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Outline of this lecture"
•  correctness of concurrent programs	


•  proving correctness	


•  proving the correctness of Peterson’s algorithm	


– Mutual Exclusion	


– Absence of Livelock	


– Absence of Unnecessary Delay	


– Eventual Entry	
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Criteria for a solution"
A mutual exclusion protocol should satisfy the following properties:	


•  Mutual Exclusion: at most one process at a time is executing its 
critical section.	


•  Absence of Deadlock (Livelock): if two or more processes are 
attempting to enter their critical sections, at least one will succeed.	


•  Absence of Unnecessary Delay: if a process is trying to enter its 
critical section and other processes are executingtheir noncritical 
sections (or have terminated), the first process is not prevented from 
entering its critical section.	


•  Eventual Entry: a process that is attempting to enter its critical 
section will eventually succeed.	
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Finding bugs"
How can we determine if an algorithm satisfies these properties?	


•  if an algorithm is broken, it is often relatively easy to find a trace 
which violates one or more of the properties  	


•  however showing that there is no such trace is much harder	


•  (non-exhaustive) testing can only show the existence of bugs, not their 
absence	
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Garden 

Ornamental Gardens problem"
A large ornamental garden is open to members of the public who can 
enter through either of two turnstiles.	


•  the owner of the garden writes a computer program to count how 
many people are in the garden at any one time	


•  the program has two processes, each of which monitors a turnstile and 
increments a shared counter whenever someone enters via that 
processes’ turnstile.	


West"
turnstile"

East"
turnstile"

Counter"
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Ornamental Gardens program"
// West turnstile 

init1; 

while(true) { 

  // wait for turnstile 

  count = count + 1; 

  // other stuff ... 

} 

// East turnstile 

init2; 

while(true) { 

  // wait for turnstile 

  count = count + 1; 

  // other stuff ... 

}!

count == 0	
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Loss of increment"

West turnstile process	


count = count + 1;	


1. loads the value of count into a CPU 
register (r == 10)	


4. increments the value in its register 	

(r == 11)	


6. stores the value in its register in count 
(count == 11)	


East turnstile process	


count = count + 1; 

2. loads the value of count into a CPU 
register (r == 10)	

3. increments the value in its register 	

(r == 11)	


5. stores the value in its register in count 
(count == 11)	


// shared variable 
integer count = 10; 
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Garden 

Proof Garden"
A small untidy garden is open to computer scientists who can enter 
through either of two turnstiles.	


•  a student writes a Java program to count how many people are in the 
garden at any one time	


•  the program has two processes, each of which monitors a turnstile and 
increments a shared counter whenever someone enters via that 
processes’ turnstile.	


West"
turnstile"

East"
turnstile"

Counter"
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Demonstrating correctness"
•  Testing can only consider a limited number of program executions	


•  some logically possible interleavings may not be generated by a 
particular implementation	


•  the only way to ensure that a concurrent program is correct is to prove 
that it is	


•  we do this by proving that certain properties are true of all executions 
of the program	
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Proving Correctness"
There are two ways of proving correctness:	


•  Assertional reasoning: involves using assertions and invariants 
specified in predicate logic.	


•  Model checking: involves showing that a program represented as a 
finite state machine  or a labelled transition system is a valid model of 
a formula expressing the desired property.	
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Petersonʼs algorithm"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

crit2; 

// exit protocol 

c2 = false; 

rem2; 

} 

// shared variables 
bool c1 = c2 = false;  
integer turn == 1;	
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Criteria for a Solution"
A mutual exclusion protocol should satisfy the following properties:	


•  Mutual Exclusion: at most one process at a time is executing its 
critical section.	


•  Absence of Deadlock (Livelock): if two or more processes are 
attempting to enter their critical sections, at least one will succeed.	


•  Absence of Unnecessary Delay: if a process is trying to enter its 
critical section and other processes are executing their noncritical 
sections (or have terminated), the first process is not prevented from 
entering its critical section.	


•  Eventual Entry: a process that is attempting to enter its critical 
section will eventually succeed.	
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Proving mutual exclusion"

We need to show that “never (Process in crit1 and Process 2 in crit2)”: 	


•  which is equivalent to showing “Process 1 in crit1 implies Process 2 is 
not in crit2”	
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Proving mutual exclusion 1"

1. 	
When Process 1 enters crit1, c2 is false or turn is 1 (or both).	


—this follows from the test of c2 and turn by Process 1 in the while loop 
of its entry protocol.	
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Proving mutual exclusion 2"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	


2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters 
crit1.	


—crit2 is bracketed between assignments to c2 which ensure this is 
always true.	
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Proving mutual exclusion 3"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	


2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters 
crit1.	


3.  If c2 is true when Process 1 enters crit1, then turn must be 1.	


—this is a logical consequence of (1) and (2).	
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Proving mutual exclusion 4"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	


2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters 
crit1.	


3.  If c2 is true when Process 1 enters crit1, then turn must be 1.	


4.  If c2 is true and turn is 1, then Process 2 must have set turn to 1 after 
Process 1 set it to 2.	


—by inspection.	
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Proving mutual exclusion 5"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	


2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters 
crit1.	


3.  If c2 is true when Process 1 enters crit1, then turn must be 1.	


4.  If c2 is true and turn is 1, then Process 2 must have set turn to 1 after 
Process 1 set it to 2.	


5.  Process 2 set turn to 1 after Process 1 set c1 to true.	


—from (4) and the the order of assignments in Process 1’s entry protocol.	
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Proving mutual exclusion 6"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	


2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters crit1.	


3.  If c2 is true when Process 1 enters crit1, then turn must be 1.	


4.  If c2 is true and turn is 1, then Process 2 must have set turn to 1 after Process 
1 set it to 2.	


5.  Process 2 set turn to 1 after Process 1 set c1 to true.	


6.  Had Process 2 evaluated the loop condition in its entry protocol when c1 was 
true and turn was 1 then it would have spun	


—the while condition in Process 2’s entry protocol would have evaluated to true. 
Process 2 therefore can’t have been in crit2 when Process 1 enters crit1	
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Proving mutual exclusion summary"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	


2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters 
crit1.	


3.  If c2 is true when Process 1 enters crit1, then turn must be 1.	


4.  If c2 is true and turn is 1, then Process 2 must have set turn to 1 after 
Process 1 set it to 2.	


5.  Process 2 set turn to 1 after Process 1 set c1 to true.	


6.  Had Process 2 evaluated the loop condition in its entry protocol when c1 
was true and turn was 1 then it would have spun	
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Criteria for a Solution"
A mutual exclusion protocol should satisfy the following properties:	


•  Mutual Exclusion: at most one process at a time is executing its 
critical section.	


•  Absence of Deadlock (Livelock): if two or more processes are 
attempting to enter their critical sections, at least one will succeed.	


•  Absence of Unnecessary Delay: if a process is trying to enter its 
critical section and other processes are executing their noncritical 
sections (or have terminated), the first process is not prevented from 
entering its critical section.	


•  Eventual Entry: a process that is attempting to enter its critical 
section will eventually succeed.	
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Petersonʼs algorithm"
// Process 1 
init1; 
while(true) { 
    // entry protocol 
  entry1; 
  while ( ... ) {spin1}; 
  crit1; 
  // exit protocol 
  exit1; 
  rem1; 

} 

// Process 2 
init2; 
while(true) { 
    // entry protocol 

entry2; 
while ( ... ) {spin2}; 
crit2; 
// exit protocol 
exit2; 
rem2; 

} 

// shared variables 
bool c1 = c2 = false;  
integer turn == 1;	
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Proving absence of livelock"

We need to show that  “always (spin1 and spin2)” is false	


•  both processes spinning together is the only way to achieve livelock	
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Proving absence of livelock 1"

1.  For Process 1 to spin in its entry protocol, c2 must always be true and 
turn must always be 2.	


—if c2 is ever false or turn is ever 1 when they are tested in the while 
condition of Process 1’s entry protocol, Process 1 will cease to spin.	
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Proving absence of livelock 2"

1.  For Process 1 to spin in its entry protocol, c2 must always be true and 
turn must always be 2.	


2.  For Process 2 to spin in its entry protocol, c1 must always be true and 
turn must always be 1.	


—if c1 is ever false or turn is ever 2 when they are tested in the while 
condition of Process 2’s entry protocol, Process 2 will cease to spin.	
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Proving absence of livelock 3"

1.  For Process 1 to spin in its entry protocol, c2 must always be true and 
turn must always be 2.	


2.  For Process 2 to spin in its entry protocol, c1 must always be true and 
turn must always be 1.	


3.  For Process 1 and Process 2 to both spin, turn must always be 2 and 
turn must always be 1.	


—this is a logical consequence of (1) and (2).	
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Proving absence of livelock 4"

1.  For Process 1 to spin in its entry protocol, c2 must always be true and 
turn must always be 2.	


2.  For Process 2 to spin in its entry protocol, c1 must always be true and 
turn must always be 1.	


3.  For Process 1 and Process 2 to both spin, turn must always be 2 and 
turn must always be 1.	


4.  ⊥ 	


—the assumption that both processes always spin leads to a contradiction.	
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Criteria for a Solution"
A mutual exclusion protocol should satisfy the following properties:	


•  Mutual Exclusion: at most one process at a time is executing its 
critical section.	


•  Absence of Deadlock (Livelock): if two or more processes are 
attempting to enter their critical sections, at least one will succeed.	


•  Absence of Unnecessary Delay: if a process is trying to enter its 
critical section and other processes are executing their noncritical 
sections (or have terminated), the first process is not prevented from 
entering its critical section.	


•  Eventual Entry: a process that is attempting to enter its critical 
section will eventually succeed.	
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Proving absence of unnecessary 
delay"
We need to show that 	


•  entry1 and not (entry2 or crit2 or exit2) implies crit1	


•  i.e., that entry1 and (init2 or rem2 or terminated2) implies 
crit1 

•  by symmetry, entry2 and not (entry1 or crit1 or exit1) 
implies crit2and we have established absence of unnecessary delay	
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Proving absence of unnecessary 
delay 1"
1.  not (entry2 or crit2 or exit2)  implies that c2 is false.	


—c2 is only true in Process 2’s entry protocol, it’s critical section and 
immediately prior to the completion of its exit protocol.	
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Proving absence of unnecessary 
delay 2"
1.  not (entry2 or crit2 or exit2) implies c2 is false.	


2. c2 is false implies not spin1.	


—c2 must be true for Process 1 to spin from the while condition in Process 
1’s entry protocol.	
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Proving absence of unnecessary 
delay 3"
1.  not (entry2 or crit2 or exit2) implies c2 is false.	


2. c2 is false implies not spin1.	


3. entry1 and not spin1 implies eventually crit1.	


—if Process 1 completes its entry protocol but doesn’t spin, then it must 
enter its critical section.	
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Criteria for a Solution"
The protocols should satisfy the following properties:	


•  Mutual Exclusion: at most one process at a time is executing its 
critical section.	


•  Absence of Deadlock (Livelock): if two or more processes are 
attempting to enter their critical sections, at least one will succeed.	


•  Absence of Unnecessary Delay: if a process is trying to enter its 
critical section and other processes are executingtheir noncritical 
sections (or have terminated), the first process is not prevented from 
entering its critical section.	


•  Eventual Entry: a process that is attempting to enter its critical 
section will eventually succeed.	
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Proving eventual entry"

We need to show that spin1 implies eventually crit1	


•  we proceed by showing that the assumption that Process 1 spins forever 
(i.e., always spin1) leads to a contradiction, and hence that if Process 
1 does spin it will eventually enter its critical section;	


•  by symmetry, spin2 implies eventually crit2 and we have 
established eventual entry	
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Proving eventual entry 1"

1.  Always spin1 implies c2 must always be true and turn must always 
be 2.	


—if c2 is ever false or turn is ever 1 when they are tested in the while 
condition of Process 1’s entry protocol, Process 1 will cease to spin.	
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Proving eventual entry 2"

1.  Always spin1 implies c2 must always be true and turn must always 
be 2.	


2. turn always 2 implies that Process 2 never executes turn = 1.	


— Process 1 sets turn to 2 in its entry protocol before it starts to spin; for it to 
keep this value, the assignment statement in Process 2’s entry protocol 
must never be executed.	
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Proving eventual entry 3"

1.  Always spin1 implies c2 must always be true and turn must always 
be 2.	


2. turn always 2 implies that Process 2 never executes turn = 1.	


3.  Process 2 never executes turn = 1 implies Process 2 never executes 
c2 = true.	


—we assume that Process 2 does not terminate in its entry protocol and 
always eventually executes the next statement; if Process 2 ever set c2 to 
true, it must eventually set turn to 1.	
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Proving eventual entry 4"

1.  Always spin1 implies c2 must always be true and turn must always be 2.	


2.  turn always 2 implies that Process 2 never executes turn = 1.	


3.  Process 2 never executes turn = 1 implies Process 2 never executes c2 = 
true.	


4.  Process 2 never executes c2 = true implies that eventually c2 will always 
be false.	


—we assume that Process 2 does not terminate in its critical section or exit protocol, 
so if c2 was true when Process 1 started spinning, it must eventually be set to 
false in Process 2’s exit protocol  and thereafter it will remain false.	
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Proving eventual entry 5"

1.  Always spin1 implies c2 must always be true and turn must always 
be 2.	


2. turn always 2 implies that Process 2 never executes turn = 1.	


3.  Process 2 never executes turn = 1 implies Process 2 never executes 
c2 = true.	


4.  Process 2 never executes c2 = true implies that eventually c2 will 
always be false.	


5. turn always 2 implies that eventually c2 will always be false.	


—this is a logical consequence of (2) and (4).	
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Proving eventual entry 6"

1.  Always spin1 implies c2 must always be true and turn must always 
be 2.	


2. turn always 2 implies that Process 2 never executes turn = 1.	


3.  Process 2 never executes turn = 1 implies Process 2 never executes 
c2 = true.	


4.  Process 2 never executes c2 = true implies that eventually c2 will 
always be false.	


5. turn always 2 implies that eventually c2 will always be false.	


6.  ⊥	


—assuming that Process 1 spins forever leads to a contradiction.	
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Proving eventual entry 7"

1.  Always spin1 implies c2 must always be true and turn must always 
be 2.	


2. turn always 2 implies that Process 2 never executes turn = 1.	


3.  Process 2 never executes turn = 1 implies Process 2 never executes 
c2 = true.	


4.  Process 2 never executes c2 = true implies that eventually c2 will 
always be false.	


5. turn always 2 implies that eventually c2 will always be false.	


6.  ⊥	

7. spin1 implies eventually crit1.	
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The next lecture"
Model Checking I	


Suggested reading:	


•  Huth & Ryan (2000), chapter 3.	



