
Resource-bounded belief revision and contraction

Natasha Alechina, Mark Jago, and Brian Logan

School of Computer Science
University of Nottingham

Nottingham, UK
{nza,mtw,bsl}@cs.nott.ac.uk

Abstract. Agents need to be able to change their beliefs; in particular, they
should be able to contract or remove a certain belief in order to restore con-
sistency to their set of beliefs, and revise their beliefs by incorporating a new
belief which may be inconsistent with their previous beliefs. An influential the-
ory of belief change proposed by Alchourron, Gärdenfors and Makinson (AGM)
[1] describes postulates which a rational belief revision and contraction opera-
tions should satisfy. The AGM postulates have been perceived as characterising
idealised rational reasoners, and the corresponding belief change operations are
considered unsuitable for implementable agents due to their high computational
cost [3]. The main result of this paper is showing that an efficient (linear time) be-
lief contraction operation nevertheless satisfies all but one of the AGM postulates
for contraction. This contraction operation is defined for a realistic rule-based
agent which can be seen as a reasoner in a very weak logic; although the agent’s
beliefs are deductively closed with respect to this logic, checking consistency and
tracing dependencies between beliefs is not computationally expensive. Finally,
we give a non-standard definition of belief revision in terms of contraction for
our agent.

1 Introduction

Two main approaches to belief revision have been proposed in the literature: AGM
(Alchourron, Gärdenfors and Makinson) style belief revision as characterised by the
AGM postulates [1] and reason-maintenance style belief revision [2]. AGM style belief
revision is based on the ideas of coherence and informational economy. It requires that
the changes to the agent’s belief state caused by a revision be as small as possible. In
particular, if the agent has to give up a belief in A, it does not have to give up believing
in things for which A was the sole justification, so long as they are consistent with the
remaining beliefs. Classical AGM style belief revision describes an idealised reasoner,
with a potentially infinite set of beliefs closed under logical consequence.

Reason-maintenance style belief revision, on the other hand, is concerned with
tracking dependencies between beliefs. Each belief has a set of justifications, and the
reasons for holding a belief can be traced back through these justifications to a set of
foundational beliefs. When a belief must be given up, sufficient foundational beliefs
have to be withdrawn to render the belief underivable. Moreover, if all the justifications
for a belief are withdrawn, then that belief itself should no longer be held. Most im-
plementations of reason-maintenance style belief revision are incomplete in the logical

sense, but tractable. A more detailed comparison of the two approaches can be found
in, for example, [3].

In this paper, we present an approach to belief revision and contraction for resource-
bounded agents which is a synthesis of AGM and reason-maintenance style belief re-
vision. We consider a simple agent consisting of a (finite) state and a (finite) agent
program which executes in at most polynomial time. The agent’s state contains literals
representing the beliefs of the agent, and the agent’s program consists of rules which
are used to derive new beliefs from its existing beliefs. When the agent discovers an
inconsistency in its beliefs, it removes sufficient beliefs (literals) to restore consistency.
Our algorithm for belief contraction is similar to algorithms used for propagating de-
pendencies in reason-maintenance systems, but we show that our approach satisfies all
but one of the basic AGM postulates (the recovery postulate is not satisfied). The be-
lief revision and contraction operations which we define compare in space and time
complexity to the usual overhead of computing the conflict set and firing rules in a
rule-based system. The basic contraction algorithm runs in time O(kr + n), where n
is the number of literals in the working memory, r is the number of rules and k is the
maximal number of premises in a rule. We show how out algorithms can be adapted to
remove the agent’s least entrenched beliefs when restoring consistency. Recomputing
entrenchment order of beliefs also has sub-quadratic complexity. Finally, we discuss
definition of belief revision in terms of contraction for our agent, and show that using
the Levi identity does not lead to the best result. We propose an alternative definition,
and show that the resulting operation satisfies all but one of the basic AGM postulates
for revision.

The paper is organised as follows. In Section 2, we introduce the AGM belief revi-
sion. In Section 3, we describe the rule-based resource-bounded reasoners. In Section 4,
contraction algorithms for those reasoners is defined, and shown to run in linear time.
The main result of the paper is in Section 5, where we define the logic under which the
beliefs of our reasoners are closed, and show that the basic postulates for contraction,
apart from recovery, hold for the contraction operations we defined. In Section 6, we
show how to extend the algorithm to contract by a least preferred set of beliefs, using
a preference order on the set of beliefs. In Section 8, we discuss related work, and in
Section 9, we conclude.

2 AGM belief revision

The theory of belief revision as developed by Alchourron, Gärdenfors and Makinson
in [4, 1, 5] models belief change of a idealised rational reasoner. The reasoner’s beliefs
are represented by a potentially infinite set of beliefs closed under logical consequence.
When new information becomes available, the reasoner must modify its belief set to
incorporate it. The AGM theory defines three operators on belief sets: expansion, con-
traction and revision. Expansion, denoted K + A, simply adds a new belief A to K and
the resulting set is closed under logical consequence. Contraction, denoted by K

.− A,
removes a belief A from from the belief set and modifies K so that it no longer entails
A. Revision, denoted K

.
+ A, is the same as expansion if A is consistent with the cur-

rent belief set, otherwise it minimally modifies K to make it consistent with A, before
adding A.

Contraction and revision cannot be defined uniquely, since in general there is no
unique maximal set K ′ ⊂ K which does not imply A. Instead, the set of ‘rational’
contraction and revision operators is characterised by the AGM postulates [1]. Below
Cn(K) denotes closure of K under logical consequence.

The basic AGM postulates for contraction are:

(K .−1) K
.− A = Cn(K .− A) (closure)

(K .−2) K
.− A ⊆ K (inclusion)

(K .−3) If A /∈ K , then K
.− A = K (vacuity)

(K .−4) If not � A, then A /∈ K
.− A (success)

(K .−5) If A ∈ K , then K ⊆ (K .− A) + A (recovery)
(K .−6) If Cn(A) = Cn(B), then K

.− A = K
.− B (equivalence)

The basic postulates for revision are:

(K
.
+1) K

.
+ A = Cn(K

.
+ A)

(K
.
+2) A ∈ K

.
+ A

(K
.
+3) K

.
+ A ⊆ K + A

(K
.
+4) If {A} ∪ K is consistent, then K + A = K

.
+ A1

(K
.
+5) K

.
+ A is inconsistent if, and only if, A is inconsistent.

(K
.
+6) If Cn(A) = Cn(B), then K

.
+ A = K

.
+ B

The AGM theory elegantly characterises rational belief revision for an ideal rea-
soner. However it has been argued that the definition of the expansion, contraction and
revision operators on belief sets and the resulting assumption of logical omniscience,
means that it cannot be applied to resource-bounded reasoners. For example, Doyle [3]
states: ‘. . . to obtain a practical approach to belief revision, we must give up both log-
ical closure and the consistency and dependency requirements of the AGM approach’
(p.42).

In the next section, we present a reasoner which has bounded memory and im-
plements a polynomial (sub-quadratic) algorithm for belief contraction. In subsequent
sections we show that it nevertheless satisfies the AGM postulates for rational belief
contraction apart from (K .− 5). We achieve this by weakening the language and the
logic of the reasoner. However, the reasoner is still realistic enough in that it corresponds
to a typical rule-based agent.

3 Resource-bounded agents

We consider a simple resource-bounded agent consisting of a finite state and a finite
agent program. The agent’s state or working memory (WM) contains literals (propo-
sitional variables or their negations) representing the beliefs of the agent. The agent’s
program consists of a set of rules of the form:

A1, . . . , An → B
1 We replaced ‘¬A �∈ K’ with ‘{A} ∪ K is consistent’ here, since the two formulations are

classically equivalent.

where A1, . . . , An, B are literals. The agent repeatedly executes a sense-think-act cycle.
At each cycle, the agent adds any observations (including communications from other
agents) to its existing beliefs in WM and then fires its rules on the contents of WM .

We distinguish two models of rule application by the agent. In the simplest case,
which we call the quiescent setting for belief revision, the agent fires all rules that match
until no new rule instances can be generated (note that this takes at most polynomial
time). In the quiescent setting, WM is closed under the agent’s rules: all literals which
can be obtained by the repeated application of rules to literals in the WM , are in WM .
An example of a rule-based system which fires rules to quiescence is SOAR [6]. An-
other model of rule application, which is perhaps more interesting, is the non-quiescent
case, which we call the non-quiescent setting for belief revision. In the non-quiescent
setting, we look at revising the agent’s beliefs after the application of one or more rules
but before all the rule instances have been fired. This setting is natural when considering
many rule-based systems, such as CLIPS [7], which fire one rule instance at a time.

Periodically, e.g., at the end of each cycle, or after each rule firing, the agent checks
to see if its beliefs are consistent. If A is a literal, we denote by A− the literal of the
opposite sign, that is, if A is an atom p, then A− is ¬p, and if A is a negated atom ¬p,
then A− is p. We say that WM is inconsistent iff for some literal A, both A and A− are
in WM . For each pair {A, A−} ⊆ WM , the agent restores consistency by contracting
by one element of each pair. Note that we only consider contraction by literals—rules
are part of the agent’s program and are not revised.

In the next section, we assume that the choice of whether to contract by A or A− is
arbitrary, as is the choice of literals to remove during contraction. Later we show how to
incorporate preference orderings over the beliefs in WM to contract by a least preferred
set of literals.

4 Contraction

We define resource-bounded contraction by a literal A as the removal of A and sufficient
literals from WM so that A is no longer derivable using the rules which constitute the
agent’s program. In this section, we present a simple algorithm for resource-bounded
contraction and show that it runs in time linear in kr + n, where r is the number of
rules in the agent’s program, k is the maximal number of premises in a rule, and n is
the number of literals in the working memory.

We assume that WM consists of a list of cells. Each cell holds a literal and its
associated dependency information in form of two lists, a dependencies list and a jus-
tifications list.2 Both lists contain pointers to justifications, which correspond to fired
rule instances; each justification records the derived literal, the premises of the rule, and
(for efficiency’s sake) back-pointers to the dependencies and justifications lists which
reference them. We will denote a justification as (A, [B C]) or (A, s) where A is the
derived literal and [B C] or s is the list of premises of the rule (or support list). Each
s has a distinguished position w which contains the ‘weakest’ member of s. Later we

2 In the interests of brevity, we will refer to the cell containing the literal A as simply A when
there is no possibility of confusion.

will show how to give a concrete interpretation to the notion of ‘weakness’ in terms of
preferences; for now, we assume that w is the first position in s, or is chosen randomly.

The dependencies list of A contains the justifications for A. For example, the depen-
dencies list [(A, [B C]) (A, [D])] means that A can be derived from B and C (together)
and from D (on its own). In the quiescent setting, the dependencies list of A corre-
sponds to all rules which have A in the consequent and where premises are actually in
working memory. In the non-quiescent setting, the dependencies list corresponds only
to the rules which have been fired so far. If A is an observation, or was present in WM
when the agent started, its dependencies list contains a justification (A, []) with an
empty support. The justifications list of A contains all the justifications where A is a
member of a support. For example, if the dependencies list of C contains a justification
(C, [A B]), then A’s justifications list contains the justification (C, [A B]).

The dependencies and justifications lists are updated whenever a rule is fired. For
example, when firing the rule E, F → B, we check to see if B is in working memory,
and, if not, add a new cell to WM containing the literal B. We also add the justification
(B, [E F]) to the dependencies list for B and to the justifications lists of E and F .

The algorithm for contraction is very simple:

Algorithm: contraction by A

Loop 1: for each justification (C, s) in A’s justifications list,
remove (C, s) from C’s dependencies list and from the
justifications list of each literal in s.

Loop 2: for each justification (A, s) in A’s dependencies list,
if s is empty:

remove (A, s);
else:

contract by the literal s[w];

Finally, delete the cell containing A.

The contraction algorithm consists of two main loops. Loop 1 traverses the justifi-
cations list, and for every justification in it, removes all references to the justification.
We assume that removing a reference to a justification is a constant time operation, due
to the use of back-pointers. If a justification corresponds to a rule with k premises, there
are k + 1 pointers to it: one from the dependencies list of the derived literal, and k from
the justifications lists of the premises. Loop 2 traverses the dependencies list, and for
each justification there, either removes it (if it has an empty support), or recurses to
contract by the weakest member of the support list, w. The total number of steps the al-
gorithm performs in the two loops is proportional to the total length of all dependencies
and justifications lists involved. The maximal number of justification objects with non-
empty supports is r, where r is the number of rules. The number of references to each
justification object with a non-empty support is k + 1, where k is the maximal number
of premises in a rule. So the maximal number of steps is r × (k + 1) for justifications
with non-empty supports (assuming that each support can be updated in constant time),
plus at most n for the justifications with empty supports, where n is the number of lit-
erals in WM . The last step in the contraction algorithm (removing a cell) is executed at

most n times, and we assume that access to a cell given its contents takes constant time.
The total running time is therefore O(kr + n).

4.1 Reason-maintenance type contraction

The algorithm above can be modified to perform reason-maintenance type contraction.
Reason-maintenance contraction by A involves removing not just those justifications
whose supports contain A, but also all beliefs which have no justifications whose sup-
ports do not contain A. In this case, in addition to removing the justifications in A’s
justifications list from other literals’ dependencies lists, we check if this leaves the de-
pendencies list of the justified literal empty. If so, we remove the justified literal and
recurse forwards, following links in its justifications list. This adds another traversal of
the dependencies graph, but the overall complexity remains O(kr + n).

5 The agent’s logic and AGM postulates

In this section, we present a weak logic W and show that our rule-based agent can be
seen as a fully omniscient reasoner in W : namely, its belief set is closed with respect to
derivability in W .

Consider a propositional language LW where well-formed formulas are either (1)
literals, or (2) formulas of the form A1 ∧ . . . ∧ An → B, where A1, . . . , An, B are lit-
erals. Note that there is a clear correspondence between an agent’s rules and the second
kind of formula. We will refer to the implication corresponding to a rule R as R, where
it cannot cause confusion.

A logic W in the language LW contains a single inference rule, generalised modus
ponens:

A1, . . . , An, A1 ∧ . . . ∧ An → B
B

The notion of derivability in the logic is standard. We denote derivability in this logic
by �W and the corresponding consequence operator by CW .

W is obviously much weaker than classical logic. In particular, the principle of
excluded middle does not hold, so A → B and A− → B do not imply B. For any
finite set Γ of implications and literals, CW (Γ) is finite. It contains exactly the same
implications and literals as Γ , plus possibly some additional literals derived by the
inference rule. All such additional literals occur as consequents of the implications in
Γ .

Let WM be the set of literals in working memory, and R the set of the agent’s rules.

Proposition 1. For any literal A, WM ∪ R �W A iff A ∈ WM after running R to
quiescence.

The proposition above means that the set comprising the agent’s beliefs is closed
under consequence if the agent runs all its rules to quiescence: WM ∪R = CW (WM ∪
R) after running R to quiescence.

Somewhat surprisingly, an agent which does not run its rules to quiescence can also
be seen as a totally rational and omniscient reasoner in W — provided we only include
the rules which actually have been fired in its beliefs.

Assume that a subset R′ of the agent’s rules R are fired.

Proposition 2. Let R′ ⊆ R; then for any literal A, WM ∪ R′ �W A iff A ∈ WM
after firing the rules R′.

In other words, in the non-quiescent setting, WM ∪ R′ = CW (WM ∪ R′) where
R′ is the set of rules fired.

By the belief state K of the agent we will mean the set of literals in its working
memory and the set of rules which have been fired.

K
df
= CW (WM ∪R′) (1)

By K
.− A we will denote the result of applying our contraction by A algorithm to K .

Now we can show that AGM belief postulates are satisfied for our agent.

Proposition 3. .− satisfies (K .−1)–(K .−4) and (K .−6).

Proof: Given that K is closed under consequence, and contraction removes literals
and recursively destroys rule instances used to derive them, no new rule instances can
be generated after the algorithm completes. So K

.− A is still closed under consequence
and K .−1 holds. K .−2 holds because .− deletes literals from the working memory without
adding any, K .−3 is satisfied for the same reason. K .−4 states that after a contraction by
A, A is no longer in the working memory. Since the contraction algorithm removes A
as its last step, A is indeed not in the working memory after the algorithm is executed.
K .−6 is trivially valid, since for any literal A, CW (A) = {A}. �

Proposition 4. .− does not satisfy K
.−5.

Proof: Suppose we have a single rule R = A → B and WM = {A, B}. After
contraction by B, WM is empty. When we expand by B, WM contains only B. �

The recovery postulate is the most controversial of the AGM postulates [8], and
many contraction operations defined in the literature do not satisfy it. We can satisfy
K .−5 in our setting, if we are prepared to re-define the expansion operator. We simply
save the current state of working memory before a contraction, and restore the previous
state of WM if we have a contraction followed by an expansion by the same literal.
More precisely, to expand by a literal A, we first check if the previous operation was
contraction by A, and if so we restore the previous state of working memory. Otherwise
we add A to the contents of WM and run (a subset of) the agent’s rules. This requires
O(n) additional space, where n is the size of the working memory.

6 Preferred contractions

So far we have assumed that the choice of literals to be removed during contraction
is arbitrary. However, in general, an agent will prefer some contractions to others. For

example, an agent may prefer to remove the smallest set of beliefs necessary to restore
consistency, or to remove those beliefs which are least strongly believed. The prob-
lem of computing a minimal set of beliefs which, if deleted, would restore consistency
is exponential in the size of working memory, and approaches based on this type of
‘minimal’ contraction and revision do not sit comfortably within our resource-bounded
framework. In this section we focus instead on contractions based on preference orders
over individual beliefs, e.g., degree of belief or commitment to beliefs. We show that
computing the most preferred contraction can be performed in time linear in kr + n.

We distinguish independent beliefs, beliefs which have at least one non-inferential
justification (i.e., a justification with an empty support), such as observations and the
literals in working memory when the agent starts. We assume that an agent associates
an a priori quality with each non-inferential justification for its independent beliefs.
For example, communicated information may be assigned a degree of reliability by its
recipient which depends on the degree of reliability of the speaker; percepts may be
assumed to be more reliable than communicated information and so on. For simplicity,
we assume that quality of a justification is represented by non-negative integers in the
range 0, . . . , m, where m is the maximum size of working memory. A value of 0 means
lowest quality and m means highest quality. We take the preference of a literal A, p(A),
to be that of its highest quality justification:

p(A) = max{qual(j0), . . . , qual(jn)},

where j0, . . . , jn are all the justifications for A, and define the quality of an inferential
justification to be that of the least preferred belief in its support:3

qual(j) = min{p(A) : A ∈ support of j}.

This is similar to ideas in argumentation theory: an argument is only as good as its weak-
est link, yet a conclusion is at least as good as the best argument for it. This approach
is also related to Williams ‘partial entrenchment ranking’ [9] which assumes that the
entrenchment of any sentence is the maximal quality of a set of sentences implying it,
where the quality of a set is equal to the minimal entrenchment of its members. While
this approach is intuitively appealing, nothing hangs on it, and any preference order
over literals is consistent with the postulates. For example, the preference of a derived
literal could be a property of the rule or given by some function of the preferences of
its antecedents.

To perform a preferred contraction, we preface the contraction algorithm given
above with a step which computes the preference of each literal in WM and for each
justification, finds the position of a least preferred member of support. We conduct this
process in stages, starting with the most preferred independent beliefs. Note that unless
WM is empty, it always contains at least one literal with a justification whose support
is empty (otherwise nothing could be used to derive other literals) and at least one of
those independent literals is going to have the maximal preference value of literals in

3 For simplicity, in what follows we assume reason-maintenance style contraction. To compute
preferences for coherence-style contraction we can assume that literals with no supports (as
opposed to an empty support) are viewed as having an empty support of lowest quality.

WM even when all other preferences are computed (since a derived literal cannot have
a higher preference than all of the literals in justifications for it). Assume we have a
list ind of justifications with an empty support (A,[],q), where q is the quality
of the empty support. We associate a counter c(j) with every justification j = (A,
s). Initially c(j) is set to be the length of s. When c(j) is 0, the preferences of all
literals in s have been set.

Algorithm: preference computation

Order ind in descending order by q.

While there is j=(A,[],q) in ind with A unmarked, repeat:

take first unmarked j=(A,[],q) in ind
mark A; p(A) = q; propagate(A,q)

Procedure: propagate(A, q)

for each j =(B,s) in A’s justifications list, decrement c(j);

if c(j) = 0:
qual(j) = q;
w(s) = A’s position in s;

if B is unmarked:
mark B,
p(B) = q;
propagate(B,q)

We then simply run the contraction algorithm, to recursively delete the weakest member
of each support in the dependencies graph of A.

We define the worth of a set of literals as worth(Γ) = max{p(A) : A ∈ Γ}. We
can prove that our contraction algorithm removes the set of literals with the least worth.

Proposition 5. If WM was contracted by A and this resulted in removal of the set of
literals Γ , then for any other set of literals Γ ′ such that WM − Γ ′ does not imply A,
worth(Γ) ≤ worth(Γ ′).

Proof: if A 	∈ WM , the statement is immediate since Γ = ∅. Assume that A ∈
WM . In this case, A ∈ Γ and A ∈ Γ ′ (otherwise WM − Γ and WM − Γ ′ would
still derive A). It is also easy to see that A is the maximal element of Γ , because a
literal B is in Γ if either (1) B = qual(ji) for some justification ji for A, and since
p(A) = max(qual(j0), ..., qual(jn)), p(B) ≤ p(A); or (2) B is a least preferred
element of a support set for some literal A depends on, in which case its preference is
less or equal to the preference of the literal it is justification for, which in turn is less
or equal to p(A). So, since A is an element of both Γ and Γ ′, and A has the maximal
preference in Γ , then worth(Γ) ≤ worth(Γ ′). �

Computing preferred contractions involves only modest computational overhead.
The ordering of ind takes O(n log n) steps; ind is traversed once, which is O(n);

propagate traverses each justifications list once, which is O(kr) (setting the w in-
dex in each support can be done in constant time, assuming that the justifications list of
each literal A actually contains pairs, consisting of a justification and the index of A’s
position in the support list of the justification). The total cost of computing the prefer-
ence of all literals in WM is therefore O(n log n + kr). As the contraction algorithm is
unchanged, this is also the additional cost of computing a preferred contraction.

7 Revision

In the previous sections we described how to contract by a belief. Now let us consider
revision, which is adding a new belief in a manner which does not result in an incon-
sistent set of beliefs. For simplicity, we will consider revision in a quiescent setting
only.

If the agent is a reasoner in classical logic, revision is definable in terms of contrac-
tion and vice versa. Given a contraction operator .− which satisfies postulates (K .−1)–

(K .−4) and (K .−6), a revision operator
.
+ defined as K

.
+ A

df
= (K .− ¬A) + A (Levi

identity) satisfies postulates (K
.
+1)–(K

.
+6). Conversely, if a revision operator satisfies

(K
.
+1)–(K

.
+6), then contraction defined as K

.− A
df
= (K

.
+ ¬A) ∩ K (Harper identity)

satisfies postulates (K .−1)–(K .−6) (see [5]).
However, revision and contraction are not inter-definable in this way for an agent

which is not a classical reasoner, in particular, a reasoner in a logic for which it does
not hold that K + A is consistent if, and only if, K 	� A−. If we apply the Levi identity
to the contraction operation defined earlier, we will get a revision operation which does
not satisfy the revision postulates. One of the reasons for this is that contracting the
agent’s belief set by A− does not make this set consistent with A, so (K .− A−) + A
may be inconsistent.

Let us instead define revision by A as (K+A) .− ⊥ (add A, close under consequence
and eliminate all contradictions)

Algorithm: revision by A

Add A to WM;
Run rules to quiescence;

while there is a pair (B, B-) in WM:
contract by the least preferred member of the pair

However, even for this definition of revision, not all basic AGM postulates are sat-
isfied.

Proposition 6. The revision operation defined above satisfies (K
.
+1) and (K

.
+3) – (K

.
+6).

Proof. (K
.
+1) is satisfied because when we do

.
+, we run the rules to quiescence. (K

.
+3)

is satisfied because the construction of K
.
+ A starts with A being added to WM which

is then closed under consequence (which is K + A), and after that literals can only be
removed from WM . (K

.
+4) holds because, if adding A does not cause an inconsistency,

then K
.
+ A = K+A by the definition of

.
+. (K

.
+5) holds trivially because A and K

.
+ A

are never inconsistent. Finally, recall that in the agent’s logic, Cn(A) = Cn(B) only if
A = B, so (K

.
+6) holds trivially.

The reason why (K
.
+2), or the property that A ∈ K

.
+ A, does not hold, is simple.

Suppose we add A to K and derive some literal B, but B− is already in WM and has
a high preference value (higher than B). Then we contract by B, which may well result
in contraction by A.

One could question whether (K
.
+2) is a desirable property; it has been argued in

[10] that an agent which performs autonomous belief revision would not satisfy this
postulate in any case. However, if we do want to define a belief revision operation
which satisfies this postulate, we need to make sure that A has a higher preference value
than anything else in working memory, and that A on its own cannot be responsible for
an inconsistency. One way to satisfy the first requirement is to use a preference order
based on timestamps: more recent information is more preferred. To satisfy the second
requirement, we may postulate that the agent’s rules are not perverse. We call a set of
rules R perverse if there is a literal A such that runningR to quiescence on WM = {A}
results in deriving a contradiction {B, B−} (including the possibility of deriving A−).
This is equivalent to saying that no singleton set of literals is exceptional in the sense of
[11].

8 Related work

AGM belief revision is generally considered to apply only to idealised agents, because
of the assumption that the set of beliefs is closed under logical consequence. To model
Artificial Intelligence agents, an approach called belief base revision has been pro-
posed (see for example [12–15]). A belief base is a finite representation of a belief
set. Revision and contraction operations can be defined on belief bases instead of on
logically closed belief sets. However the complexity of these operations ranges from
NP-complete (full meet revision) to low in the polynomial hierarchy (computable using
a polynomial number of calls to an NP oracle which checks satisfiability of a set of
formulas) [16]. This complexity would not generally be considered appropriate for op-
erations implemented by a resource-bounded agent. The reason for the high complexity
is the need to check for classical consistency while performing the operations. One way
around this is to weaken the language and the logic of the agent so that the consistency
check is no longer an expensive operation (as suggested in [17]). This is the approach
taken in this paper.

Our contraction algorithm is similar to the algorithm proposed by McAllester in
[18] for boolean constraint propagation. McAllester also uses a notion of ‘certainty’ of
a node, which is similar to our definition of preference.

Our approach to defining the preference order on beliefs is similar to the approach
developed in [19, 20, 9] by Williams, Dixon and Wobcke. However, since they work
with full classical logic, and calculating entrenchment of a sentence involves consid-
ering all possible derivations of this sentence, the complexity of their contraction and
revision operations is at least exponential.

The motivation of our work is very similar to Wasserman’s in [21], but Wasserman’s
solution to the computational cost of classical belief revision is to consider only small
(relevant) subsets of belief base and do classical belief revision on them. Chopra et
al [22], defined a contraction operation which approximates a classical AGM contrac-
tion operation; its complexity is O(|K| · |A| · 2S), where K is the knowledge base, A
the formula to be contracted, and S is a set of ‘relevant’ atoms. As S gets larger, the
contraction operation becomes a closer approximation of the classical contraction.

Perhaps the work most similar to our is that of Bezzazi et al [11], where belief re-
vision and update operators for forward chaining reasoners were defined and analysed
from the point of view of satisfying rationality postulates. The operators are applied to
programs, which are finite sets of rules and literals, and are presented as ‘syntactic’ op-
erators, which do not satisfy the closure under consequence and equivalence postulates.
Rather, the authors were interested in preserving the ‘minimal change’ spirit of revision
operators, which resulted in algorithms with high (exponential) complexity. Only one
of the operators they proposed, ranked revision, has polynomial complexity. To perform
a ranked revision of a program P by a program P ′, a base 〈P0, . . . , Pn = ∅〉 of P is
computed, where P0 = P and each Pi+1 is a subset of Pi containing the ‘exceptional’
rules of Pi. The base of a program can be computed in polynomial time in the size of
the program; this involves adding the premises of each rule to the program, running
rules to quiescence and checking for consistency. If the resulting set is inconsistent, the
rule is exceptional. Ranked revision of P by P ′ is defined as Pi ∪ P ′, where Pi is the
largest member of the base of P which is consistent with P . Consistency can also be
checked in polynomial time by running the program to quiescence. For programs with-
out exceptional rules, the result of ranked revision is either the union of P and P ′, if
they are consistent, or P ′ alone, which is essentially full meet contraction. Even for the
full classical logic, this is computable in NP time.

9 Conclusions and further work

In this paper, we have presented a realisable resource-bounded agent which does AGM
style belief revision. The agent is rule-based, and can be seen as a fully rational and
omniscient reasoner in a very weak logic. The rules of the agent’s program are fixed,
and only literal beliefs are revised. We define an efficient algorithm for contraction,
similar to McAllester’s algorithm for boolean constraint propagation, and show that the
corresponding contraction operation satisfies all the basic AGM postulates apart from
the recovery postulate. We show how to use a preference order on beliefs similar to
entrenchment ranking introduced in [9] to contract with the minimally preferred set of
beliefs. The additional cost of computing the preference order is small: the resulting
algorithm is still sub-quadratic in the size of the agent’s program. We then define a
belief revision operator in terms of contraction, and show that it also satisfies all but
one of the basic AGM postulates. The complexity of belief revision is polynomial in
the size of the agent’s program and the number of literals in the working memory. To
the best of our knowledge, no one has previously pointed out that reason-maintenance
style belief revision satisfies the AGM rationality postulates, provided that we assume
that the logic which the agent uses is weaker than full classical logic.

In future work, we plan to look at efficient revision operations on the agent’s pro-
grams, and extend the syntax of the agent’s programs.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
functions for contraction and revision. Journal of Symbolic Logic 50 (1985) 510–530

2. Doyle, J.: Truth maintenance systems for problem solving. In: Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, IJCAI 77. (1977) 247

3. Doyle, J.: Reason maintenance and belief revision. Foundations vs coherence theories. In
Gärdenfors, P., ed.: Belief Revision. Volume 29. Cambridge University Press, Cambridge,
UK (1992) 29–51

4. Gärdenfors, P.: Conditionals and changes of belief. In Niiniluoto, I., Tuomela, R., eds.: The
Logic and Epistemology of Scientific Change. North Holland (1978) 381–404

5. Gärdenfors, P.: Knowledge in Flux: Modelling the Dynamics of Epistemic States. The MIT
Press, Cambridge, Mass. (1988)

6. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An architecture for general intelligence.
Artificial Intelligence 33 (1987) 1–64

7. Software Technology Branch, Lyndon B. Johnson Space Center Houston: CLIPS Reference
Manual: Version 6.21. (2003)

8. Makinson, D.: On the status of the postulate of recovery in the logic of theory change.
Journal of Philosophical Logic 16 (1987) 383–394

9. Williams, M.A.: Iterated theory base change: A computational model. In: Proceedings of
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), San Mateo,
Morgan Kaufmann (1995) 1541–1549

10. Galliers, J.R.: Autonomous belief revision and communication. In Gärdenfors, P., ed.: Belief
Revision. Cambridge Tracts in Theoretical Computer Science 29. Cambridge University
Press (1992) 220–246

11. Bezzazi, H., Janot, S., Konieczny, S., Pérez, R.P.: Analysing rational properties of change op-
erators based on forward chaining. In Freitag, B., Decker, H., Kifer, M., Voronkov, A., eds.:
Transactions and Change in Logic Databases. Volume 1472 of Lecture Notes in Computer
Science., Springer (1998) 317–339

12. Makinson, D.: How to give it up: A survey of some formal aspects of the logic of theory
change. Synthese 62 (1985) 347–363

13. Nebel, B.: A knowledge level analysis of belief revision. In Brachman, R., Levesque, H.J.,
Reiter, R., eds.: Principles of Knowledge Representation and Reasoning: Proceedings of the
First International Conference, San Mateo, Morgan Kaufmann (1989) 301–311

14. Williams, M.A.: Two operators for theory base change. In: Proceedings of the Fifth Aus-
tralian Joint Conference on Artificial Intelligence, World Scientific (1992) 259–265

15. Rott, H.: “Just Because”: Taking belief bases seriously. In Buss, S.R., Hájaek, P., Pudlák,
P., eds.: Logic Colloquium ’98—Proceedings of the 1998 ASL European Summer Meeting.
Volume 13 of Lecture Notes in Logic., Association for Symbolic Logic (1998) 387–408

16. Nebel, B.: Base revision operations and schemes: Representation, semantics and complexity.
In Cohn, A.G., ed.: Proceedings of the Eleventh European Conference on Artificial Intelli-
gence (ECAI’94), Amsterdam, The Netherlands, John Wiley and Sons (1994) 341–345

17. Nebel, B.: Syntax-based approaches to belief revision. In Gärdenfors, P., ed.: Belief Revi-
sion. Volume 29. Cambridge University Press, Cambridge, UK (1992) 52–88

18. McAllester, D.A.: Truth maintenance. In: Proceedings of the Eighth National Conference
on Artificial Intelligence (AAAI’90), AAAI Press (1990) 1109–1116

19. Dixon, S.: A finite base belief revision system. In: Proceedings of Sixteenth Australian
Computer Science Conference (ACSC-16): Australian Computer Science Communications.
Volume 15., Brisbane, Australia, Queensland University of Technology, Australia (1993)
445–451

20. Dixon, S., Wobcke, W.: The implementation of a first-order logic AGM belief revision
system. In: Proceedings of 5th IEEE International Conference on Tools with AI, Boston,
MA, IEEE Computer Society Press (1993) 40–47

21. Wasserman, R.: Resource-Bounded Belief Revision. PhD thesis, ILLC, University of Ams-
terdam (2001)

22. Chopra, S., Parikh, R., Wassermann, R.: Approximate belief revision. Logic Journal of the
IGPL 9 (2001) 755–768

