
G52CON: 
Concepts of Concurrency 

Lecture 14 Remote Invocation"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 2	

Outline of this lecture"
•  distributed processing	

•  message passing	

•  remote invocation	

– Remote Procedure Call (RPC)	

– Extended Rendezvous	

•  examples:	

– time server using RPC	

– Ada rendezvous	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 3	

Implementations of concurrency"
We can distinguish three types of implementations of concurrency:	

•  multiprogramming: execution of concurrent processes by
timesharing them on a single processor;	

•  multiprocessing: the execution of concurrent processes by running
them on separate processors which all access a shared memory; and 	

•  distributed processing: the execution of concurrent processes by
running them on separate processors which communicate by message
passing.	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 4	

Distributed processing"
•  processors share only a communication network, e.g., networks of

workstations or multicomputers with distributed memory	

•  the processes don’t share a common address space, so they can’t
communicate via shared variables 	

•  instead they communicate by sending and receiving messages	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 5	

Message passing"
Processes communicate by sending and receiving messages using special
message passing primitives which include synchronisation:	

•  send (destination) message: sends message to another
process destination	

•  receive (source) message: indicates that a process is ready
to receive a message message from another process source 	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 6	

Synchronising communication"
If a process tries to receive a message before one has been sent, it will
block until there is a message for it to read.	

The differences are mainly in the behaviour of the sending process:	

•  asynchronous communication: the sending process continues without
waiting for the message to be received, e.g., Unix sockets,
java.net	

•  synchronous communication: the sending process is delayed until the
corresponding receive is executed, e.g., CSP, occam	

•  remote invocation: the sending process is delayed until a reply is
received, e.g., RPC (java.rmi), Extended Rendezvous 	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 7	

Asynchronous Message Passing"
If a process sends a message and continues executing without waiting for
the message to be received, then the communication is termed
asynchronous	

•  send operations are non-blocking: 	

•  a sending process can get arbitrarily far ahead of a receiving process;	

•  message delivery is not guaranteed if failures can occur; and	

•  since channels can contain an unbounded number of messages
messages have to be buffered.	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 8	

Synchronous message passing"
If the sending process is delayed until the corresponding receive is
executed, the the message passing is synchronous	

•  both the send and receive operations are blocking	

•  a process sending to a channel delays until another process is ready
to receive from that channel;	

•  messages don’t need to be buffered.	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 9	

Problems with message passing"
Both asynchronous and synchronous message passing assume one-way
communication:	

•  messages are transmitted in one direction only, from sender to receiver	

•  message passing is well suited to problems in which the flow of
information is essentially one-way, e.g., producer-consumer problems	

•  two way information flow between, e.g., between clients and servers,
has to be programmed with two explicit message exchanges	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 10	

Remote invocation"
With remote invocation a process executes a synchronous send and waits
until the reply is received:	

•  combines aspects of monitors and synchronous message passing:	

–  as with monitors interaction is via public procedures	

–  as with synchronous send, calling a procedure delays the
caller	

•  provides two way communication from the caller to the process
servicing the call and back	

•  implemented using message passing	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 11	

RPC & Extended rendezvous"
There are two main forms of remote invocation:	

•  Remote Procedure Call creates a new process to handle each call	

•  Extended Rendezvous services a request using an existing process.	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 12	

Modules"
A module is an abstraction which can be used to describe both RPC and
Extended Rendezvous	

A module contains both processes and local and exported procedures:	

•  the header contains the signatures of the exported procedures	

•  the body contains local procedures and processes, local variables, and
initialisation code	

•  at any point in time, a module contains zero or more processes	

•  different modules may reside in different addresses spaces	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 13	

Module syntax"
module <moduleName>

 // header (signatures of exported procedures)

 export <procID1>(args);

 export <procID2>(args);

 ...

body

 // local variables

 // initialisation code

 // implementations of exported module procedures

 // local procedures

 // local (background) processes

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 14	

Modules and message passing"
Communication between modules is by calls to exported procedures:	

•  arguments and return values are passed as messages	

•  the sending and receiving of messages is implicit rather than
explicitly programmed	

Communication within modules is similar to monitors: 	

•  processes within a module can share variables and call procedures
declared in that module.	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 15	

Modules and RPC"
In RPC, a module contains zero or more processes and some exported
procedures:	

•  local processes are called background processes 	

•  processes that result from remote calls to exported procedures which
are called server processes	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 16	

Servicing an RPC call 1"

Process A	
 time	

Background Process	

Module 1	

Module 2	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 17	

Servicing an RPC call 2"

Process A	
 time	

Background Process	

Module 1	

Module 2	

call

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 18	

Servicing an RPC call 3"

Process A	

Server Process	

time	

Background Process	

Module 1	

Module 2	

call

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 19	

Servicing an RPC call 4"

Process A	

Server Process	

time	

Background Process	

Module 1	

Module 2	

call

return

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 20	

Servicing an RPC call 5"

Process A	
 time	

Background Process	

Module 1	

Module 2	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 21	

Synchronisation in modules"
There are two ways for server and background processes in an RPC
module to have mutually exclusive access to shared variables and to
synchronise with each other	

•  all the processes in the same module execute with mutual exclusion
(as in monitors)–condition synchronisation is programmed explicitly
using semaphores and/or condition variables	

•  processes execute concurrently within a module and both mutual
exclusion and condition synchronisation are programmed explicitly
using semaphores and/or condition variables	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 22	

Example: time server"
A time server provides timing services to client processes :	

•  the time server defines two procedures: get_time and delay	

•  a client process gets the time of day by calling get_time()	

•  a client process calls delay(interval) to block for interval
time units	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 23	

Time server RPC implementation 1"
module TimeServer

 export integer get_time();

 export void delay(integer interval);

body

 integer time = 0;

 binary semaphore m = 1;

 binary semaphore[] d = new binary semaphore[n] {0};

 queue napQ;

 // exported module procedures ...

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 24	

Time server RPC implementation 2"
 // exported module procedures

 integer get_time() {

 return time;

 }

 void delay(integer interval) {

 integer waketime = time + interval;

 P(m);

 insert(napQ, <waketime, serverProcID>);

 V(m);

 P(d[serverProcID]);

 }

 // background Clock process ...

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 25	

Time server RPC implementation 3"
 // background Clock process

 process Clock {

 // start hardware timer (omitted) ...

 while(true) {

 // wait for interrupt then restart timer...

 time++;

 P(m);

 while(time >= smallest waketime on napQ) {

 remove(napQ, <waketime, serverProcID>);

 V(d[serverProcID]);

 }

 V(m);

 }

}

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 26	

Servicing a get_time() call"

Process A	

get_time() Server Process	

time	

Clock Process	

get_time()	

Module Client

Module TimeServer

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 27	

Servicing a delay() call 1"

Process A	
 time	

Clock Process	

Module Client

Module TimeServer

delay(100)	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 28	

Servicing a delay() call 2"

Process A	

delay(100) Server Processi	

time	

Clock Process	

Module Client

Module TimeServer

delay(100)	

P(d[i])

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 29	

Servicing a delay() call 3"

Process A	
 time	

Clock Process	

Module Client

Module TimeServer

delay(100)	

P(d[i])

delay(100) Server Processi	

V(d[i])

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 30	

Servicing a delay() call 4"

Process A	

delay(100) Server Processi	

time	

Clock Process	

Module Client

Module TimeServer

delay(100)	

P(d[i])

V(d[i])

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 31	

Servicing multiple delay() calls"

Process A	
 time	

Clock Process	

Module TimeServer

Module Client 1

delay(100)	

P(d[i])

Module Client 2

delay(150)	

V(d[j])

Process A	

Process B	

P(d[j])

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 32	

Extended rendezvous"
Extended rendezvous combines communication and synchronisation 	

•  as with RPC a process invokes an operation by means of a remote call:	

– a server process waits for and then acts on a single call	

– calls are serviced one at a time rather than concurrently	

•  the caller and server processes synchronise (rendezvous) on the call	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 33	

Modules and extended rendezvous"
In extended rendezvous a module contains a single process and some
exported operations:	

•  the header contains signatures of operations (or entry points)
exported by the module	

•  the body of a module consists of a single process that services the call	

•  accept statements block the server process until there is at least one

pending call of an exported operation	

As with RPC	

•  arguments to the call and any return values are passed as messages
between the caller and server processes	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 34	

Servicing a rendezvous call 1"

Module 1	

Module 2	

Process A	

Server Process	

time	

accept

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 35	

Servicing a rendezvous call 2"

Module 1	

Module 2	

Process A	
 time	

call

Server Process	

accept

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 36	

Servicing a rendezvous call 3"

Module 1	

Module 2	

Process A	
 time	

Server Process	

call

accept

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 37	

Servicing a rendezvous call 4"

Module 1	

Module 2	

Process A	
 time	

Server Process	

call

return accept

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 38	

Servicing a rendezvous call 5"

Module 1	

Module 2	

Process A	
 time	

Server Process	

call

return accept accept

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 39	

Example: Ada Rendezvous"
In Ada, a module is called a task and exported operations are called
entries	

•  the body of task contains variable and procedure declarations and
the program statements executed by the task	

•  for each entry declared in the header, there is a corresponding
accept statement	

•  execution of a task blocks at an accept statement, unless there is a
call on the corresponding entry	

•  when there is a call on the entry, the statements that make up the
body of the accept statements are executed, and any results returned	

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 40	

Ada entry and accept statements"
task <name> is
 entry <entryID1>(args);
 entry <entryID2>(args);
end;
task body <name> is
 // local declarations
begin
 // statements
 loop
 select
 accept <entryID1>(args) do
 // statements
 end;
 or
 accept <entryID2>(args) do
 // statements
 end;
 end select;
 end loop;
 // more statements
end <name>;

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 41	

Example: resource allocator in Ada"
task ResourceAllocator is
 entry ACQUIRE(args);
 entry RELEASE(args);
end;
task body ResourceAllocator is
 // declaration list of free units, pending queue etc.
begin
 loop
 select
 accept ACQUIRE(args) do
 // process the ACQUIRE request
 end;
 or
 accept RELEASE(args) do
 // process the RELEASE request
 end;
 end select;
 end loop;
end ResourceAllocator;

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 42	

Example: resource allocator in Ada"
For example, a call to an entry called ACQUIRE in a task called
ResourceAllocator has the form:	

call ResourceAllocator.ACQUIRE(args);

and is serviced by an accept statement in the body of
ResourceAllocator of the form:	

accept ACQUIRE(args) do
 // statements to process the ACQUIRE request

end;

© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 43	

The next lecture"
Distributed processing in Java	

Suggested reading:	

•  Andrews (2000), chapter 8;	

•  Java Tutorial Sockets and RMI	

