Belief Revision for AgentSpeak Agents

Natasha Alechina
University of Nottingham
School of Computer Science
Nottingham, UK

nza@cs.nott.ac.uk

Mark Jago
University of Nottingham
School of Computer Science
Nottingham, UK

mtw @ cs.nott.ac.uk

ABSTRACT

The AgentSpeak agent-oriented programming language has re-
cently been extended with a number of new features, such as
speech-act based communication, internal belief additions, and
support for ontological reasoning, which imply a need for belief
revision within an AgentSpeak agent. In this paper, we show how a
polynomial-time belief-revision algorithm can be incorporated into
the Jason AgentSpeak interpreter. To the best of our knowledge,
this is the first attempt to include belief revision within an inter-
preter for a practical agent programming language.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Intelligent Agents, Multiagent Systems; 1.2.5 [Artificial
Intelligence]: Programming Languages and Software; 1.2.3
[Artificial Intelligence]: Deduction and Theorem Proving—Non-
monotonic reasoning and belief revision

General Terms

Languages

Keywords
Belief Revision, BDI, AgentSpeak, Jason

1. INTRODUCTION

Agents can be viewed as rational entities characterised in terms
of their beliefs, desires and intentions and the relationships be-
tween them, and the Belief, Desire and Intention (BDI) approach
has emerged as perhaps the dominant paradigm in agent research
and development [9, 11, 6]. A key problem for BDI agents is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’06 May 8-12 2006, Hakodate, Hokkaido, Japan.

Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

Rafael H. Bordini
University of Durham
Dept. of Computer Science
Durham, UK

r.bordini @durham.ac.uk

Jomi Fred Hubner
Univ. Regional de Blumenau
Dept. Sistemas e Computacao
Blumenau, SC, Brazil

jomi@inf.furb.br

Brian Logan
University of Nottingham
School of Computer Science
Nottingham, UK

bsl@cs.nott.ac.uk

dynamics of beliefs (and consequently of desires and intentions).
Agents are continuously presented with a stream of new informa-
tion (e.g., from their sensors or other agents) requiring changes in
their beliefs. In simple cases, the problem of how the agent’s beliefs
should be updated is straightforward: for example, if an agent’s bat-
tery sensor reports that the agent’s battery is 50% charged, then the
agent’s existing beliefs about its battery level (and any derived be-
liefs regarding how far it can travel before recharging) can be sim-
ply overwritten with the appropriate new belief(s). However for
agents with multiple sources of information and/or more complex
belief states a simple ‘overwriting’ strategy is inadequate. Belief re-
vision is necessary when the agent receives conflicting information
from different sources, or information which is contradictory in the
context of the agent’s own beliefs. For example, an agent may be
told by Alice that the next group meeting will be held on Wednes-
day and by Bob that the meeting is on Thursday. If the agent’s on-
tology contains a rule stating that each meeting has a unique date,
then, from the agent’s point of view, this information is contradic-
tory. In such cases the problem of how the agent’s beliefs should
be revised to restore consistency is non-trivial.

Current agent-oriented programming languages typically leave
belief update up to the programmer [3] and provide no support
for belief revision. However as agent’s belief states and the infer-
ences performed on them become richer and more complex, such
ad-hoc approaches push an ever-greater burden onto the agent pro-
grammer. In this paper, we show how to integrate correct and
efficient (polynomial-time) belief revision into the architecture of
a BDI agent. We focus on the well-known AgentSpeak agent-
oriented programming language. However our approach and algo-
rithms are equally applicable to other BDI agent implementations
where agent’s beliefs can be represented in the form of ground lit-
erals and Horn clauses (e.g., rules, or plans in case of AgentSpeak).
While there has been some initial work on belief revision in abstract
programming languages [10], to the best of our knowledge, the
work presented here is the first attempt to include belief-revision
within an interpreter for a practical agent-oriented programming
language.

2. AgentSpeak AND Jason

The AgentSpeak(L) programming language was introduced
in [8]. It is based on logic programming and provides an elegant
abstract framework for programming BDI agents.

An AgentSpeak agent is defined by a set of beliefs (ground lit-
erals) which constitute the agent’s belief base, and a set of plans
which form its plan library. An AgentSpeak plan has a head which
consists of a triggering event (the event(s) for which that plan is
relevant), and a conjunction of belief literals representing a con-
text. The conjunction of literals in the context must be a logical
consequence of the agent’s current beliefs for the plan to be consid-
ered applicable when triggered. A plan also has a body, which is a
sequence of basic actions (i.e., atomic operations the agent can per-
form so as to change the environment), (sub)goals that the agent has
to achieve (or test) when the plan is executed, and belief changes
that can serve as “mental notes”. Plans are triggered by the addi-
tion or deletion of beliefs due to communication or perception of
the environment, or due to the addition or deletion of goals as a
result the execution of plans triggered by previous events.

The Jason interpreter implements the operational semantics of
AgentSpeak as given in, e.g., [5]. Jason in written in Java, and its
IDE supports the development and execution of distributed multi-
agent systems [4].Recent work has made important additions to
AgentSpeak, which have also been (or are in the process of being)
implemented in Jason. Some of these new features, such as speech-
act based communication, internal belief additions, and support for
reasoning with ontological knowledge, presuppose a belief revi-
sion capability as part of agents’ reasoning cycle. For example,
in [7], an extension of AgentSpeak was proposed which incorpo-
rates ontological reasoning within the AgentSpeak interpreter. In
the extended language, called AgentSpeak-DL, queries to the be-
lief base are more expressive as their results do not depend only
on the agent’s explicit knowledge but also on what can be inferred
from the ontology; the search for a relevant plan for a particular
event is more flexible as this is not based solely on unification, but
also on the subsumption relation between concepts; and agents may
share knowledge by using web ontology languages such as OWL.
These new capabilities can result in inconsistencies in an agent’s
belief base which cannot be eliminated by a simple ‘overwriting’
strategy.

The current implementation of Jason provides a basic belief up-
date capability. This deletes any perceptual beliefs which are no
longer perceived from the belief base and adds any new percepts as
new perceptual beliefs. Belief additions executed within a plan as
well as any information communicated by trusted sources is sim-
ply added to the belief base (without checking for consistency).
While this approach ensures that the agent’s perceptual beliefs re-
main consistent, it is incapable of handling derived inconsistencies,
e.g., if a property is asserted of an individual which is inconsis-
tent with the corresponding concept description. The elimination
of such inconsistencies remains the responsibility of the agent de-
veloper and must be coded anew for each agent application. Our
aim is to extend the Jasorn implementation with a belief revision
capability which automatically restores belief base consistency in
the face of derived inconsistencies.

3. THE BELIEF REVISION ALGORITHM

We have two main objectives when introducing belief revision
in AgentSpeak. First the algorithm should be theoretically well
motivated, in the sense of producing revisions which conform to
a generally accepted set of postulates characterising rational belief
revision. Second, we want the resulting language to be practical,
which means that the belief revision algorithm must be efficient.

In the belief revision literature, these two goals have traditionally
been seen as incompatible. Our approach draws on recent work [2]
on efficient (polynomial-time) belief revision algorithms for rule-
based agents which satisfy the well-known Alchourrén, Makinson

and Girdenfors (AGM) postulates [1] characterising rational belief
revision and contraction. In this section we briefly describe the
linear-time belief contraction algorithm introduced in [2]. We then
explain how belief revision can be defined in terms of contraction.

We distinguish two kinds of contraction operation. AGM (or co-
herence) contraction of the agent’s belief base K by a belief literal
A is defined as the removal of A and sufficient literals from K
such that A is no longer derivable using the set of plan instances
executed to date. Reason-maintenance contraction additionally re-
moves any beliefs for which A is (recursively) the sole support. To
facilitate both AGM and reason-maintenance contraction, the in-
ferential relationships between the beliefs comprising the agent’s
belief base are represented as a directed graph, where the nodes are
beliefs and justifications. A justification consists of a belief and
a support list containing the context (and possibly the triggering
event) of the plan used to derive this belief: for example, the as-
sertion of a belief A by a plan with context B triggered by a belief
addition event C' (or derived by an ontology rule B, C' — A) would
have a justification (A, [B, C]). Foundational beliefs which were
not derived, have a justification of the form (D, []). In the graph,
each justification has one outgoing edge to the belief it is a justifi-
cation for, and an incoming edge from each belief in its support list.
We assume that each support list s has a designated least preferred
member w(s). Intuitively, this is a belief which is not preferred to
any other belief in the support list, and which we would be prepared
to discard first, if we have to give up one of the beliefs in the list.
We assume that we have constant time access to w(s).

The algorithm for AGM contraction by A is then:

for each of A’s outgoing edges
to a justification (C, s),
remove (C,s) from the graph

for each of A’s incoming edges
from a justification (A, s),
if s is empty, remove (A, s);
else contract by w(s);

remove A.

To implement reason-maintenance type contraction, we also re-
move beliefs which have no incoming edges.

In [2], it was shown that the contraction operator defined by the
algorithm satisfies the AGM postulates for contraction (K-1)—-(K-4)
and (K-6) [1] (the recovery postulate, (K-5), is not satisfied). Clo-
sure under consequence in classical logic is replaced with closure in
a weaker logic W which has a single inference rule of generalised
modus ponens.

The algorithm runs in time O(kr + n), where r is the number of
plans, k£ the maximal number of beliefs in any support list, and n
the number of literals in the belief base. Indeed, the upper bound on
the number of steps required to remove justifications corresponding
to plan instances is 7(k 4+ 1) (one constant time operation for each
belief in a context of the plan and one for the belief asserted by the
plan). Removing all justifications corresponding to foundational
beliefs costs n steps. The last step in the contraction algorithm
(removing a belief) is executed at most n times.

The AGM (resp. reason-maintenance) revision of the set of lit-
erals in the agent’s belief base K can then be defined as: add A,
close under consequence and AGM (resp. reason-maintenance)
contract by all contradictions. Note that for agents which reason
using ground literals and Horn clauses, closure under consequence
can be computed in polynomial time.

4. BELIEF REVISION IN Jason

Future releases of Jason will incorporate an implementation of
the belief revision algorithm presented above as a user-selectable

option. The new implementation clearly distinguishes between be-
lief update, i.e., the addition and deletion of perceptual beliefs fol-
lowing perception, and belief revision proper, i.e., the elimination
of inconsistencies following belief additions by plans or ontologi-
cal reasoning. A belief addition may be discarded (as at present) or
may result in the deletion of some other belief(s) in order to allow
the new belief to be consistently added to the belief base. Which
beliefs are deleted is determined by a user-specified preference or-
der (see below). Here, we assume that the agent’s plans contain no
explicit belief deletions, and that deletion of beliefs only occurs as
a result of belief update and revision.

Each belief literal added to the belief base has an associated “de-
pendencies list” (the literals that allowed the derivation of the lit-
eral in question), and a “justifies list” (the literals which the literal
in question justifies, that is, it appears in their dependencies list).
For example, if the plan that generated the belief change, say +bl,
has the form “@p te: l1 & ... & l, <- bd”, where te is a trig-
gering event and bd a plan body, the support list of the correspond-
ing justification is simply the ground literals from the plan context,
“[l1,...,ln]". Note that if the triggering event, te, is itself a be-
lief addition, the literal in te is included together with the context
literals in the support list. Further, for each literal [1, ..., [, we in-
clude the newly added belief in the literal’s “justifies” list. We also
record the time at which the belief was added as part of the jus-
tification. When deleting perceptual beliefs during belief update,
we remove any justification which has the deleted perceptual belief
in its support list, and mark the justified beliefs as self support-
ing (foundational) beliefs. This additional bookkeeping reflects the
special status of perceptual beliefs: perceptual beliefs can trigger
or justify the addition of other beliefs, but their deletion is not in
itself a reason for removing a derived belief.

The belief revision algorithm also requires the definition of a
partial order expressing the preference, or entrenchment, of each
belief. To allow for user customisation, this is defined as a sepa-
rate method that can also be overridden. The default method gives
preference to perceived information over communicated informa-
tion (as also happens in [10]), and in case of information from the
same source, it gives preference to newer information over older
information.

The implementation described above is conservative in revising
only the agent’s belief state. The agent’s plans are considered part
of the agent’s program and are not revised (though revising, e.g.,
plans received from other agents would be an interesting exten-
sion). Similarly, when revising beliefs derived using ontological
rules, we assume the ontology used by the agent to be immutable
and consistent, and that it is consistent with every other ontology it
references.

S. CONCLUSIONS AND FUTURE WORK

Experience has shown that correct and efficient implementa-
tions of agent-oriented programming languages are key in the
widespread adoption of agent technology. As agent programming
languages become richer, it becomes harder for the agent program-
mer to ensure that the belief states of agents developed using these
languages are consistent. In this paper we briefly summarised the
rationale for including automatic belief revision in a BDI agent
programming language, and described the integration of an effi-
cient (polynomial-time) belief-revision algorithm into the Jason
AgentSpeak interpreter. Our approach is theoretically well moti-
vated in the sense of producing revisions which conform to a gen-
erally accepted set of postulates characterising rational belief revi-
sion. We believe that other BDI agent-oriented programming lan-
guages and their platforms [3] which leave the problem of main-

taining a consistent belief state entirely to agent programmer, can
also benefit from our approach.

In future work, we plan to further investigate the implications
of integrating belief revision into the AgentSpeak execution cycle
(e.g., allowing belief deletions in plans, ontological reasoning). On
the more practical side, we plan to develop large-scale agent appli-
cations to assess the performance of Jason with belief revision.

Acknowledgements

Rafael Bordini gratefully acknowledges the support of The Nuffield
Foundation (grant number NAL/01065/G).

6. REFERENCES

[1] C.E. Alchourrén, P. Girdenfors, and D. Makinson. On the
logic of theory change: Partial meet functions for contraction
and revision. Journal of Symbolic Logic, 50:510-530, 1985.

[2] N. Alechina, M. Jago, and B. Logan. Resource-bounded
belief revision and contraction. In Proceedings of the 3rd
International Workshop on Declarative Agent Languages
and Technologies (DALT 2005), 2005.

[3] R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors. Multi-Agent
Programming: Languages, Platforms and Applications.
Number 15 in Multiagent Systems, Artificial Societies, and
Simulated Organizations. Springer, 2005.

[4] R. H. Bordini, J. F. Hiibner, et al. Jason: A Java-based
agentSpeak interpreter used with saci for multi-agent
distribution over the net, manual, release version 0.7 edition,
August 2005. http://jason.sourceforge.net/.

[5] R. H. Bordini and A. F. Moreira. Proving BDI properties of
agent-oriented programming languages: The asymmetry
thesis principles in AgentSpeak(L). Annals of Mathematics
and Artificial Intelligence, 42(1-3):197-226, 2004.

[6] D. Kinny. Agents — the challenge of relevance to the it
mainstream. In Programming Multi-Agent Systems, Second
International Workshop ProMAS 2004, LNCS Vol. 3346,
pages 38—43. Springer-Verlag, 2005.

[7]1 A.FE. Moreira, R. Vieira, R. H. Bordini, and J. Hiibner.
Agent-oriented programming with underlying ontological
reasoning. In Proceedings of the 3rd International Workshop
on Declarative Agent Languages and Technologies (DALT
2005), 2005.

[8] A.S.Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Proceedings of the Seventh
Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW’96), LNAI Vol. 1038, pages
42-55, London, 1996. Springer-Verlag.

[9] A.S.Rao and M. P. Georgeff. Modeling rational agents
within a BDI-architecture. In Proceedings of the Second
International Conference on Principles of Knowledge
Representation and Reasoning (KR’91), pages 473484,
1991.

[10] R. M. van Eijk, F. S. de Boer, W. van der Hoek, and J.-J. C.
Meyer. Information-passing and belief revision in
multi-agent systems. In Intelligent Agents V — Agent
Theories, Architectures, and Languages, LNCS Vol. 1555,
pages 29-45, Berlin, 1999. Springer-Verlag.

[11] M. Wooldridge. Reasoning About Rational Agents. MIT
Press, 2000.

