
Verifying space and time requirements for
resource-bounded agents

Natasha Alechina
University of Nottingham

Nottingham, UK

nza@cs.nott.ac.uk

Piergiorgio Bertoli
ITC-IRST

Trento, Italy

bertoli@itc.it

Chiara Ghidini
ITC-IRST

Trento, Italy

ghidini@itc.it

Mark Jago
University of Nottingham

Nottingham, UK

mtw@cs.nott.ac.uk

Brian Logan
University of Nottingham

Nottingham, UK

bsl@cs.nott.ac.uk

Luciano Serafini
ITC-IRST

Trento, Italy

luciano.serafini@itc.it

ABSTRACT
We present a novel procedure for automatically verifying the space
and time requirements for resource-bounded reasoning agents. We
represent agents as a finite state machines in which the states cor-
respond the formulas currently held in the agent’s memory and the
transitions between states correspond to applying the agent’s infer-
ence rules. To check whether an agent has enough memory to de-
rive a formula φ, we specify the FSM as input to the model-based
planner MBP, and check whether the agent has a plan (a choice
of memory allocations and inference rule applications), all execu-
tions of which lead to states containing φ. Our approach is general
enough to admit verification of reasoners with any set of inference
rules which can be encoded as transitions between FSM states.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent Agents, Multiagent Systems; I.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving—Deduction (e.g., natural, rule-
based); F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms
Design, Verification

Keywords
Resource-bounded agents, MBP

1. INTRODUCTION
The question of how much memory a reasoning agent needs to

derive a formula is of considerable theoretical and practical interest.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

From a theoretical point of view, it is interesting to investigate how
the deductive strength of a particular logic changes when only a
fixed number of formulas are allowed to be ‘active’ in a derivation.
This is different from the question of bounds on the size proofs [3],
since we assume that the whole proof does not need to be held in
memory (some intermediate steps may be overwritten).

From a practical point of view, the question of whether an agent
will run out of memory or time before achieving its goal(s) is clearly
a major concern for the agent developer. As agent tasks become
more open ended, the amount of memory required to achieve them
becomes harder to predict a priori. For example, the reasoning ca-
pabilities of agents assumed by many web service applications is
non trivial (e.g., reasoning over complex ontologies or about busi-
ness processes described by a set of business rules) and the memory
requirements correspondingly difficult for the agent developer to
determine a priori. At the same time trends towards mobile agents
and agents which run on mobile devices such as PDAs and smart
phones imply more processor and memory efficient agent designs.

In this paper, we present a novel procedure for automatically
verifying the space and time requirements for resource-bounded
reasoning agents. Specifically, we address the question: given an
agent and a formula φ, does the agent have sufficient memory to
derive φ, and, if it does, what is the length of the shortest derivation
within the specified memory bound? In outline, our approach is as
follows. We represent a reasoning agent as a finite state machine
in which the states correspond the formulas currently held in the
reasoner’s memory and the transitions between states correspond
to applying the reasoning rules. To check whether a reasoner has
enough memory to derive a formula φ, we specify the FSM as in-
put to the model-based planner MBP [2], and check whether the
reasoner has a plan (a choice of memory allocations and inference
rule applications), all executions of which lead to states containing
φ.

Our approach is general enough to admit verification of reason-
ers with any set of inference rules, provided that those rules can be
encoded as transitions between FSM states. To illustrate the gener-
ality of our approach, we show how to encode two example reason-
ers: a forward-chaining rule-based agent of the kind found in many
applications employing ontological reasoning and business rules,
and a classical propositional reasoner which can derive all classical
consequences of its knowledge base given unlimited memory.

2. FORMAL MODEL
We model resource-bounded agents as finite state machines (FSM)

or transition systems. Let the internal language of the agent be
some language L (e.g. propositional language). The definition of
a transition system is given relative to the following components:
the bound n on the agent’s memory size; the agent’s reasoning
rules; the agent’s knowledge base K ⊆ L; the agent’s goal for-
mula AG ∈ L. The set of all subformulas of K and AG will be
denoted by Ω. We abstract away from the size of the formulas.
However, given K and AG, the maximum size of any formula in
the agent’s state is fixed.

In the remainder of this section, we first define the language and
transition systems for ‘definite reasoning’ agents and give an exam-
ple of such an agent. We then introduce a more complex logic for
agents that need to maintain a set of epistemic alternatives, such as
classical reasoners.

2.1 Definite reasoners
The language of the logic BMLd (for bounded memory logic,

definite case) is defined relative to the agent’s internal language
L. If A is a formula of L, then BA (the agent believes A) is a
formula; the language is closed under the boolean connectives and
unary modalities EX (‘there exists a next state where. . . ’) and EF
(‘there exists a future state where. . . ’). Other boolean connectives
are defined in the usual way. We also define AXφ as ¬EX¬φ and
AGφ as ¬EF¬φ.

A transition system M = (S,R, V) consists of a set of states
S, a serial binary relation R on S (transitions between states) and
an assignment V : S −→ P(Ω) (assigning to the state the set of
formulas the agent believes in that state). Notice that V (s) is not
a classical truth assignment, as it might contain complex formulas,
e.g., A ∧ B, as well as contradictory formulas, e.g., A ∧B,¬B ∈
V (s). To reflect the fact that the agents have bounded memory, we
postulate that V can assign at most n formulas to any given state.
The transitions which the agent can make depend on the agent’s
inference rules. In our model, we assume that one of the agent’s
possible transitions is ‘reading’ a K formula into its memory or
‘active state’. Reading a formula may correspond to reading from
flash memory, asking for user input, or reading data from the server
over the network.

The definition of a formula being satisfied in M, s ∈ S is as
follows:

M, s |= BA iff A ∈ V (s)

M, s |= ¬φ iff M, s �|= φ

M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

M, s |= EXφ iff there exists a state t such that R(s, t) and
M, t |= φ.

M, s |= EFφ iff there exists a sequence of states t1, . . . , tk such
that for all i ∈ {1, . . . , k − 1}, R(ti, ti+1), t1 = s and
M, tk |= φ

The bound n on the size of the agent’s memory is expressed by
the following axiom:

B(n) BA1 ∧ . . . ∧ BAn → ¬BAn+1 where Ai �= Aj

for all i, j ∈ {1, . . . , n+ 1} such that i �= j.

We can express that the agent can derive its goal AG from its
knowledge base K as EF BAG (there is some future state where
the agent believes AG). The fact that a formula is derivable in
k steps can be expressed as EX kBAG (where EX k denotes k

applications of the operator EX). Similarly, the fact that an agent
needs at least k + 1 steps to derive a formula AG can be expressed
as AX k¬BAG.

A simple example of a definite reasoner would be an agent which
reasons using rules, e.g., ontology rules, or business rules. We as-
sume that agent’s knowledge base consists of ground atomic formu-
las and rules of the formA1∧. . .∧An → B, whereA1, . . . , An, B
are atomic formulas (see, for example, [4]). By generating all pos-
sible substitutions of constants occurring in the knowledge base
into the rule, we can reduce the knowledge base to a purely propo-
sitional set of formulas, consisting of propositional variables and
implications of the form p1∧ . . .∧pn → q. Then the only rules the
agent needs to derive all ‘rule-based’ consequences are conjunction
introduction and modus ponens.

Let V (s)′ stand for any subset of V (s) which has cardinality at
most n − 1 and differs from V (s) in at most one formula. The
rule-based reasoner has the following transitions:

Read R(s, t) if V (t) = V (s)′ ∪ {A} for some A ∈ K.

AND R(s, t) if A1, A2 ∈ V (s) and V (t) = V (s)′ ∪ {A1 ∧A2}.

MP R(s, t) if A1 ∈ V (s), A1 → A2 ∈ V (s), and
V (t) = V (s)′ ∪ {A2}

Reflexivity R(s, s)

A complete axiomatisation of this logic is given in [1].

2.2 More general reasoners
It is also interesting to model reasoners which can reason by

cases, or in general consider hypothetical states; this means that
their transitions do not necessarily follow the logical consequence
relation. We also extend the language to express disbelief as well
as belief.

Consider a reasoner who believes {A ∨ B,A → C,B → C}.
To derive C, it has to reason by cases: assume A; derive C. Then,
assume B; derive C. Hence, it is safe to believe C. However, if the
process of assuming A corresponds to a transition to a state where
A is believed, the modelling is not ‘safe’ — the agent’s beliefs are
not justified by valid inference steps. In the state where it assumes
A, the agent should remember that this is just one of the epistemic
alternatives, and that in others A is false and B is true.

To deal with such reasoners, we add an extra set of ‘epistemic
alternatives’ or possible worlds to each state. Epistemic alterna-
tives are introduced when the classical reasoner is applying non-
deterministic rules, such as elimination of disjunction. Intuitively,
a formula is now believed in a state if it is true in all of the epistemic
alternatives associated with this state. We express this as �BA.

The language of the logic BML (for bounded memory logic)
extends the language of BMLd by adding extra clauses: if A is a
formula of L, then B̄A (the agent disbelieves A) is a formula; if φ
is a formula, then �φ is a formula. We also define �φ as ¬�¬φ.

For such general reasoners, we can express that the agent can
deriveAG from its knowledge baseK as EF �BAG (there is some
future state where in all epistemic alternatives the agent believes
AG).

A BML transition system M = (S,W,R,U, T, F) consists of
a set of states S, a set of possible worlds or epistemic alternatives
W , a binary relationR on S, a function assigning to each state a set
of epistemic alternatives U : S −→ P(W), and two assignments
T : W −→ P(Ω) and F : W −→ P(Ω) which say whether
the value of an (internal language) formula in a world is true or
false (where, as before Ω is the set of subformulas of K and AG).
As before, to reflect the bound on the agent’s memory, we require

|T (w)| + |F (w)| ≤ n, for any given state w. Moreover, the truth
assignments should be consistent, i.e., T (w) ∩ F (w) = ∅. The
following truth definitions have been added or modified compared
to BMLd. Note that we talk about truth in a world and truth in a
state:

M,w |= BA iff A ∈ T (w)

M,w |= B̄A iff A ∈ F (w)

M, s |= �φ iff there exists w in U(s), such that M,w |= φ.

The bound n on the size of the agent’s memory is expressed by
the following axiom:

B’(n) �(
∼
B A1 ∧ . . .∧

∼
B An → ¬

∼
B An+1), where

∼
B Ai

stands for either BAi or B̄Ai and Ai �= Aj for all i, j ∈
{1, . . . , n+ 1} such that i �= j,

The transition relationR between states is defined in terms of ex-
pansion relation between epistemic alternatives �. Expansion cor-
responds to applying an inference rule to formulas in the epistemic
alternative. Formally, R(s, t) holds if U(s) = {w1, . . . , wm}, and
for some wi ∈ U(s), U(t) = (U(s)\{wi}) ∪ {v : wi � v}.

Note that the classical reasoner agent can construct new formulas
in addition to decomposing formulas. We only allow the construc-
tion of formulas which are in Ω (the set of subformulas of K and
AG). This does not affect the completeness of agent’s rules (since
these are the only formulas it may possibly need in the derivation of
AG from K), but allows us to represent it as a finite state machine.

Since the agent can both believe and disbelieve formulas (and
its language contains negation), an issue of inconsistent possible
worlds arises. An agent cannot make a transition to a possible
world where the same formula is assigned true and false. All rules
therefore have to have a proviso that if w � v then it impossible,
for any formulaA, to have A ∈ T (w) and A ∈ F (v) or vice versa.
If the agent starts with inconsistent state, it is allowed to assert any
formula from Ω. A full list of transitions the classical reasoner is
given in [1].

In [1], we prove that a classical reasoner with unbounded mem-
ory can deriveAG fromK wheneverAG is a classical consequence
of K.

3. VERIFYING REASONING CAPABILITIES
The problem of identifying the existence (and the minimal length)

of a deduction for AG from a knowledge base K for an agent with
bounded memory modelled as a transition system M , can be recast
as a planning problem: find a control strategy forM (a plan) which,
starting from any state in K, leads to some state in AG. In general,
M is a nondeterministic transition system, since applying a rule
may lead to several epistemic alternatives. Thus, we are interested
in strong plans [2]: tree-structured plans such that their execution
leads to the goal, for every possible outcome of the actions in the
plan.

From the few planners capable of dealing with strong planning
for nondeterministic domains we selected MBP, a system which
combines effective algorithms with an input language which allows
a concise description of transition systems in logical terms. In this
section, we provide a high-level description of how the proof exis-
tence problem is recast as a planning domain in MBP.

States are identified with assignments v : Ω −→ {�,⊥, U}
(where U stands for ‘undefined’). The transition relation is defined
as having as argument the formula to be derived or decomposed,
and the formula(s) to be overwritten. For example, the precondi-
tion of Read(A,B) is that A is in KB, and the postcondition is

that in the next state, A is true and B is undefined (the agent be-
lieves A and does not believe or disbelieve B). If the state is not
full, then it is possible that B is a special ‘empty’ formula (nothing
gets overwritten). In some cases a transition may result in more
than one formula being overwritten. For example, the precondi-
tion for disjunction elimination elimOr(A,B1, B2) is that A is
of the form A1 ∨A2, and that in the current state, v(A) �= U . The
postcondition is that in the next state, the value of v(A1) ∨ v(A2)
is equal to the assignment to A in the current state, and B1, B2

are assigned U . Note that if in the current state A is assigned �,
then the effect of this transition is non-deterministic, since several
different values of v(A1), v(A2) would satisfy the constraint.

Given this encoding, the planning problem is described by an
initial state where ∀A ∈ Ω : v(A) = U , and by a goal state
v(AG) = �. The constraints on transitions are directly represented
in MBP as TRANS constraints overR, allowing for a compact rep-
resentation of the problem.

MBP implements a number of different search styles. We chose
breadth-first backward search which guarantees that the shortest
plan is selected. The computational burden imposed by this search
style is effectively constrained by the use of symbolic representa-
tion techniques that allow a very compact encoding, and an efficient
handling of extremely large state sets; details can be found in [2].

Experimental results can be found in [1].

4. CONCLUSIONS AND FUTURE WORK
In this paper, we have attempted to take seriously the idea that

reasoning is a process which requires memory and time. While
the temporal aspect of reasoning has been studied before, we be-
lieve that our treatment of the memory aspect is novel. We have
proposed a new kind of epistemic logic where both resources are
explicitly modelled. The logic is interpreted on state transition sys-
tems, where the agent’s state can contain only a fixed finite number
of formulas (beliefs), and transitions correspond to application of
inference rules by the agent. By specifying the state transition sys-
tem as an input to the MBP planner, we can automatically verify the
lower bounds on space and time required by the agent to derive a
certain formula.

In future work, we plan to model multi-agent systems, including
agents which are capable of reasoning about other agents’ beliefs
and their reasoning in epistemic logic. We also would like to model
reasoners in description logics, since verifying agents which do on-
tological reasoning is one of our prime motivations.

Acknowledgements This work was supported by the Royal Soci-
ety UK-Italy Joint Project grant ‘Model-checking resource-bounded
agents’.

5. REFERENCES
[1] N. Alechina, P. Bertoli, C. Ghidini, M. Jago, B. Logan, and

L. Serafini. Verifying space and time requirements for
resource-bounded agents. Technical Report T05-10-03,
ITC-irst, Trento, Italy, 2005.

[2] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak,
Strong, and Strong Cyclic Planning via Symbolic Model
Checking. Artificial Intelligence Journal, 147(1,2):35–84, July
2003.

[3] A. Haken. The intractability of resolution. Journal of
Theoretical Computer Science, 39(2-3):297–308, Aug. 1985.

[4] I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL
rules language. In Proceedings of the 13th international
conference on World Wide Web, WWW 2004, pages 723–731.
ACM, 2004.

