
A Logic of Agent Programs

N. Alechina1 M. Dastani2
1 School of Computer Science

University of Nottingham
Nottingham NG8 1BB, UK

{nza,bsl}@cs.nott.ac.uk

B. S. Logan1 J.-J. Ch. Meyer2

2 Deparment of Information and Computing Sciences
Universiteit Utrecht

3584CH Utrecht, The Netherlands
{mehdi,jj}@cs.uu.nl

Abstract

We present a sound and complete logic for reasoning about
SimpleAPL programs. SimpleAPL is a fragment of the agent
programming language 3APL designed for the implementa-
tion of cognitive agents with beliefs, goals and plans. Our
logic is a variant of PDL, and allows the specification of
safety and liveness properties of agent programs. We prove
a correspondence between the operational semantics of Sim-
pleAPL and the models of the logic for two example program
execution strategies. We show how to translate agent pro-
grams written in SimpleAPL into expressions of the logic,
and give an example in which we show how to verify correct-
ness properties for a simple agent program.

Introduction
The verification of agent programs is a key problem in agent
research and development. This focus stems both from the
researcher’s desire to check that agent architectures and pro-
gramming languages conform to general principles of ratio-
nal agency and the developer’s need to check that a partic-
ular agent program will achieve the agent’s goals. A logic
used for reasoning about the execution of agent programs
must be grounded in the computation of the agent (in the
sense of (van der Hoek & Wooldridge 2003)). In addition,
for the researcher, it is beneficial if the logic allows spec-
ification of key aspects of the agent’s architecture, such as
its execution cycle (e.g., to explore commitment under dif-
ferent program execution strategies). For both the developer
and the researcher the logic should admit a fully automated
verification procedure.

In this paper, we present a sound and complete logic for
an APL-like (Dastani et al. 2004; Bordini et al. 2005) agent
programming language which admits a fully automated ver-
ification procedure using theorem proving. Our logic is a
variant of Propositional Dynamic Logic (PDL) (Fischer &
Ladner 1979) and allows the specification of safety and live-
ness properties of agent programs. Moreover, our approach
allows us to capture the agent’s execution strategy in the
logic.

The remainder of the paper is organised as follows. In the
next section, we introduce SimpleAPL and give its opera-

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tional semantics for two example program execution strate-
gies. We then give the syntax and semantics of the logic and
its sound and complete axiomatization and prove a corre-
spondence between the operational semantics of SimpleAPL
and the models of the logic for both program execution
strategies. Finally, we show how to translate agent programs
written in SimpleAPL into expressions of the logic, and give
an example in which we verify correctness properties of a
simple agent program using a theorem prover.

An Agent Programming Language
In this section we present the syntax and semantics of Sim-
pleAPL, a fragment of the logic based agent-oriented pro-
gramming language 3APL (Dastani et al. 2004; Bordini et
al. 2005). SimpleAPL contains the core features of 3APL
and allows the implementation of agents with beliefs, goals,
actions, plans, and planning rules. The main features of
3APL not present in SimpleAPL are a first order language
for beliefs and goals, and rules for dropping goals and for
revising plans. We have omitted these features in order to
simplify the presentation; they do not present a significant
technical challenge for our approach.

Beliefs and Goals The beliefs of an agent represent its in-
formation about its environment, while its goals represent
situations the agent wants to realize (not necessary all at
once). For simplicity, we only allow the agent’s beliefs and
goals to be literals. The initial beliefs and goals of an agent
are specified by its program. For example, a simple vac-
uum cleaner agent might initially believe that it is in room 1,
room 2 is not clean and its battery is charged:

Beliefs: room1, -clean2, battery

and may initially want to achieve a situation in which both
room 1 and room 2 are clean:

Goals: clean1, clean2

The beliefs and goals of an agent are related to each other:
if an agent believes p, then it will not pursue p as a goal.

Basic Actions Basic actions specify the capabilities an
agent can use to achieve its goals. There are three types
of basic actions: those that update the agent’s beliefs and
those which test its beliefs and goals. A belief test action
tests whether a boolean belief expression is derivable from



an agent’s beliefs, i.e., it tests whether the agent has a cer-
tain belief. A goal test action tests whether a boolean goal
expression is derivable from the agent’s goals, i.e., it tests
whether the agent has a certain goal. Belief update actions
change the beliefs of the agent. A belief update action is
specified in terms of its pre- and postconditions, and can be
executed if its pre-condition is derivable from the agent’s
current beliefs. Executing the action adds its postcondition
to the agent’s beliefs. Belief update actions maintain consis-
tency of the agent’s beliefs, i.e., if p is in the belief set and
−p is added as a postcondition of an action, p is replaced by
−p. For example, the following belief update specifications

BeliefUpdates:
{room1} moveR {-room1, room2}
{room1, battery} suck {clean1, -battery}

can be read as “if the agent is in room 1 and moves right, it
ends up in room 2”, and “if the agent is in room 1 and its bat-
tery is charged, it can perform a ‘suck’ action, after which
room 1 is clean and its battery is discharged”. Goals which
are achieved by the postcondition of an action are dropped.
For example, if the agent has a goal to clean room 1, execut-
ing a ‘suck’ action in room 1 will cause it to drop the goal.
For simplicity, we assume that the agent’s beliefs about its
environment are always correct and its actions in the envi-
ronment are always successful. This assumption can be re-
laxed in a straightforward way by including the state of the
environment in the models.

Plans In order to achieve its goals, an agent adopts plans.
A plan consists of basic actions composed by sequence, con-
ditional choice and conditional iteration operators. The se-
quence operator ; takes two plans as arguments and indi-
cates that the first plan should be performed before the sec-
ond plan. The conditional choice and conditional iteration
operators allow branching and looping and generate plans
of the form if φ then {π1} else {π2} and while
φ do {π} respectively. The condition φ is evaluated with
respect to the agent’s current beliefs. For example, the plan:

if room1 then {suck} else {moveL; suck}
causes the agent to clean room 1 if it’s currently there, oth-
erwise it first moves to room 1 and then cleans it.

Planning Goal Rules Planning goal rules are used by the
agent to select a plan based on its current goals and beliefs.
A planning goal rule consists of three parts: an (optional)
goal query, a belief query, and the body of the rule. The goal
query specifies what the plan is good for; the belief query
characterises the situation(s) in which it could be a good idea
to execute the plan. Firing a planning goal rule causes the
agent to adopt the plan which forms the body of the rule. For
example, the planning goal rule:

clean2 <- battery |
if room2 then {suck} else {moveR; suck}

states that “if the agent’s goal is to clean room 2 and its bat-
tery is charged, then the specified plan may be used to clean
the room”. Note that an agent can generate a plan based only
on its current beliefs as the goal query is optional. This al-
lows the implementation of reactive agents (agents without
any goals). For example, the reactive rule:

<- -battery |
if room2 then {charge} else {moveR; charge}

states “if the battery is low, the specified plan may be used
to charge it”. For simplicity, we assume that agents do not
have initial plans, i.e., plans can only be generated during
the agent’s execution by planning goal rules.

The syntax of SimpleAPL is given below in EBNF no-
tation. We assume a set of belief update actions and a set
of propositions, and use 〈aliteral 〉 to denote the name of a
belief update action and 〈bliteral 〉 and 〈gliteral 〉 to denote
belief and goal literals.

〈APL Prog〉 ::= "BeliefUpdates:" 〈updatespecs〉
| "Beliefs:" 〈beliefs〉
| "Goals": 〈goals〉
| "PG rules:" 〈pgrules〉

〈updatespecs〉 ::= [〈updatespec〉 ("," 〈updatespec〉)* ]
〈updatespec〉 ::= "{" 〈beliefs〉 "}"

〈aliteral 〉
"{"〈beliefs〉"}"

〈beliefs〉 ::= [〈bliteral 〉 ("," 〈bliteral 〉)*]
〈goals〉 ::= [〈gliteral 〉 ("," 〈gliteral 〉)*]
〈plan〉 ::= 〈baction〉 | 〈sequenceplan〉

| 〈ifplan〉 | 〈whileplan〉
〈baction〉 ::= 〈aliteral 〉 | 〈testbelief 〉 | 〈testgoal〉
〈testbelief 〉 ::= 〈bquery〉 "?"
〈testgoal〉 ::= 〈gquery〉 "!"
〈bquery〉 ::= 〈bliteral 〉 | 〈bquery〉 "and" 〈bquery〉

| 〈bquery〉 "or" 〈bquery〉
〈gquery〉 ::= 〈gliteral 〉 | 〈gquery〉 "and" 〈gquery〉

| 〈gquery〉 "or" 〈gquery〉
〈sequenceplan〉 ::= 〈plan〉 ";" 〈plan〉
〈ifplan〉 ::= "if" 〈bquery〉 "then {" 〈plan〉 "}"

["else {" 〈plan〉 "}"]
〈whileplan〉 ::= "while" 〈bquery〉 "do {" 〈plan〉 "}"
〈pgrules〉 ::= [〈pgrule〉 ("," 〈pgrule〉)* ]
〈pgrule〉 ::= [〈gquery〉] "<-" 〈bquery〉 "|" 〈plan〉

Operational Semantics

We define the formal semantics of the agent programming
language in terms of a transition system. Each transition
corresponds to a single execution step and takes the system
from one configuration to another. Configurations consist of
the beliefs, goals, and plans of the agent. Which transitions
are possible in a configuration depends on the agent’s exe-
cution strategy. Many execution strategies are possible and
we do not have space here to describe them all in detail. Be-
low we give two versions of operational semantics, one for
an agent which executes a single plan to completion before
choosing another plan, and another for an execution strategy
which interleaves the execution of multiple plans with the
adoption of new plans.

Definition 1 The configuration of an individual agent is de-
fined as 〈σ, γ,Π〉 where σ is a set of literals representing the
agent’s beliefs, γ is a set of literals representing the agent’s
goals, and Π is a set of plan entries representing the agent’s
current active plans.



An agent’s initial beliefs and goals are specified by its pro-
gram, and Π is initially empty. Executing the agent’s pro-
gram modifies its initial configuration in accordance with
the transition rules presented below. We first give the tran-
sitions for the non-interleaved execution strategy and then
show how these are modified for interleaved execution.

Non-interleaved execution
By non-interleaved execution we mean the following execu-
tion strategy: when in a configuration with no plan, choose
a planning goal rule non-deterministically, apply it, execute
the resulting plan; repeat.

Belief Update Actions A belief update action α can be
executed if its precondition is entailed by the agent’s beliefs,
i,e., σ |= φ. Executing the action adds the literals in the
postcondition to the agent’s beliefs and removes any existing
beliefs which are inconsistent with the postcondition.

(1)
T (α, σ) = σ′ γ′ = γ \ {φ ∈ γ | σ′ |= φ}

〈σ, γ, {α}〉 −→ 〈σ′, γ′, {}〉
T is a partial function that takes a belief update action α and
a belief set σ, and returns the modified belief set if the pre-
condition of the action is entailed by σ. Note that executing
a belief update action causes the agent to drop any goals it
believes to be achieved as a result of the update.

Belief and Goal Test Actions A belief test action β? can
be executed if β is entailed by the agent’s beliefs.

(2)
σ |= β

〈σ, γ, {β?}〉 −→ 〈σ, γ, {}〉
A goal test action κ! can be executed if κ is entailed by the
agent’s goals.

(3)
γ |= κ

〈σ, γ, {κ!}〉 −→ 〈σ, γ, {}〉
Composite Plans The following transition rules specify
the effect of executing the sequence, conditional choice, and
conditional iteration operators, respectively.

(4)
〈σ, γ, {π1}〉 → 〈σ′, γ′, {}〉 〈σ′, γ′, {π2}〉 → 〈σ′′, γ′′, {}〉

〈σ, γ, {π1;π2}〉 −→ 〈σ′′, γ′′, {}〉

(5)
σ |= φ

〈σ, γ, {if φ then π1 else π2}〉 −→ 〈σ, γ, {π1}〉
(6)

σ �|= φ

〈σ, γ, {if φ then π1 else π2}〉 −→ 〈σ, γ, {π2}〉
(7)

σ |= φ

〈σ, γ, {while φ do π}〉 −→ 〈σ, γ, {π; while φ do π}〉
(8)

σ �|= φ

〈σ, γ, {while φ do π}〉 −→ 〈σ, γ, {}〉
Planning Goal Rules A planning goal rule κ ← β|π can
be applied if κ is entailed by the agent’s goals and β is en-
tailed by the agent’s beliefs. Applying the rule adds π to the
agent’s plans.

(9)
γ |= κ σ |= β

〈σ, γ, {}〉 −→ 〈σ, γ, {π}〉

Interleaved execution
By interleaved execution we mean the following execution
strategy: either apply a planning goal rule, or execute the
first step in any of the current plans; repeat. The transitions
for an interleaved execution strategy are:

(1i)
α ∈ Π T (α, σ) = σ′ γ′ = γ \ {φ ∈ γ | σ′ |= φ}

〈σ, γ,Π〉 −→ 〈σ′, γ′,Π \ {α}〉

(2i)
β? ∈ Π σ |= β

〈σ, γ,Π〉 −→ 〈σ, γ,Π \ {β?}〉
The interleaved version of (3) is analogous to (2i), and the
interleaved versions of (4) is as follows:

(4i)
α ∈ Π 〈σ, γ,Π〉 → 〈σ′, γ′,Π \ {α}〉 α;π ∈ Π′

〈σ, γ,Π′〉 −→ 〈σ′, γ′, (Π′ \ {α;π}) ∪ {π}〉
The interleaved versions of (5) – (8) are obtained by adding
a set of plans Π in all configurations, analogously to (1i)
– (4i). In (9) the planning goal rule is applicable only if
the agent’s set of plan entries is empty. For the interleaved
version, this requirement is dropped:

(9i)
γ |= κ σ |= β

〈σ, γ,Π〉 −→ 〈σ, γ, {π} ∪Π〉
Logic

In this section, we introduce a logic which allows us to spec-
ify properties of SimpleAPL agent programs. We begin by
defining transition systems which capture the capabilities of
agents as specified by their basic actions. These transition
systems are more general than both versions of the oper-
ational semantics presented above, in that they do not de-
scribe a particular agent program or execution strategy, but
all possible basic transitions between all the belief and goal
states of an agent. We then show how to interpret a variant
of Propositional Dynamic Logic (PDL) with belief and goal
operators in this semantics, and give a sound and complete
axiom system for the logic.

States and transitions Let P denote the set of proposi-
tional variables used to describe agent’s beliefs and goals. A
state s is a pair 〈σ, γ〉, where:

σ is a set of beliefs {(−)p1, . . . , (−)pn : pi ∈ P}. We
assume that belief states are consistent, i.e., for no p ∈ P
both p and−p ∈ σ.

γ is a set of goals {(−)u1, . . . , (−)un : ui ∈ P}. The set
of goals does not have to be consistent, but it has to be
disjoint from σ: no element of γ is in σ (i.e., is already
believed).

Let the set of basic actions be Ac = {α1, . . . , αm}. We
associate with each αi ∈ Ac a set of pre- and postcondi-
tions of the form {(−)p1 ∈ σ, . . . , (−)pn ∈ σ}, {(−)q1 ∈
σ′, . . . , (−)qk ∈ σ′} (where ps and qs are not necessarily
disjoint) which mean: if αi is executed in a state with be-
lief set σ which satisfies the precondition then the resulting
state s′ has the belief set σ′ which satisfies the postcondition
(including replacing p with−p if necessary to restore con-
sistency), the rest of σ′ is the same as σ, and the goal set
γ′ = γ \ {(−)p : (−)p ∈ σ′}.



Executing an action αi in different configura-
tions may give different results. For each αi,
we denote the set of pre- and postcondition pairs
{(prec1, post1), . . . , (precl, postl)} by C(αi). We as-
sume that C(αi) is finite, that preconditions precj , preck

are mutually exclusive if j �= k, and that each precondition
has exactly one associated postcondition. We denote the set
of all pre- and postconditions by C.

Language Assume that we can make PDL program ex-
pressions ρ out of basic actions αi by using sequential com-
position ;, test on formulas ?, union ∪ and finite iteration ∗.
The formulas on which we can test are any formulas of the
language L defined below, although to express SimpleAPL
plans we only need tests on beliefs and goals. The language
L for talking about the agent’s beliefs, goals and plans is the
language of PDL extended with belief operator B and goal
operator G. A formula of L is defined as follows: if p ∈ P ,
then B(−)p and G(−)p are formulas; if ρ is a program ex-
pression and φ a formula, then 〈ρ〉φ and [ρ]φ are formulas;
and L is closed under the usual boolean connectives. In the
following, we will refer to the sublanguage of L which does
not contain program modalities 〈ρ〉 and [ρ] as L0.

Semantics A model for L is a structure M = (S, {Rαi :
αi ∈ Ac}, V ), where

• S is a set of states.

• V = (Vb, Vg) is the evaluation function consisting of be-
lief and goal valuation functions Vb and Vg such that for
s = 〈σ, γ〉, Vb(s) = σ and Vg(s) = γ.

• Rαi , for each αi ∈ Ac, is a relation on S such that
(s, s′) ∈ Rαi iff for some (precj , postj) ∈ C(αi),
precj(s) and postj(s

′), i.e., for some pair of pre- and
postconditions of αi, the precondition holds for s and the
corresponding postcondition holds for s′. Note that this
implies two things: first, an αi transition can only origi-
nate in a state s which satisfies one of the preconditions
for αi; second, since pre-conditions are mutually exclu-
sive, every such s satisfies exactly one pre-condition, and
all αi-successors of s satisfy the matching post-condition.

Given the relations corresponding to basic actions in M ,
we can define sets of paths in the model corresponding to
any PDL program expression ρ in M . A set of paths τ(ρ) ⊆
(S × S)∗ is defined inductively:

• τ(αi) = {(s, s′) : Rαi(s, s′)}
• τ(φ?) = {(s, s) : M, s |= φ}
• τ(ρ1 ∪ ρ2) = {z : z ∈ τ(ρ1) ∪ τ(ρ2)}
• τ(ρ1; ρ2) = {z1 ◦ z2 : z1 ∈ τ(ρ1), z2 ∈ τ(ρ2)}, where ◦

is concatenation of paths, such that z1 ◦ z2 is only defined
if z1 ends in the state where z2 starts

• τ(ρ∗) is the set of all paths consisting of zero or finitely
many concatenations of paths in τ(ρ) (same condition on
concatenation as above)

The relation |= of a formula being true in a state of a model
is defined inductively as follows:

• M, s |= B(−)p iff (−)p ∈ Vb(s)

• M, s |= G(−)p iff (−)p ∈ Vg(s)
• M, s |= ¬φ iff M, s �|= φ

• M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

• M, s |= 〈ρ〉φ iff there is a path in τ(ρ) starting in s which
ends in a state s′ such that M, s′ |= φ.

• M, s |= [ρ]φ iff for all paths τ(ρ) starting in s, the end
state s′ of the path satisfies M, s′ |= φ.

Let the class of transition systems defined above be de-
noted MC (note that M is parameterised by the set C of
pre- and postconditions of basic actions).

Axiomatisation Note that for every pre- and postcondi-
tion pair (preci, posti) we can describe states satisfying
preci and states satisfying posti by formulas of L. More
formally, we define a formula fb(X) corresponding to a pre-
or postcondition X as follows: fb((−)p ∈ σ) = B(−)p and
fb({φ1, . . . , φn}) = fb(φ1)∧ . . .∧fb(φn) This allows us to
axiomatise pre- and postconditions of actions.

To axiomatise the set of models defined above relative to
C we need:

CL classical propositional logic

PDL axioms of PDL (see, e.g., (Harel, Kozen, & Tiuryn
2000))

A1 consistency of beliefs: ¬(Bp ∧B−p)
A2 beliefs are not goals: B(−)p→ ¬G(−)p
A3 for every action αi and every pair of pre- and postcon-

ditions (precj , postj) in C(αi) and formula Φ not con-
taining any propositional variables occurring in postj :

fb(precj) ∧Φ→ [αi](fb(postj) ∧ Φ)

this is essentially a frame axiom for basic actions.

A4 for every action αi, where all possible preconditions in
C(αi) are prec1, . . . , preck:

¬fb(prec1) ∧ . . . ∧ ¬fb(preck)→ ¬〈αi〉�
where� is a tautology.

A5 for every action αi and every precondition precj in
C(αi), fb(precj)→ 〈αi〉�
Let us call the axiom system above AxC where, as be-

fore, C is the set of pre- and postconditions of basic actions.

Theorem 1 AxC is sound and complete for the class of
models MC.

The proof is omitted due to lack of space.

Verification
In this section we show how to define exactly the set of
paths in the transition system generated by the operational
semantics by a PDL program expression. This allows us
to verify properties of agent programs, such as ‘all execu-
tions of a given program result in a state satisfying property
φ’. More precisely, we would like to express that, given the
initial beliefs and goals of the agent, the application of its
planning goal rules and the execution of the resulting plans
reach states in which the agent has certain beliefs and goals.



Agent Programs in PDL
We distinguish two types of properties of agent programs:
safety properties and liveness properties. Let φ ∈ L0 denote
the initial beliefs and goals of an agent and ψ ∈ L0 denote
states in which certain beliefs and goals hold (i.e., φ, ψ are
formulas of L0 containing only B(−)p and G(−)q atoms).
The general form of safety and liveness properties is then:
φ→ [ ξ(Λ) ]ψ and φ→ 〈ξ(Λ)〉ψ, respectively (where ξ(Λ)
describes the execution of the agent’s program Λ).

The beliefs, goals and plans of agent programs can be
translated into PDL expressions as follows.

• Translation of belief formulas: let p ∈ P and φ, ψ be
belief query expressions (i.e., 〈bquery〉) of SimpleAPL

– fb((−)p) = B(−)p
– fb(φ and ψ) = fb(φ) ∧ fb(ψ)
– fb(φ or ψ) = fb(φ) ∨ fb(ψ)

• Translation of goal formulas: analogous to beliefs, with
φ, ψ replaced by goal query expressions (i.e., 〈gquery〉),
B replaced by G and fb replaced by fg

• Translation of plan expressions: let αi be a belief update
action, φ and ψ be belief and goal query expressions, and
π, π1, π2 be plan expressions (i.e., 〈plan〉) of SimpleAPL

– fp(αi) = αi

– fp(φ?) = fb(φ)?
– fp(ψ!) = fg(ψ)?
– fp(π1;π2) = fp(π1); fp(π2)
– fp(if φ then π1 else π2) = (fb(φ)?; fp(π1)) ∪

(¬fb(φ)?; fp(π2))
– fp(while φ do π) = (fb(φ)?; fp(π))∗;¬fb(φ)?

Expressing the non-interleaved strategy The application
of a set of planning goal rules Λ = {ri|ri = κi ← βi|πi} for
an agent with a non-interleaved execution strategy is trans-
lated as follows:

ξ(Λ) = (
⋃

ri∈Λ

(fg(κi) ∧ fb(βi))?; fp(πi))+

where + is the strict transitive closure operator: ρ+ = ρ; ρ∗.
According to this expression, each rule can be applied zero
or more times (but at least one of the rules will be applied).

Using this definition of ξ(Λ), the general schema of safety
and liveness properties for an agent with an interleaved exe-
cution strategy are then:

Safety properties:
φ→ [ (

⋃
ri∈Λ(fg(κi) ∧ fb(βi))?; fp(πi))+ ]ψ

Liveness properties:
φ→ 〈 (⋃ri∈Λ(fg(κi) ∧ fb(βi))?; fp(πi))+ 〉ψ
Below we show that the translation above is faithful,

namely the PDL program expression which is the transla-
tion of the agent’s program corresponds to the set of paths in
the transition system generated by the operational semantics
for that agent program.

Let C be a set of pre- and postconditions of belief updates,
Λ an agent program, and TS the corresponding transition

system defined by the operational semantics for an agent us-
ing a non-interleaved execution strategy (all possible config-
urations 〈σ, γ, {Π}〉 and transitions between them, given Λ
and C). Finally, let M ∈MC be a PDL model.

Theorem 2 For every two agent configurations 〈σ, γ, {}〉
and 〈σ′, γ′, {}〉, there is a path between 〈σ, γ, {}〉 and
〈σ′, γ′, {}〉 in TS if, and only if, inM there is a correspond-
ing path described by ξ(Λ) between 〈σ, γ〉 and 〈σ′, γ′〉.
The proof is omitted due to lack of space.

Expressing the interleaved strategy For an agent with an
interleaved execution strategy, we need a version of PDL
with an additional interleaving operator, ‖ (Abrahamson
1980).

Recall that each ρ is interpreted as a set of paths τ(ρ).
Each path consists of zero or finitely many steps (s, s′)
which are in Rαi for some atomic action αi or in τ(φ?) for
some formula φ. The inductive clause for the interleaving
operator ρ1 ‖ ρ2 is as follows:

τ(ρ1 ‖ ρ2) is the set of all paths obtained by interleaving
atomic actions and tests from τ(ρ1) and τ(ρ2). Only le-
gal computational sequences are considered here, namely
whenever (s1, s2)(s3, s4) is a subword of a sequence,
then s2 = s3.

In this extended language, we can define paths in the execu-
tion of an agent with an interleaved execution strategy and
planning goal rules Λ = {ri|ri = κi ← βi|πi} by the fol-
lowing program expression:

ξi(Λ) = (‖ri∈Λ (fg(κi) ∧ fb(βi))?; fp(πi))+

Let C, Λ and M be as in theorem 2, and TS be a tran-
sition system defined by the operational semantics for the
interleaved execution strategy.

Theorem 3 For every two agent configurations 〈σ, γ, {}〉
and 〈σ′, γ′, {}〉, there is a path between 〈σ, γ, {}〉 and
〈σ′, γ′, {}〉 in TS if, and only if, inM there is a correspond-
ing path described by ξi(Λ) between 〈σ, γ〉 and 〈σ′, γ〉.
The proof is omitted due to lack of space.

Example
In this section we briefly illustrate how to prove properties
of agents in our logic, using the vacuum cleaner agent as
an example. We will use the following abbreviations: ci
for cleani, ri for roomi, b for battery, s for suck, c for
charge, r for moveR, l for moveL. The agent’s program is:

c1 <- b | if r1 then {s} else {l; s}
c2 <- b | if r2 then {s} else {r; s}

<- −b | if r2 then {c} else {r; c}
Under the non-interleaved execution strategy, this program
corresponds to the following PDL program expression:

vac =df ((Gc1 ∧Bb)?; (Br1?; s) ∪ (¬Br1?; l; s)) ∪
((Gc2 ∧Bb)?; (Br2?; s) ∪ (¬Br2?; r; s)) ∪
(B−b?; (Br2?; c) ∪ (¬Br2?; r; c))

Given appropriate pre- and postconditions for the actions in
the example program (such as the pre- and postconditions



of moveR and suck given earlier in the paper), some of the
instances of A3–A5 are:

A3r Br1 ∧Gc2 → [r](Br2 ∧Gc2)
A3s Br1 ∧Bb ∧Gc2 → [s](Bc1 ∧Br1 ∧Gc2)
A4r ¬Br1 → ¬〈r〉�
A5s Br1 ∧Bb→ 〈s〉�.

Using a PDL theorem prover such as MSPASS (Hustadt &
Schmidt 2000) (for properties without ∗) or PDL-TABLEAU
(Schmidt 2003), and instances of axioms A1-A5 such as
those above, we can prove a liveness property that if the
agent has goals clean1, clean2 and starts in the state where
its battery is charged and it is in room 1, it can reach a state
where both rooms are clean, and a safety property that it is
guaranteed to achieve its goal:

Gc1 ∧Gc2 ∧Bb ∧Br1 → 〈vac3〉(Bc1 ∧Bc2)
Gc1 ∧Gc2 ∧Bb ∧Br1 → [vac3](Bc1 ∧Bc2)

where vac3 stands for vac repeated three times.
We can also prove, using PDL-TABLEAU, a version of a

blind commitment property which states that an agent either
keeps its goal or believes it has been achieved:

Gc1 → [vac∗](Bc1 ∨Gc1)

Discussion
In this paper, we proposed a sound and complete logic which
allows the specification and verification of safety and live-
ness properties of SimpleAPL agents.

There has been a considerable amount of work on ver-
ifying properties of agents implemented in a variety of
agent programming languages such as AgentSpeak, Con-
Golog and 3APL. Shapiro et al. (2002), describe CASLve,
a framework for verifying properties of agents implemented
in ConGolog. CASLve is based on the higher-order theo-
rem prover PVS and has been used to prove, e.g., termi-
nation of bounded-loop programs. However, its flexibility
means that verification requires user interaction in the form
of proof strategies. Properties of agents implemented in pro-
gramming languages based on executable temporal logics
such as MetateM (Fisher 2006), can also easily be automat-
ically verified. However these languages are quite different
from languages like SimpleAPL, in that the agent program
is specified in terms of temporal relations between states
rather than branching and looping constructs. Other related
attempts to bridge the gap between agent programs on the
one hand and verification logics on the other, e.g., (Hindriks
& Meyer 2007), have yet to result in an automated verifica-
tion procedure.

Another important strand of work in automated verifica-
tion of agents is based on model-checking, e.g., (Benere-
cetti, Giunchiglia, & Serafini 1998; Bordini et al. 2006;
Lomuscio & Raimondi 2006). While our logic can be used
to express properties of agents for model-checking, in this
paper we chose to focus on the relationship between specific
properties of programs and the axioms describing general
properties of the system, as we believe this gives us a bet-
ter insight into the reasons why a property holds or fails and
which fundamental properties of the agent it depends on.

Acknowledgements We would like to thank to Re-
nate Schmidt for help with MSPASS and PDL-TABLEAU.
Natasha Alechina and Brian Logan were supported by EP-
SRC grant no. EP/E031226.

References
Abrahamson, K. R. 1980. Decidability and expressiveness
of logics of processes. Ph.D. Dissertation, Department of
Computer Science, University of Washington.
Benerecetti, M.; Giunchiglia, F.; and Serafini, L. 1998.
Model checking multiagent systems. J. Log. Comput.
8(3):401–423.
Bordini, R. H.; Dastani, M.; Dix, J.; and El Fallah
Seghrouchni, A. 2005. Multi-Agent Programming: Lan-
guages, Platforms and Applications. Berlin: Springer.
Bordini, R. H.; Fisher, M.; Visser, W.; and Wooldridge, M.
2006. Verifying multi-agent programs by model checking.
Autonomous Agents and Multi-Agent Systems 12(2):239–
256.
Dastani, M.; van Riemsdijk, M. B.; Dignum, F.; and Meyer,
J.-J. C. 2004. A programming language for cognitive
agents: Goal directed 3APL. In Proc. ProMAS 2003, vol-
ume 3067 of LNCS, 111–130. Springer.
Fischer, M. J., and Ladner, R. E. 1979. Propositional
dynamic logic of regular programs. J. Comput. Syst. Sci.
18(2):194–211.
Fisher, M. 2006. MetateM: The story so far. In Proc.
ProMAS 2005, volume 3862 of LNCS, 3–22. Springer.
Harel, D.; Kozen, D.; and Tiuryn, J. 2000. Dynamic Logic.
MIT Press.
Hindriks, K., and Meyer, J.-J. C. 2007. Agent logics as
program logics: Grounding KARO. In Proc. 29th Ger-
man Conference on AI (KI 2006), volume 4314 of LNAI.
Springer.
Hustadt, U., and Schmidt, R. A. 2000. MSPASS: Modal
reasoning by translation and first-order resolution. In Proc.
TABLEAUX 2000, volume 1847 of LNCS, 67–71. Springer.
Lomuscio, A., and Raimondi, F. 2006. Mcmas: A model
checker for multi-agent systems. In Proc. TACAS 2006,
450–454.
Schmidt, R. A. 2003. PDL-TABLEAU. http://www.
cs.man.ac.uk/˜schmidt/pdl-tableau.
Shapiro, S.; Lespérance, Y.; and Levesque, H. J. 2002. The
cognitive agents specification language and verification en-
vironment for multiagent systems. In Proc. AAMAS 2002,
19–26. ACM Press.
van der Hoek, W., and Wooldridge, M. 2003. Towards
a logic of rational agency. Logic Journal of the IGPL
11(2):133–157.


