
G52CON: 
Concepts of Concurrency 

Lecture 16 Proving Correctness"

Brian Logan	

School of Computer Science & IT	

bsl@cs.nott.ac.uk

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 2	

Outline of this lecture"
•  correctness of concurrent programs	

•  proving correctness	

•  proving the correctness of Peterson’s algorithm	

– Mutual Exclusion	

– Absence of Livelock	

– Absence of Unnecessary Delay	

– Eventual Entry	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 3	

Criteria for a solution"
A mutual exclusion protocol should satisfy the following properties:	

•  Mutual Exclusion: at most one process at a time is executing its
critical section.	

•  Absence of Deadlock (Livelock): if two or more processes are
attempting to enter their critical sections, at least one will succeed.	

•  Absence of Unnecessary Delay: if a process is trying to enter its
critical section and other processes are executingtheir noncritical
sections (or have terminated), the first process is not prevented from
entering its critical section.	

•  Eventual Entry: a process that is attempting to enter its critical
section will eventually succeed.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 4	

Finding bugs"
How can we determine if an algorithm satisfies these properties?	

•  if an algorithm is broken, it is often relatively easy to find a trace
which violates one or more of the properties 	

•  however showing that there is no such trace is much harder	

•  (non-exhaustive) testing can only show the existence of bugs, not their
absence	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 5	

Garden

Ornamental Gardens problem"
A large ornamental garden is open to members of the public who can
enter through either of two turnstiles.	

•  the owner of the garden writes a computer program to count how
many people are in the garden at any one time	

•  the program has two processes, each of which monitors a turnstile and
increments a shared counter whenever someone enters via that
processes’ turnstile.	

West"
turnstile"

East"
turnstile"

Counter"

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 6	

Ornamental Gardens program"
// West turnstile

init1;

while(true) {

 // wait for turnstile

 count = count + 1;

 // other stuff ...

}

// East turnstile

init2;

while(true) {

 // wait for turnstile

 count = count + 1;

 // other stuff ...

}!

count == 0	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 7	

Loss of increment"

West turnstile process	

count = count + 1;	

1. loads the value of count into a CPU
register (r == 10)	

4. increments the value in its register 	

(r == 11)	

6. stores the value in its register in count
(count == 11)	

East turnstile process	

count = count + 1;

2. loads the value of count into a CPU
register (r == 10)	

3. increments the value in its register 	

(r == 11)	

5. stores the value in its register in count
(count == 11)	

// shared variable
integer count = 10;

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 8	

Garden

Proof Garden"
A small untidy garden is open to computer scientists who can enter
through either of two turnstiles.	

•  a student writes a Java program to count how many people are in the
garden at any one time	

•  the program has two processes, each of which monitors a turnstile and
increments a shared counter whenever someone enters via that
processes’ turnstile.	

West"
turnstile"

East"
turnstile"

Counter"

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 9	

Demonstrating correctness"
•  Testing can only consider a limited number of program executions	

•  some logically possible interleavings may not be generated by a
particular implementation	

•  the only way to ensure that a concurrent program is correct is to prove
that it is	

•  we do this by proving that certain properties are true of all executions
of the program	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 10	

Proving Correctness"
There are two ways of proving correctness:	

•  Assertional reasoning: involves using assertions and invariants
specified in predicate logic.	

•  Model checking: involves showing that a program represented as a
finite state machine or a labelled transition system is a valid model of
a formula expressing the desired property.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 11	

Petersonʼs algorithm"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

crit2;

// exit protocol

c2 = false;

rem2;

}

// shared variables
bool c1 = c2 = false;
integer turn == 1;	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 12	

Criteria for a Solution"
A mutual exclusion protocol should satisfy the following properties:	

•  Mutual Exclusion: at most one process at a time is executing its
critical section.	

•  Absence of Deadlock (Livelock): if two or more processes are
attempting to enter their critical sections, at least one will succeed.	

•  Absence of Unnecessary Delay: if a process is trying to enter its
critical section and other processes are executing their noncritical
sections (or have terminated), the first process is not prevented from
entering its critical section.	

•  Eventual Entry: a process that is attempting to enter its critical
section will eventually succeed.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 13	

Proving mutual exclusion"

We need to show that “never (Process in crit1 and Process 2 in crit2)”: 	

•  which is equivalent to showing “Process 1 in crit1 implies Process 2 is
not in crit2”	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 14	

Proving mutual exclusion 1"

1. 	
When Process 1 enters crit1, c2 is false or turn is 1 (or both).	

—this follows from the test of c2 and turn by Process 1 in the while loop
of its entry protocol.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 15	

Proving mutual exclusion 2"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	

2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters
crit1.	

—crit2 is bracketed between assignments to c2 which ensure this is
always true.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 16	

Proving mutual exclusion 3"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	

2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters
crit1.	

3.  If c2 is true when Process 1 enters crit1, then turn must be 1.	

—this is a logical consequence of (1) and (2).	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 17	

Proving mutual exclusion 4"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	

2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters
crit1.	

3.  If c2 is true when Process 1 enters crit1, then turn must be 1.	

4.  If c2 is true and turn is 1, then Process 2 must have set turn to 1 after
Process 1 set it to 2.	

—by inspection.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 18	

Proving mutual exclusion 5"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	

2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters
crit1.	

3.  If c2 is true when Process 1 enters crit1, then turn must be 1.	

4.  If c2 is true and turn is 1, then Process 2 must have set turn to 1 after
Process 1 set it to 2.	

5.  Process 2 set turn to 1 after Process 1 set c1 to true.	

—from (4) and the the order of assignments in Process 1’s entry protocol.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 19	

Proving mutual exclusion 6"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	

2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters crit1.	

3.  If c2 is true when Process 1 enters crit1, then turn must be 1.	

4.  If c2 is true and turn is 1, then Process 2 must have set turn to 1 after Process
1 set it to 2.	

5.  Process 2 set turn to 1 after Process 1 set c1 to true.	

6.  Had Process 2 evaluated the loop condition in its entry protocol when c1 was
true and turn was 1 then it would have spun	

—the while condition in Process 2’s entry protocol would have evaluated to true.
Process 2 therefore can’t have been in crit2 when Process 1 enters crit1	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 20	

Proving mutual exclusion summary"

1.  When Process 1 enters crit1, c2 is false or turn is 1 (or both).	

2.  If c2 is false then Process 2 is not in crit2 when Process 1 enters
crit1.	

3.  If c2 is true when Process 1 enters crit1, then turn must be 1.	

4.  If c2 is true and turn is 1, then Process 2 must have set turn to 1 after
Process 1 set it to 2.	

5.  Process 2 set turn to 1 after Process 1 set c1 to true.	

6.  Had Process 2 evaluated the loop condition in its entry protocol when c1
was true and turn was 1 then it would have spun	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 21	

Criteria for a Solution"
A mutual exclusion protocol should satisfy the following properties:	

•  Mutual Exclusion: at most one process at a time is executing its
critical section.	

•  Absence of Deadlock (Livelock): if two or more processes are
attempting to enter their critical sections, at least one will succeed.	

•  Absence of Unnecessary Delay: if a process is trying to enter its
critical section and other processes are executing their noncritical
sections (or have terminated), the first process is not prevented from
entering its critical section.	

•  Eventual Entry: a process that is attempting to enter its critical
section will eventually succeed.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 22	

Petersonʼs algorithm"
// Process 1
init1;
while(true) {
 // entry protocol
 entry1;
 while (...) {spin1};
 crit1;
 // exit protocol
 exit1;
 rem1;

}

// Process 2
init2;
while(true) {
 // entry protocol

entry2;
while (...) {spin2};
crit2;
// exit protocol
exit2;
rem2;

}

// shared variables
bool c1 = c2 = false;
integer turn == 1;	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 23	

Proving absence of livelock"

We need to show that “always (spin1 and spin2)” is false	

•  both processes spinning together is the only way to achieve livelock	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 24	

Proving absence of livelock 1"

1.  For Process 1 to spin in its entry protocol, c2 must always be true and
turn must always be 2.	

—if c2 is ever false or turn is ever 1 when they are tested in the while
condition of Process 1’s entry protocol, Process 1 will cease to spin.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 25	

Proving absence of livelock 2"

1.  For Process 1 to spin in its entry protocol, c2 must always be true and
turn must always be 2.	

2.  For Process 2 to spin in its entry protocol, c1 must always be true and
turn must always be 1.	

—if c1 is ever false or turn is ever 2 when they are tested in the while
condition of Process 2’s entry protocol, Process 2 will cease to spin.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 26	

Proving absence of livelock 3"

1.  For Process 1 to spin in its entry protocol, c2 must always be true and
turn must always be 2.	

2.  For Process 2 to spin in its entry protocol, c1 must always be true and
turn must always be 1.	

3.  For Process 1 and Process 2 to both spin, turn must always be 2 and
turn must always be 1.	

—this is a logical consequence of (1) and (2).	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 27	

Proving absence of livelock 4"

1.  For Process 1 to spin in its entry protocol, c2 must always be true and
turn must always be 2.	

2.  For Process 2 to spin in its entry protocol, c1 must always be true and
turn must always be 1.	

3.  For Process 1 and Process 2 to both spin, turn must always be 2 and
turn must always be 1.	

4.  ⊥ 	

—the assumption that both processes always spin leads to a contradiction.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 28	

Criteria for a Solution"
A mutual exclusion protocol should satisfy the following properties:	

•  Mutual Exclusion: at most one process at a time is executing its
critical section.	

•  Absence of Deadlock (Livelock): if two or more processes are
attempting to enter their critical sections, at least one will succeed.	

•  Absence of Unnecessary Delay: if a process is trying to enter its
critical section and other processes are executing their noncritical
sections (or have terminated), the first process is not prevented from
entering its critical section.	

•  Eventual Entry: a process that is attempting to enter its critical
section will eventually succeed.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 29	

Proving absence of unnecessary
delay"
We need to show that 	

•  entry1 and not (entry2 or crit2 or exit2) implies crit1	

•  i.e., that entry1 and (init2 or rem2 or terminated2) implies
crit1

•  by symmetry, entry2 and not (entry1 or crit1 or exit1)
implies crit2and we have established absence of unnecessary delay	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 30	

Proving absence of unnecessary
delay 1"
1.  not (entry2 or crit2 or exit2) implies that c2 is false.	

—c2 is only true in Process 2’s entry protocol, it’s critical section and
immediately prior to the completion of its exit protocol.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 31	

Proving absence of unnecessary
delay 2"
1.  not (entry2 or crit2 or exit2) implies c2 is false.	

2. c2 is false implies not spin1.	

—c2 must be true for Process 1 to spin from the while condition in Process
1’s entry protocol.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 32	

Proving absence of unnecessary
delay 3"
1.  not (entry2 or crit2 or exit2) implies c2 is false.	

2. c2 is false implies not spin1.	

3. entry1 and not spin1 implies eventually crit1.	

—if Process 1 completes its entry protocol but doesn’t spin, then it must
enter its critical section.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 33	

Criteria for a Solution"
The protocols should satisfy the following properties:	

•  Mutual Exclusion: at most one process at a time is executing its
critical section.	

•  Absence of Deadlock (Livelock): if two or more processes are
attempting to enter their critical sections, at least one will succeed.	

•  Absence of Unnecessary Delay: if a process is trying to enter its
critical section and other processes are executingtheir noncritical
sections (or have terminated), the first process is not prevented from
entering its critical section.	

•  Eventual Entry: a process that is attempting to enter its critical
section will eventually succeed.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 34	

Proving eventual entry"

We need to show that spin1 implies eventually crit1	

•  we proceed by showing that the assumption that Process 1 spins forever
(i.e., always spin1) leads to a contradiction, and hence that if Process
1 does spin it will eventually enter its critical section;	

•  by symmetry, spin2 implies eventually crit2 and we have
established eventual entry	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 35	

Proving eventual entry 1"

1.  Always spin1 implies c2 must always be true and turn must always
be 2.	

—if c2 is ever false or turn is ever 1 when they are tested in the while
condition of Process 1’s entry protocol, Process 1 will cease to spin.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 36	

Proving eventual entry 2"

1.  Always spin1 implies c2 must always be true and turn must always
be 2.	

2. turn always 2 implies that Process 2 never executes turn = 1.	

— Process 1 sets turn to 2 in its entry protocol before it starts to spin; for it to
keep this value, the assignment statement in Process 2’s entry protocol
must never be executed.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 37	

Proving eventual entry 3"

1.  Always spin1 implies c2 must always be true and turn must always
be 2.	

2. turn always 2 implies that Process 2 never executes turn = 1.	

3.  Process 2 never executes turn = 1 implies Process 2 never executes
c2 = true.	

—we assume that Process 2 does not terminate in its entry protocol and
always eventually executes the next statement; if Process 2 ever set c2 to
true, it must eventually set turn to 1.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 38	

Proving eventual entry 4"

1.  Always spin1 implies c2 must always be true and turn must always be 2.	

2.  turn always 2 implies that Process 2 never executes turn = 1.	

3.  Process 2 never executes turn = 1 implies Process 2 never executes c2 =
true.	

4.  Process 2 never executes c2 = true implies that eventually c2 will always
be false.	

—we assume that Process 2 does not terminate in its critical section or exit protocol,
so if c2 was true when Process 1 started spinning, it must eventually be set to
false in Process 2’s exit protocol and thereafter it will remain false.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 39	

Proving eventual entry 5"

1.  Always spin1 implies c2 must always be true and turn must always
be 2.	

2. turn always 2 implies that Process 2 never executes turn = 1.	

3.  Process 2 never executes turn = 1 implies Process 2 never executes
c2 = true.	

4.  Process 2 never executes c2 = true implies that eventually c2 will
always be false.	

5. turn always 2 implies that eventually c2 will always be false.	

—this is a logical consequence of (2) and (4).	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 40	

Proving eventual entry 6"

1.  Always spin1 implies c2 must always be true and turn must always
be 2.	

2. turn always 2 implies that Process 2 never executes turn = 1.	

3.  Process 2 never executes turn = 1 implies Process 2 never executes
c2 = true.	

4.  Process 2 never executes c2 = true implies that eventually c2 will
always be false.	

5. turn always 2 implies that eventually c2 will always be false.	

6.  ⊥	

—assuming that Process 1 spins forever leads to a contradiction.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 41	

Proving eventual entry 7"

1.  Always spin1 implies c2 must always be true and turn must always
be 2.	

2. turn always 2 implies that Process 2 never executes turn = 1.	

3.  Process 2 never executes turn = 1 implies Process 2 never executes
c2 = true.	

4.  Process 2 never executes c2 = true implies that eventually c2 will
always be false.	

5. turn always 2 implies that eventually c2 will always be false.	

6.  ⊥	

7. spin1 implies eventually crit1.	

© Brian Logan 2014	
 G52CON Lecture 16: Proving Correctness	
 44	

The next lecture"
Model Checking I	

Suggested reading:	

•  Huth & Ryan (2000), chapter 3.	

