G52CON:;:
Concepts of Concurrency

Lecture 16 Proving Correctness

Brian Logan

School of Computer Science & IT
bsl@cs.nott.ac.uk

Outline of this lecture

e correctness of concurrent programs

* proving correctness

e proving the correctness of Peterson’s algorithm
— Mutual Exclusion
— Absence of Livelock
— Absence of Unnecessary Delay

— Eventual Entry

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

Criteria for a solution

A mutual exclusion protocol should satisfy the following properties:

e Mutual Exclusion: at most one process at a time is executing its
critical section.

e Absence of Deadlock (Livelock): if two or more processes are
attempting to enter their critical sections, at least one will succeed.

e Absence of Unnecessary Delay: if a process is trying to enter its
critical section and other processes are executingtheir noncritical
sections (or have terminated), the first process is not prevented from
entering its critical section.

e Eventual Entry: a process that is attempting to enter its critical
section will eventually succeed.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

Finding bugs

How can we determine if an algorithm satisfies these properties?

e if an algorithm is broken, it is often relatively easy to find a trace
which violates one or more of the properties

e however showing that there is no such trace 1s much harder

e (non-exhaustive) testing can only show the existence of bugs, not their
absence

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 4

Ornamental Gardens problem

A large ornamental garden is open to members of the public who can
enter through either of two turnstiles.

East
Irnstile

West
turnstil¢

» <
> ¥

* the owner of the garden writes a computer program to count how
many people are in the garden at any one time

* the program has two processes, each of which monitors a turnstile and
increments a shared counter whenever someone enters via that

processes’ turnstile.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 5

Ornamental Gardens program

// West turnstile // East turnstile
initl; init?2;
while (true) { while (true) {
// wait for turnstile // wait for turnstile
count = count + 1; count = count + 1;
// other stuff ... // other stuff
¥ ¥
count ==

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

Loss of increment

// shared variable
integer count = 10;

West turnstile process
count = count + 1;

1. loads the value of count into a CPU
register (r == 10)

4. increments the value in its register
(r == 11)

6. stores the value in its register in count
(count == 11)

© Brian Logan 2014

East turnstile process

count = count + 1;

2.loads the value of count into a CPU
register (r == 10)

3. increments the value in its register
(r == 11)

5. stores the value in its register in count
(count == 11)

G52CON Lecture 16: Proving Correctness

Proof Garden

A small untidy garden 1s open to computer scientists who can enter
through either of two turnstiles.

West
turnstil¢

»
>

East
Irnstile

A

* a student writes a Java program to count how many people are in the
garden at any one time

* the program has two processes, each of which monitors a turnstile and
increments a shared counter whenever someone enters via that
processes’ turnstile.

© Brian Logan 2014

G52CON Lecture 16: Proving Correctness

Demonstrating correctness

e Testing can only consider a limited number of program executions

* some logically possible interleavings may not be generated by a
particular implementation

 the only way to ensure that a concurrent program is correct is to prove
that it is

e we do this by proving that certain properties are true of all executions
of the program

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

Proving Correctness

There are two ways of proving correctness:

e Assertional reasoning: involves using assertions and invariants
specified in predicate logic.

* Model checking: involves showing that a program represented as a
finite state machine or a labelled transition system is a valid model of
a formula expressing the desired property.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 10

Peterson’s algorithm

// Process 1

initl;

while (true) {
// entry protocol
cl = true;
turn = 2;
while (c2 && turn
critl;
// exit protocol
cl = false;

reml;

© Brian Logan 2014

// Process 2
init2;

while (true) {

// entry protocol

c?2 = true;

turn = 1;

== 2) {}; while (cl && turn

crit’2;

// exit protocol

c?2 = false;

rem’2;

// shared variables
bool ¢l = ¢c2 = false;
integer turn == 1;

G52CON Lecture 16: Proving Correctness

{1}

11

Criteria for a Solution

A mutual exclusion protocol should satisfy the following properties:

e Mutual Exclusion: at most one process at a time is executing its
critical section.

e Absence of Deadlock (Livelock): if two or more processes are
attempting to enter their critical sections, at least one will succeed.

e Absence of Unnecessary Delay: if a process is trying to enter its
critical section and other processes are executing their noncritical
sections (or have terminated), the first process is not prevented from
entering its critical section.

e Eventual Entry: a process that is attempting to enter its critical
section will eventually succeed.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

12

Proving mutual exclusion

We need to show that “never (Process in critl and Process 2 in crit2)”:

e which is equivalent to showing “Process 1 in crit1 implies Process 2 is

notin crit?2”

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 13

Proving mutual exclusion 1

1. When Process 1 enters critl, c2 is false or turn is 1 (or both).

—this follows from the test of c2 and turn by Process 1 in the while loop

of its entry protocol.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 14

Proving mutual exclusion 2

1. When Process 1 enters critl, c2 is false or turn is 1 (or both).

2. If c2 1s false then Process 2 is not in crit2 when Process 1 enters

critl.

—crit2 1s bracketed between assignments to c2 which ensure this is

always true.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 15

Proving mutual exclusion 3

1. When Process 1 enters critl, c2 is false or turn is 1 (or both).

2. If c2 1s false then Process 2 is not in crit2 when Process 1 enters

critl.

3. If c¢2 is true when Process 1 enters critl, then turn must be 1.

—this is a logical consequence of (1) and (2).

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

16

Proving mutual exclusion 4

1. When Process 1 enters critl, c2 is false or turn is 1 (or both).

2. If c2 1s false then Process 2 is not in crit2 when Process 1 enters

critl.
3. If c¢2 is true when Process 1 enters critl, then turn must be 1.

4. If c2i1strue and turn is 1, then Process 2 must have set turn to 1 after

Process 1 set it to 2.

—Dby inspection.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 17

Proving mutual exclusion 5

1. When Process 1 enters critl, c2 is false or turn is 1 (or both).

2. If c2 1s false then Process 2 is not in crit2 when Process 1 enters

critl.

3. If c¢2 is true when Process 1 enters critl, then turn must be 1.

4. If c2i1strue and turn is 1, then Process 2 must have set turn to 1 after

Process 1 set it to 2.

5. Process 2 set turn to 1 after Process 1 set c1 to true.

—1from (4) and the the order of assignments in Process 1’s entry protocol.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 18

Proving mutual exclusion 6

1. When Process 1 enters critl, c2 is false or turnis 1 (or both).

2. If c2 is false then Process 2 is not in crit?2 when Process 1 enters critl.

3. If c2 is true when Process 1 enters critl, then turn must be 1.

4. If c2i1strue and turn is 1, then Process 2 must have set turn to 1 after Process
I set it to 2.

5. Process 2 set turn to 1 after Process 1 set c1 to true.

6. Had Process 2 evaluated the loop condition in its entry protocol when c1 was
true and turn was 1 then it would have spun

—the while condition in Process 2’s entry protocol would have evaluated to true.

Process 2 therefore can’t have been in crit2 when Process 1 enters critl

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 19

Proving mutual exclusion summary

1. When Process 1 enters critl, c2 is false or turn is 1 (or both).

2. If c2 1s false then Process 2 is not in crit2 when Process 1 enters

critl.
3. If c¢2 is true when Process 1 enters critl, then turn must be 1.

4. If c2i1strue and turn is 1, then Process 2 must have set turn to 1 after

Process 1 set it to 2.
5. Process 2 set turn to 1 after Process 1 set c1 to true.

6. Had Process 2 evaluated the loop condition in its entry protocol when c1
was true and turn was 1 then it would have spun

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 20

Criteria for a Solution

A mutual exclusion protocol should satisfy the following properties:

 Mutual Exclusion: at most one process at a time is executing its
critical section.

e Absence of Deadlock (Livelock): if two or more processes are
attempting to enter their critical sections, at least one will succeed.

e Absence of Unnecessary Delay: if a process is trying to enter its
critical section and other processes are executing their noncritical
sections (or have terminated), the first process is not prevented from
entering its critical section.

e Eventual Entry: a process that is attempting to enter its critical
section will eventually succeed.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

21

Peterson’s algorithm

// Process 1

initl;

while (true)
// entry protocol

entryl
while
critl;

// exit protocol

exitl;
reml;

© Brian Logan 2014

.
4

(

{

)

// Process 2
init2;
while (true) {
// entry protocol
entryZz;
{spinl}; while (...) {spinZ};
critz;
// exit protocol
exit’z;
rem2;

// shared variables
bool ¢l = ¢c2 = false;
integer turn == 1;

G52CON Lecture 16: Proving Correctness 22

Proving absence of livelock

We need to show that “always (spinl and spin?2)” is false

e Dboth processes spinning together is the only way to achieve livelock

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 23

Proving absence of livelock 1

1. For Process 1 to spin in its entry protocol, c2 must always be true and

turn must always be 2.

—if c2 is ever false or turn is ever 1 when they are tested in the while

condition of Process 1’s entry protocol, Process 1 will cease to spin.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 24

Proving absence of livelock 2

1. For Process 1 to spin in its entry protocol, c2 must always be true and

turn must always be 2.

2. For Process 2 to spin in its entry protocol, c1 must always be true and
turn must always be 1.

—if c1 is ever false or turn is ever 2 when they are tested in the while

condition of Process 2’s entry protocol, Process 2 will cease to spin.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 25

Proving absence of livelock 3

1. For Process 1 to spin in its entry protocol, c2 must always be true and

turn must always be 2.

2. For Process 2 to spin in its entry protocol, c1 must always be true and
turn must always be 1.

3. For Process 1 and Process 2 to both spin, turn must always be 2 and

turn must always be 1.

—this 1s a logical consequence of (1) and (2).

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 26

Proving absence of livelock 4

1. For Process 1 to spin in its entry protocol, c2 must always be true and

turn must always be 2.

2. For Process 2 to spin in its entry protocol, c1 must always be true and
turn must always be 1.

3. For Process 1 and Process 2 to both spin, turn must always be 2 and

turn must always be 1.

4. 1

—the assumption that both processes always spin leads to a contradiction.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 27

Criteria for a Solution

A mutual exclusion protocol should satisfy the following properties:

 Mutual Exclusion: at most one process at a time is executing its
critical section.

e Absence of Deadlock (Livelock): if two or more processes are
attempting to enter their critical sections, at least one will succeed.

e Absence of Unnecessary Delay: if a process is trying to enter its
critical section and other processes are executing their noncritical
sections (or have terminated), the first process is not prevented from
entering its critical section.

e Eventual Entry: a process that is attempting to enter its critical
section will eventually succeed.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

28

Proving absence of unnecessary
delay

We need to show that

e entryl andnot (entry2orcrit2 orexit?)implies critl

e ie.,thatentryl and (init2 or rem2 or terminated?2) implies

critl

e bysymmetry,entry2 and not (entryl orcritl orexitl)
implies crit2and we have established absence of unnecessary delay

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 29

Proving absence of unnecessary
delay 1

I. not(entry2orcrit2 orexit?2) implies that c2 is false.

—c2 1s only true in Process 2’s entry protocol, it’s critical section and
immediately prior to the completion of its exit protocol.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

30

Proving absence of unnecessary
delay 2

I. not(entry2orcrit2 orexit?)implies c2 is false.

2. c2 1s false implies not spinl.

— c2 must be true for Process 1 to spin from the while condition in Process

1’s entry protocol.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 31

Proving absence of unnecessary
delay 3

I. not(entry2orcrit2 orexit?)implies c2 is false.
2. c2 1s false implies not spinl.

3. entryl and not spinl implies eventually critl.

—1if Process 1 completes its entry protocol but doesn’t spin, then it must

enter 1ts critical section.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 32

Criteria for a Solution

The protocols should satisfy the following properties:

 Mutual Exclusion: at most one process at a time is executing its
critical section.

e Absence of Deadlock (Livelock): if two or more processes are
attempting to enter their critical sections, at least one will succeed.

e Absence of Unnecessary Delay: if a process is trying to enter its
critical section and other processes are executingtheir noncritical
sections (or have terminated), the first process is not prevented from
entering its critical section.

e Eventual Entry: a process that is attempting to enter its critical
section will eventually succeed.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

33

Proving eventual entry

We need to show that spinl implies eventually critl

 we proceed by showing that the assumption that Process 1 spins forever
(i.e.,always spinl) leads to a contradiction, and hence that if Process

1 does spin it will eventually enter its critical section;

by symmetry, spin2 implies eventually crit2 and we have

established eventual entry

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 34

Proving eventual entry 1

1. Always spinl implies c2 must always be true and turn must always
be 2.

—if c2 is ever false or turn is ever 1 when they are tested in the while

condition of Process 1’s entry protocol, Process 1 will cease to spin.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 35

Proving eventual entry 2

1. Always spinl implies c2 must always be true and turn must always
be 2.

2 . turn always 2 implies that Process 2 never executes turn = 1.

— Process 1 sets turn to 2 in its entry protocol before it starts to spin; for it to
keep this value, the assignment statement in Process 2’s entry protocol

must never be executed.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 36

Proving eventual entry 3

1. Always spinl implies c2 must always be true and turn must always
be 2.

2 . turn always 2 implies that Process 2 never executes turn = 1.
3. Process 2 never executes turn = 1 implies Process 2 never executes
c2 = true.

—we assume that Process 2 does not terminate in its entry protocol and
always eventually executes the next statement; if Process 2 ever set c2 to
true, it must eventually set turn to 1.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 37

Proving eventual entry 4

I. Always spinl implies c2 must always be true and turn must always be 2.

2. turn always 2 implies that Process 2 never executes turn = 1.

3. Process 2 never executes turn = 1 implies Process 2 never executes c2 =
true.

4. Process 2 never executes c2 = true implies that eventually c2 will always
be false.

—we assume that Process 2 does not terminate in its critical section or exit protocol,
so if c2 was true when Process 1 started spinning, it must eventually be set to

false in Process 2’s exit protocol and thereafter it will remain false.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 38

Proving eventual entry 5

1. Always spinl implies c2 must always be true and turn must always
be 2.

2 . turn always 2 implies that Process 2 never executes turn = 1.

3. Process 2 never executes turn = 1 implies Process 2 never executes
c2 = true.

4. Process 2 never executes c2 = true implies that eventually c2 will

always be false.

5. turn always 2 implies that eventually c2 will always be false.

—this 1s a logical consequence of (2) and (4).

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 39

Proving eventual entry 6

5.
6.

Always spinl implies c2 must always be true and turn must always
be 2.

. turn always 2 implies that Process 2 never executes turn = 1.

Process 2 never executes turn = 1 implies Process 2 never executes

c?2 = true.

Process 2 never executes c2 = true implies that eventually c2 will

always be false.

turn always 2 implies that eventually c2 will always be false.

1

—assuming that Process 1 spins forever leads to a contradiction.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 40

Proving eventual entry 7

1. Always spinl implies c2 must always be true and turn must always
be 2.

2 . turn always 2 implies that Process 2 never executes turn = 1.

3. Process 2 never executes turn = 1 implies Process 2 never executes
c2 = true.

4. Process 2 never executes c2 = true implies that eventually c2 will

always be false.

5. turn always 2 implies that eventually c2 will always be false.
6. L

7. spinl implies eventually critl.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness 41

The next lecture

Model Checking I

Suggested reading:

Huth & Ryan (2000), chapter 3.

© Brian Logan 2014 G52CON Lecture 16: Proving Correctness

44

