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Outline of this lecture"
•  distributed processing	


•  message passing	


•  remote invocation	


– Remote Procedure Call (RPC)	


– Extended Rendezvous	


•  examples:	


– time server using RPC	


– Ada rendezvous	
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Implementations of concurrency"
We can distinguish three types of implementations of concurrency:	


•  multiprogramming: execution of concurrent processes by 
timesharing them on a single processor;	


•  multiprocessing: the execution of concurrent processes by running 
them on separate processors which all access a shared memory; and 	


•  distributed processing: the execution of concurrent processes by 
running them on separate processors which communicate by message 
passing.	
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Distributed processing"
•  processors share only a communication network, e.g., networks of 

workstations or multicomputers with distributed memory	


•  the processes don’t share a common address space, so they can’t 
communicate via shared variables  	


•  instead they communicate by sending and receiving messages	
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Message passing"
Processes communicate by sending and receiving messages using special 
message passing primitives which include synchronisation:	


•  send (destination) message: sends message to another 
process destination	


•  receive (source) message: indicates that a process is ready 
to receive a message message from another process source 	
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Synchronising communication"
If a process tries to receive a message before one has been sent, it will 
block until there is a message for it to read.	


The differences are mainly in the behaviour of the sending process:	


•  asynchronous communication: the sending process continues without 
waiting for the message to be received, e.g., Unix sockets, 
java.net	


•  synchronous communication: the sending process is delayed until the 
corresponding receive is executed, e.g., CSP, occam	


•  remote invocation: the sending process is delayed until a reply is 
received, e.g., RPC (java.rmi), Extended Rendezvous 	
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Asynchronous Message Passing"
If a process sends a message and continues executing without waiting for 
the message to be received, then the communication is termed 
asynchronous	


•  send operations are non-blocking: 	


•  a sending process can get arbitrarily far ahead of a receiving process;	


•  message delivery is not guaranteed if failures can occur; and	


•  since channels can contain an unbounded number of messages 
messages have to be buffered.	
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Synchronous message passing"
If the sending process is delayed until the corresponding receive is 
executed, the the message passing is synchronous	


•  both the send and receive operations are blocking	


•  a process sending to a channel delays until another process is ready 
to receive from that channel;	


•  messages don’t need to be buffered.	
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Problems with message passing"
Both asynchronous and synchronous message passing assume one-way 
communication:	


•  messages are transmitted in one direction only, from sender to receiver	


•  message passing is well suited to problems in which the flow of 
information is essentially one-way, e.g., producer-consumer problems	


•  two way information flow between, e.g., between clients and servers, 
has to be programmed with two explicit message exchanges	
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Remote invocation"
With remote invocation a process executes a synchronous send and waits 
until the reply is received:	


•  combines aspects of monitors and synchronous message passing:	


–  as with monitors interaction is via public procedures	


–  as with synchronous send, calling a procedure delays the 
caller	


•  provides  two way communication from the caller to the process 
servicing the call and back	


•  implemented using message passing	




© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 11	


RPC & Extended rendezvous"
There are two main forms of remote invocation:	


•  Remote Procedure Call creates a new process to handle each call	


•  Extended Rendezvous services a request using an existing process.	
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Modules"
A module is an abstraction which can be used to describe both RPC and 
Extended Rendezvous	


A module contains both processes and local and exported procedures:	


•  the header contains the signatures of the exported procedures	


•  the body contains local procedures and processes, local variables, and 
initialisation code	


•  at any point in time, a module contains zero or more processes	


•  different modules may reside in different addresses spaces	
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Module syntax"
module <moduleName> 

    // header (signatures of exported procedures) 

    export <procID1>(args); 

    export <procID2>(args); 

    ... 

body 

    // local variables 

    // initialisation code 

    // implementations of exported module procedures 

    // local procedures 

    // local (background) processes 
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Modules and message passing"
Communication between modules is by calls to exported procedures:	


•  arguments and return values are passed as messages	


•  the sending and receiving of messages is implicit rather than 
explicitly programmed	


Communication within modules is similar to monitors: 	


•  processes within a module can share variables and call procedures 
declared in that module.	
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Modules and RPC"
In RPC, a module contains zero or more processes and some exported 
procedures:	


•  local processes are called background processes 	


•   processes that result from remote calls to exported procedures which 
are called server processes	
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Servicing an RPC call 1"

Process A	
 time	


Background Process	


Module 1	


Module 2	
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Servicing an RPC call 2"

Process A	
 time	


Background Process	


Module 1	


Module 2	


call 
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Servicing an RPC call 3"

Process A	


Server Process	


time	


Background Process	


Module 1	


Module 2	


call 
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Servicing an RPC call 4"

Process A	


Server Process	


time	


Background Process	


Module 1	


Module 2	


call 

return 
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Servicing an RPC call 5"

Process A	
 time	


Background Process	


Module 1	


Module 2	
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Synchronisation in modules"
There are two ways for server and background processes in an RPC 
module to have mutually exclusive access to shared variables and to 
synchronise with each other	


•  all the processes in the same module execute with mutual exclusion 
(as in monitors)–condition synchronisation is programmed explicitly 
using semaphores and/or condition variables	


•  processes execute concurrently within a module and both mutual 
exclusion and condition synchronisation are programmed explicitly 
using semaphores and/or condition variables	
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Example: time server"
A time server provides timing services to client processes :	


•  the time server defines two procedures: get_time and delay	


•  a client process gets the time of day by calling get_time()	


•  a client process calls delay(interval) to block for interval 
time units	




© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 23	


Time server RPC implementation 1"
module TimeServer 

    export integer get_time(); 

    export void delay(integer interval); 

body 

    integer time = 0; 

    binary semaphore m = 1; 

    binary semaphore[] d = new binary semaphore[n] {0}; 

    queue napQ; 

    // exported module procedures ... 
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Time server RPC implementation 2"
    // exported module procedures 

    integer get_time() { 

        return time; 

    } 

    void delay(integer interval) { 

        integer waketime = time + interval; 

        P(m); 

        insert(napQ, <waketime, serverProcID>); 

        V(m); 

        P(d[serverProcID]); 

    } 

    // background Clock process ... 
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Time server RPC implementation 3"
    // background Clock process 

    process Clock { 

        // start hardware timer (omitted) ... 

        while(true) { 

            // wait for interrupt then restart timer... 

            time++; 

            P(m); 

            while(time >= smallest waketime on napQ) { 

                remove(napQ, <waketime, serverProcID>); 

                V(d[serverProcID]); 

            } 

            V(m); 

    } 

} 
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Servicing a get_time() call"

Process A	


get_time() Server Process	


time	


Clock Process	


get_time()	

Module Client 

Module TimeServer 
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Servicing a delay() call 1"

Process A	
 time	


Clock Process	


Module Client 

Module TimeServer 

delay(100)	
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Servicing a delay() call 2"

Process A	


delay(100) Server Processi	


time	


Clock Process	


Module Client 

Module TimeServer 

delay(100)	


P(d[i]) 
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Servicing a delay() call 3"

Process A	
 time	


Clock Process	


Module Client 

Module TimeServer 

delay(100)	


P(d[i]) 

delay(100) Server Processi	


V(d[i]) 
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Servicing a delay() call 4"

Process A	


delay(100) Server Processi	


time	


Clock Process	


Module Client 

Module TimeServer 

delay(100)	


P(d[i]) 

V(d[i]) 
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Servicing multiple delay() calls"

Process A	
 time	


Clock Process	


Module TimeServer 

Module Client 1 

delay(100)	


P(d[i]) 

Module Client 2 

delay(150)	


V(d[j]) 

Process A	


Process B	


P(d[j]) 
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Extended rendezvous"
Extended rendezvous combines communication and synchronisation 	


•  as with RPC a process invokes an operation by means of a remote call:	


– a server process waits for and then acts on a single call	


– calls are serviced one at a time rather than concurrently	


•  the caller and server processes synchronise (rendezvous) on the call	




© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 33	


Modules and extended rendezvous"
In extended rendezvous a module contains a single process and some 
exported operations:	


•  the header contains signatures of operations (or entry points) 
exported by the module	


•  the body of a module consists of a single process that services the call	

•  accept statements block the server process until there is at least one 

pending call of an exported operation	


As with RPC	


•  arguments to the call and any return values are passed as messages 
between the caller and server processes	
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Servicing a rendezvous call 1"

Module 1	


Module 2	


Process A	


Server Process	


time	


accept 
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Servicing a rendezvous call 2"

Module 1	


Module 2	


Process A	
 time	


call 

Server Process	


accept 
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Servicing a rendezvous call 3"

Module 1	


Module 2	


Process A	
 time	


Server Process	


call 

accept 
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Servicing a rendezvous call 4"

Module 1	


Module 2	


Process A	
 time	


Server Process	


call 

return accept 
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Servicing a rendezvous call 5"

Module 1	


Module 2	


Process A	
 time	


Server Process	


call 

return accept accept 
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Example: Ada Rendezvous"
In Ada, a module is called a task and exported operations are called 
entries	


•  the body of task contains variable and procedure declarations and 
the program statements executed by the task	


•  for each entry declared in the header, there is a corresponding 
accept statement	


•  execution of a task blocks at an accept statement, unless there is a 
call on the corresponding entry	


•  when there is a call on the entry, the statements that make up the 
body of the accept statements are executed, and any results returned	




© Brian Logan 2014	
 G52CON Lecture 14: Remote Invocation	
 40	


Ada entry and accept statements"
task <name> is 
    entry <entryID1>(args); 
    entry <entryID2>(args); 
end; 
task body <name> is  
    // local declarations 
begin 
    // statements 
    loop 
        select 
            accept <entryID1>(args) do 
                // statements 
            end; 
        or 
            accept <entryID2>(args) do 
                // statements 
            end; 
        end select; 
    end loop; 
    // more statements 
end <name>;  
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Example: resource allocator in Ada"
task ResourceAllocator is 
    entry ACQUIRE(args); 
    entry RELEASE(args); 
end; 
task body ResourceAllocator is  
    // declaration list of free units, pending queue etc. 
begin 
    loop 
        select 
            accept ACQUIRE(args) do 
                // process the ACQUIRE request 
            end; 
        or 
            accept RELEASE(args) do 
                // process the RELEASE request 
            end; 
        end select; 
    end loop; 
end ResourceAllocator;  
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Example: resource allocator in Ada"
For example, a call to an entry called ACQUIRE in a task  called 
ResourceAllocator has the form:	


call ResourceAllocator.ACQUIRE(args); 

and is serviced by an accept statement in the body of 
ResourceAllocator of the form:	


accept ACQUIRE(args) do 
    // statements to process the ACQUIRE request 

end; 
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The next lecture"
Distributed processing in Java	


Suggested reading:	


•  Andrews (2000), chapter 8;	


•  Java Tutorial Sockets and RMI	



