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Outline of this lecture"
•  model checking	


•  transition systems and properties	


•  example: simple transition system	


•  SMV description and specification languages	


•  truth of CTL formulas	
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Exercise 5"
 
// Process 1 
 
init1; 
while(true) { 
c1 = 0;   // entry protocol 
while (c2 == 0) {};      
crit1; 
c1 = 1;   // exit protocol 
rem1; 

} 

 
// Process 2 
 
init2; 
while(true) { 

c2 = 0;   // entry protocol 
while (c1 == 0) {};      
crit2; 
c2 = 1;   // exit protocol 
rem2; 

} 

//shared variables 
integer c1 == 1 c2 == 1;	




© Brian Logan 2014	
 G52CON Lecture Lecture 17: Model Checking	
 4	


Exercise 5a"
// Process 1 
init1; 
while(true) { 

c1 = 0;   // entry protocol 
while (c2 == 0) {      

if (turn == 2) { 
c1 = 1; 
while (turn == 2) {}; 
c1 = 0; 

} 
} 
crit1; 
turn = 2; // exit protocol 
c1 = 1; 
rem1; 

}!

// Process 2 
init2; 
while(true) { 

c2 = 0;   // entry protocol 
while (c1 == 0) {      

if (turn == 1) { 
c2 = 1; 
while (turn == 1) {}; 
c2 = 0; 
} 

} 
crit2; 
turn = 1; // exit protocol 
c2 = 1; 
rem2; 

} 

c1 == 1 c2 == 1 turn == 1	
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Formal verification"
Formal verification consists of three parts:	

	


•  a description language for describing the system to be verified;	


•  a specification language for describing the properties to be verified; 
and	


•  a verification method to establish whether the description of the 
system satisfies the specification	
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Proof-based approaches to verification"
In a proof-based approach	

	


•  the system description is a set of formulas Γ in some logic	


•  the specification is another formula φ in the same logic	


•  the verification method consists of trying to find a proof that Γ |- φ	


This is time consuming and requires expertise on the part of the user.	




© Brian Logan 2014	
 G52CON Lecture Lecture 17: Model Checking	
 7	


Model-based approaches to verification"
In a model-based approach	

	


•  the system is represented by a finite model M for an appropriate logic;	


•  the specification is a formula φ in the same logic; and	


•  the verification method consists of computing whether M satisfies φ 
(M |= φ)	


This process can be automated (model checking).	
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Model checking"
•  automatic, model-based, property verification approach, i.e., the 

specification describes a single property of the system rather than its 
complete behaviour;	


•  intended for concurrent, reactive systems, e.g., concurrent programs, 
embedded systems and computer hardware;	


•  post-development methodology.	
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Verifying properties by model checking"
To verify that a program or system satisfies a property, we:	

	


•  describe the system using the description language of the model-
checker;	


•  express the property to be verified using the specification language of 
the model checker; and	


•  run the model checker with the system description and property to be 
verified as inputs.	
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Model checking and temporal logic"
Model checking is based on temporal logic	

	


•  in classical (propositional) logic, a model is an assignment of truth 
values to atomic propositions	


•  the models of temporal logic contain several states and a formula can 
be true in some states and false in others	


•  truth is dynamic in that formulas can change their truth values as the 
system evolves from state to state	


	

In model checking, the models M are transition systems and the properties 
φ are formulas of temporal logic	
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How it works"
When the model checker is run	

	


•  it  generates a model (transition system), M, from the system 
description;	


•  converts the property to be verified into a temporal logic formula φ 
and; 	


•  for every state s in M, checks whether s satisfies φ (M, s |= φ)	

	

If the model doesn’t satisfy the formula most model checkers also output a 
trace of the system behaviour that causes the failure.	
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Transition systems"
A transition system consists of a set of states and the transitions between 
them (a directed graph)	

	


•  the states are the states of the system being modelled	


•  states are labelled by a set of atomic propositions which are true in 
that state, e.g., “variable x has value 1”, “process 1 is in its critical 
section” etc. 	


•  the transitions correspond to the atomic transitions of the system, e.g., 
atomic instructions or synchronized methods	


•  there may be many transitions from each state—one for each process 
that could go next in an interleaving	
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Example: simple transition system"

// Process 1 

while(true) { 

    x = 1; 

    y = 100; 

} 

Atomic propositions: 
 

p0 true when x == 0 
p1 true when x == 1 
p100 true when x == 100 

// Process 2 

while(true) { 

x = y; 

} 

 
 

q0 true when y == 0 
q100 true when y == 100 

// shared variables 
integer x = 0; y = 0; 	
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p0, q100	


Example: simple transition system 2"

p0, q0	

s0	


p1, q100	

s2	


p100, q100	


s4	

p100, q100	


s5	

p1, q100	


s3	


p1, q0	

s1	


p0, q0	

s6	
 s7	
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Example: simple transition system"

// Process 1 

while(true) { 

  α1 

    x = 1; 

  α2 

    y = 100; 

} 
 

// Process 2 

while(true) { 

x = y; 

} 

 
 
 

// shared variables 
integer x = 0; y = 0; 	
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Example: simple transition system 2"

p0, q0	

s0	


p1, q100	

s2	


p100, q100	


s4	

p100, q100	


s5	

p1, q100	


s3	


p1, q0	

s1	


α1	
 α2	
 α1	
 α2	
 α2	


α1	


x = 1 y = 100 x = 1 x = y 

y = 100 

x = y 
y = 100 

x = y 

x = y 

x = y 

x = y 

x = 1 

p0, q100	
p0, q0	

s6	
 s7	

y = 100 x = 1 

x = y 

α2	
 α1	


x = y 
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The system description"
Model checkers don’t usually take program text as input:	

	


•  a system description at the program statement level may be too fine 
grained for the properties to be checked	


•  model checkers are also used to verify hardware systems, 
communication protocols, etc. 	


	

Instead, each model checker has its own description language and 
specification language.	
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Example: SMV model checker"
MODULE main 

VAR 

  request: boolean; 

  status : {ready, busy}; 

ASSIGN 

  init(status) := ready; 

  next(status) := case 

                    request : busy; 

                    1 : {ready, busy}; 

                  esac; 

SPEC 

  AG(request -> AF status = busy) 
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Specifying properties"
The property of the system to be verified is expressed in the model 
checker’s specification language	

	


•  many model checkers allow properties to be expressed directly in 
temporal logic (often using a simplified syntax)	


•  for example, the SMV model checker uses Computation Tree Logic 
(CTL) as its specification language	




© Brian Logan 2014	
 G52CON Lecture Lecture 17: Model Checking	
 20	


Syntax of CTL"
CTL is a branching-time temporal logic	

	


•  a set of atomic propositions p, q, r, …	


•  standard logical connectives: ¬, ∧, ∨, →	


•  temporal connectives: AX, EX, AF, EF, AG, EG, AU and EU	


•  formulas: φ = p | ¬φ | φ1 ∧ φ2 ... AX φ ... A[φ U ϕ] ...	
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Temporal connectives"
•  AX φ : on All paths, φ is true in the neXt state	

•  EX φ : on somE path, φ is true in the neXt state	


•  AF φ : on All paths, in some Future state φ is true	

•  EF φ : on somE path, in some Future state φ is true	


•  AG φ : on All paths, in all future states (Globally) φ is true	

•  EG φ : on somE path, in all future states (Globally) φ is true	


•  A[φ U ϕ] : on All paths, φ is true Until ϕ is true	

•  E[φ U ϕ] : on somE path, φ is true Until ϕ is true	
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Specifying properties of systems"
Given some atomic propositions expressing properties of interest such as 
ready, started, requested, acknowledged, enabled, deadlock etc., we can 
express properties such as:	

	


•  there exits some state where started holds, but ready does not: 	

EF (started ∧ ¬ready)	
	


•  a request for a resource will eventually be acknowledged:	

AG(requested → AF acknowledged)	


	

•  a process will eventually be permanently deadlocked:	


AF(AG deadlock)	
	

•  from any state it is possible to get to a restart state:	


AG(AF restart)	
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CTL formulas can be evaluated relative to the computation tree which is 
the unwinding of the transition system describing the system.	

For example, the graph:	

	


Semantics of CTL"

p, q	

s0	


q, r	

s1	


r	

s2	
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Unwinding the graph"

	

	
 p, q	


s0	


p, q	

s0	


q, r	

s1	


r	

s2	


r	

s2	


r	

s2	


r	

s2	


r	

s2	


q, r	

s1	


Can be unwound as:	
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Interpreting temporal connectives"
•  M, s |= AX φ : in every next state starting in s φ holds	


	

•  M, s |= EX φ : in some next state starting in s φ holds	


	

•  M, s |= AF φ : for all computation paths starting in s there is some 

future state where φ holds	

	


•  M, s |= EF φ : there exits a computation path starting in s such that φ 
holds in some future state	
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Interpreting temporal connectives 2"
•  M, s |= AG φ : for all computation paths starting in s the property φ 

holds globally (in every state along the path including s)	

	


•  M, s |= EG φ : there exists a computation path starting in s such that φ 
holds globally (in every state along the path including s)	


	

•  M, s |= A[φ1 U φ2] : for all computation paths starting in s the property 
φ1 holds in every state along the path (including s) until φ2  holds 	


	

•  M, s |= E[φ1 U φ2] : there exists a computation path starting in s such 

that the property φ1 holds in every state along the path (including s) 
until φ2  holds 	
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Example: a system which satisfies EF φ"

	

	


φ	
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Example: a system which satisfies EG φ"

	

	


φ	


φ	


φ	
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Example: a system which satisfies AG φ"

	

	


φ	


φ	


φ	


φ	


φ	


φ	


φ	
φ	
 φ	


φ	
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Example: a system which satisfies AF φ"

	

	


φ	


φ	


φ	
φ	
 φ	
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Models of CTL"
A model M = (S, →, L) for CTL is given by:	

	


•  a set of states S	

	


•  a transition relation → on S, such that for every s ∈ S there exists an s´ 
∈ S such that s → s´ 	


•  if there are no transitions possible from s, e.g., s is a termination state 
or a deadlock state, we add transition from s to a special state with a 
transition to itself, representing termination or deadlock.	


•  a labelling function L(s) specifying the set of atomic propositions 
which are true at s.	
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Definition of truth for CTL formulas"
Let M = (S, →, L) be a model of CTL.  For any state s ∈ S, a CTL 
formula φ holds at s iff:	

	


M, s |= φ	

	

1. M, s |= p iff  p ∈ L(s)	

	

2. M, s |= ¬φ iff M, s |≠ φ	

	

3. M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2 	
	

4. M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2 	
	

5. M, s |= φ1 → φ2 iff M, s |≠ φ1 or M, s |= φ2 	
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Definition of truth for CTL formulas 2"
6. M, s |= AX φ iff  for all s1 such that s → s1, we have M, s1 |= φ	

	

7. M, s |= EX φ iff  for some s1 such that s → s1, we have M, s1 |= φ	

	

8. M, s |= AF φ iff  for all paths s1 → s2 → s3 →... , where s1 equals s, there 
is some si such that M, si |= φ	

	

9. M, s |= EF φ iff  there exists a path s1 → s2 → s3 →... , where s1 equals s 
and there is some si such that M, si |= φ 	

	

10. M, s |= AG φ iff  for all paths s1 → s2 → s3 →... , where s1 equals s, all 
si along the path we have M, si |= φ	

	

11. M, s |= EG φ iff  there exists a path s1 → s2 → s3 →... , where s1 equals 
s and all si along the path we have M, si |= φ 	
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Definition of truth for CTL formulas 3"
12. M, s |= A[φ1 U φ2] iff  for all paths s1 → s2 → s3 →... , where s1 equals 
s and that path satisfies φ1 U φ2, i.e., there is some si along the path such 
that M, si |= φ2 and for each j < i, we have M, sj |= φ1	

	

13. M, s |= E[φ1 U φ2] iff  there exists a path s1 → s2 → s3 →... , where s1 
equals s and that path satisfies φ1 U φ2, i.e., there is some si along the path 
such that M, si |= φ2 and for each j < i, we have M, sj |= φ1	
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Given the following transition system:	

	


Exercise: evaluating CTL formulas"

p, q	

s0	


q, r	

s1	


r	

s2	
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Questions"
•  is the CTL formula AF r true at s0?	


•  is the CTL formula AG r true at s0?	


•  is the CTL formula AG AF r true at s0?	
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The next lecture"

Model Checking II	

	

Suggested reading:	

	


•  Huth & Ryan (2000), chapter 3.	

	



