append(Object data) {

 try {

 while(count == n) {

 wait();

 }

 catch (InterruptedException e) {

 return;

 }

 buf[in] = data;

 in = (in + 1) % n;

 count++;

 notifyAll();

 }

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 43	

Bounded buffer in Java 3"
 public synchronized Object remove() {
 try {

 while(count == 0) {

 wait();

 }

 catch (InterruptedException e) {

 return null;

 }

 Object item = buf[out];

 out = (out + 1) % n;

 count--;

 notifyAll();

 return item;

 }

}

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 44	

Example: semaphores"
A semaphore s is an integer variable which can take only non-negative
values. Once it has been given its initial value, the only permissible
operations on s are the atomic actions:	

	

P(s) : if s > 0 then s = s – 1, else suspend execution of the process that

called P(s)	

	

V(s) : if some process p is suspended by a previous P(s) on this

semaphore then resume p, else s = s + 1	

	

A general semaphore can have any non-negative value; a binary
semaphore is one whose value is always 0 or 1.	

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 45	

Exercise: semaphores in Java"
class GeneralSemaphore {

 private long resource;

 public GeneralSemaphore (long r) {

 resource = r;

 }

 // method to implement the P operation

 // method to implement the V operation

}

© Brian Logan 2014	
 G52CON Lecture 11: Synchronisation in Java	
 50	

The Next Lecture"
Synchronisation in Java II	

	

Suggested reading:	

•  Lea (2000), chapter 3.	

