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Abstract. Agents which perform inferences on the basis of unreliable information need an
ability to revise their beliefs if they discover an inconsistency. Such a belief revision algorithm
ideally should be rational, should respect any preference ordering over the agent’s beliefs
(removing less preferred beliefs where possible) and should be fast. However, while standard
approaches to rational belief revision for classical reasoners allow preferences to be taken into
account, they typically have quite high complexity. In this paper, we consider belief revision
for agents which reason in a simpler logic than full first-order logic, namely rule-based rea-
soners. We show that it is possible to define a contraction operation for rule-based reasoners,
which we call McAllester contraction, which satisfies all the basic Alchourrón, Gärdenfors
and Makinson (AGM) postulates for contraction (apart from the recovery postulate) and at
the same time can be computed in polynomial time. We prove a representation theorem for
McAllester contraction with respect to the basic AGM postulates (minus recovery), and two
additional postulates. We then show that our contraction operation removes a set of beliefs
which is least preferred, with respect to a natural interpretation of preference. Finally, we
show how McAllester contraction can be used to define a revision operation which is also
polynomial time, and prove a representation theorem for the revision operation.

1. Introduction

One reason agents interact with other agents or their environment is to acquire
new information. In general, it is impossible to ensure that such information
will be consistent with the agent’s current beliefs, and when an inconsistency
is discovered the agent must revise its beliefs to restore consistency. We
can identify a number of desiderata for such a revision operation. First it
should be theoretically well-motivated, in the sense of producing revisions
which conform to a generally accepted set of postulates characterising ra-
tional belief revision. Secondly, when choosing among possible revisions,
the agent should forgo beliefs which are less preferred, e.g., those which are
less certain, credible or useful. Finally, the revision operation itself should be
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computationally efficient, since further interaction with the environment or
other agents is precluded until revision is complete. However, while standard
approaches to rational belief revision for classical reasoners allow preferences
to be taken into account, they typically have quite high computational com-
plexity, making them unsuitable for use when an agent is interacting with
other agents or the environment in real time.
In this paper, we present an approach to rational belief revision which

takes the agent’s preferences regarding beliefs into account (reflecting e.g.,
how certain, credible or useful it considers a particular belief to be), and
is at the same time efficient. We focus on rational belief revision for rule-
based agents. Rule-based agents have a knowledge base consisting of rules
(Horn clauses) and facts (ground literals). The facts used by an agent to draw
inferences may come from a variety of sources (user input, communication
with other agents, observations of the agent’s environment, downloaded infor-
mation from various web sources, etc.) and change over time, both as a result
of the inference process itself and as a result of the addition and deletion of
facts from the agent’s knowledge base. In general, it is impossible to ensure
that the agent’s knowledge base is always consistent. Even if it is impossible
to derive a fact and its negation from a consistent knowledge base using the
agent’s rules, there is always the possibility of, e.g., derived information be-
ing inconsistent with communicated or observed information. This makes a
belief revision strategy necessary: the agent needs to have a way of removing
enough facts from its knowledge base to make sure that a contradiction is no
longer derivable.
This paper extends work reported by Alechina et al. (2006b; 2006a). In

(Alechina et al., 2006b), a belief contraction algorithm for rule-based agents
was described which runs in time linear in the size of the agent’s knowledge
base in the propositional case. It was also shown that the operation defined
by the algorithm satisfies all but one of the basic Alchourrón, Gärdenfors and
Makinson (AGM) postulates. Alechina et al. (2006a) showed how this algo-
rithm can be incorporated in the AgentSpeak agent programming language.
In this paper, we give extensional definitions of the contraction and revision
operations from (Alechina et al., 2006b) and prove representation theorems
for each operation.
The rest of the paper is organised as follows. In section 2, we briefly survey

the principal theories of belief change, and explain why rational belief change
operations are generally assumed to apply only to idealised agents (i.e., are
at least NP-hard). In section 3 we introduce rule-based agents, and present
a logic which characterises the ‘deductive abilities’ of a forward-chaining
rule-based agent. In section 4 we define the ‘McAllester contraction’ oper-
ation, and prove a representation theorem for it. In section 5, we show that
McAllester contraction can be computed in time polynomial in the size of
the agent’s belief set. We introduce a preference order based on the notion of
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quality of justifications for beliefs in section 6, and show that McAllester con-
traction removes a set of literals which is least preferred. In section 7 we show
how to modify the definition of contraction so that it removes a minimal set
of least preferred literals. In section 8 we show how McAllester contraction
can be used to define a revision operation which is also polynomial time, and
prove a representation theorem for the revision operation. We briefly survey
related work in section 9, and conclude.

2. Approaches to belief revision

Two main approaches to belief revision have been proposed in the litera-
ture: AGM (Alchourrón, Gärdenfors and Makinson)-style belief revision as
characterised by the AGM postulates (Alchourrón et al., 1985) and reason-
maintenance style belief revision (Doyle, 1977).
Classical AGM-style belief revision describes an idealised reasoner with a

potentially infinite set of beliefs closed under logical consequence. Revision
is based on the ideas of coherence and informational economy, i.e., that the
changes to the agent’s belief state caused by a revision be as small as possible.
In particular, if an agent has to give up a belief in A, it does not have to give
up believing in things for which A was the sole justification, so long as they
are consistent with its remaining beliefs. When new information becomes
available, a reasoner must modify its belief set to incorporate it. The AGM
theory defines three operators on a belief set K: expansion, contraction and
revision. Expansion, denoted K + A, simply adds a new belief A to K and
the resulting set is closed under logical consequence. Contraction, denoted
by K

.
− A, removes a belief A from the belief set and modifies K so that it

no longer entails A. Revision, denotedK
.
+ A, is equivalent to expansion ifA

is consistent with the current belief set, otherwise it minimally modifiesK to
make it consistent with A, before adding A and closing under consequence.
Contraction and revision cannot be defined uniquely, since in general there
is no unique maximal set K′ ⊂ K which does not imply A. Instead, the
set of ‘rational’ contraction and revision operators is characterised by the
AGM postulates (Alchourrón et al., 1985). The basic AGM postulates for
contraction are:

(K .
−1) K

.
− A = Cn(K .

− A) (closure)

(K .
−2) K

.
− A ⊆ K (inclusion)

(K .
−3) If A /∈ K, then K

.
− A = K (vacuity)

(K .
−4) If not $ A, then A /∈ K

.
− A (success)

(K .
−5) If A ∈ K, then K ⊆ (K .

− A) + A (recovery)
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(K .
−6) If Cn(A) = Cn(B), then K

.
− A = K

.
− B (equivalence)

where Cn(K) denotes closure of K under logical consequence. The basic
postulates for revision are:

(K .
+1) K

.
+ A = Cn(K .

+ A)

(K .
+2) A ∈ K

.
+ A

(K .
+3) K

.
+ A ⊆ K + A

(K .
+4) If {A} ∪ K is consistent, then K + A = K

.
+ A1

(K .
+5) K

.
+ A is inconsistent if, and only if, A is inconsistent.

(K .
+6) If Cn(A) = Cn(B), then K

.
+ A = K

.
+ B

If the agent is a reasoner in classical logic, a revision operator .+ can be defined
in terms of contraction: K .

+ A
df= (K .

− ¬A) + A (this is known as the Levi
identity).
Reason-maintenance style belief revision, on the other hand, is concerned

with tracking dependencies between beliefs. Each belief has a set of justi-
fications, and the reasons for holding a belief can be traced back through
these justifications to a set of foundational beliefs. When a belief A must be
given up, sufficient foundational beliefs have to be withdrawn to render A
underivable. Moreover, if all the justifications for A are withdrawn, then A
should no longer be held. A more detailed comparison of the two approaches
can be found in, for example (Doyle, 1992). More recently, a number of
approaches have been proposed which try to combine elements of AGM-style
and reason maintenance-style revision; see for example cautious revision by
Tennant (Tennant, 2006) and work by Dixon and Foo (Dixon and Foo, 1993).
Most implementations of reason-maintenance style belief revision are log-

ically incomplete, but tractable. For example, McAllester’s boolean constraint
propagation algorithm (McAllester, 1990) does not find all the classical logi-
cal consequences of boolean formulas, sacrificing completeness for efficiency.
The AGM theory, on the other hand, assumes that the set of beliefs is closed
under logical consequence, and is therefore generally considered to apply
only to idealised agents. To model practical (implementable) agents within
the AGM approach, an approach called belief base revision has been pro-
posed by Makinson (1985), Nebel (1989), Williams (1992), Hansson (1993)
and Rott (1998), amongst others. A belief base is a finite representation of
a belief set. Revision and contraction operations can be defined on belief
bases instead of on logically closed belief sets. However the complexity of

1 We replaced ‘¬A "∈ K’ with ‘{A} ∪ K is consistent’ here, since the two formulations
are classically equivalent.
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these operations ranges from NP-complete (full meet revision) to low in the
polynomial hierarchy (computable using a polynomial number of calls to an
NP oracle which checks satisfiability of a set of formulas) (Nebel, 1994). The
reason for the high complexity is the need to check for classical consistency
while performing the operations. Similarly, dependency-network contraction
was shown to be NP-complete in (Tennant, 2003).
One way to define an operation with a feasible complexity is to weaken the

language and the logic of the agent so that the consistency check is no longer
an expensive operation (as suggested by Nebel (1992)). This is essentially
what we do in this paper. We present an approach to belief revision and
contraction for rule-based agents which is a synthesis of AGM and reason-
maintenance style belief revision. Our approach is tractable while at the same
time being complete and rational with respect to the agent’s logic.

3. Rules and corresponding logic

We assume that the agent’s beliefs are represented in predicate logic, more
precisely, in the form of literals and Horn clause rules. We fix a set of pred-
icate symbols P, a set of variables X and a set of constants D. A literal A
is a predicate symbol of n arguments followed by n variables or constants
and possibly preceded by a negation symbol ‘¬’. For example, if PartOf is a
binary predicate and Bordeaux and France are constants, then

PartOf(Bordeaux, France)

and
PartOf(x, Bordeaux)

are both literals. When every argument of the predicate symbol in a literal is
an element of D, we call the literal a ground literal. We consider an agent
with a finite setR of rules, which are of the form

A1, . . . , An → B

where A1, . . . , An (n ≥ 1), B are literals. B is called the consequent, and
eachAi a premise, of the rule. We assume variables are universally quantified,
and that rules do not contain functional symbols. An example of a rule is:2

Region(x, y), PartOf(y, z) → Region(x, z).

Given a rule A1, . . . , An → B, we define an instance of the rule as

δ(A1, . . . , An → B)
2 The rules are adapted from McGuinness et al. (1994)’s wine ontology.
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where δ is some substitution function from the set of variables of the rule into
D. For example, if δ assigns c = ChateauLafiteRothschildPauillac to
x, Pauillac to y, and Bordeaux to z, then

δ(Region(x, y), PartOf(y, z) → Region(x, z)) =

Region(c, Pauillac), PartOf(Pauillac, Bordeaux)→ Region(c, Bordeaux)

We consider the agent’s beliefs when the agent’s rules have run to quiescence,
i.e., after all the agent’s rules have been applied to all the literals in the agent’s
memory. Note that this set is finite if the original set of rules and ground
literals is finite.
The agent’s beliefs are closed under logical consequence in a logic W

which has a single inference rule, generalised modus ponens (GMP):

δ(A1), . . . , δ(An), A1, . . . , An → B
δ(B)

where δ is a substitution function which replaces all the free variables of
A1, . . . , An → B with constants. We will use $ to denote derivability in W
and Cn closure under consequence in W . Note that W is much weaker than
classical logic. The only new formulas which are derivable from a set of rules
and ground literals are new ground literals. Another limitation is that from
A → B and ¬A → B the agent cannot derive B (it cannot reason using the
law of excluded middle). Also, B and ¬B do not entail arbitrary formulas.
As an example, assume that an agent has the rules:

R1 Region(x, y), PartOf(y, z) → Region(x, z)

R2 Region(x, France) → ¬Region(x, Australia)

and facts:

F1 Region(c, Pauillac)

F2 PartOf(Pauillac, Bordeaux)

F3 PartOf(Bordeaux, France)

F4 PartOf(Tasmania, Australia)

From these rules and facts, the agent can derive

F5 Region(c, Bordeaux) (from F1, F2, R1)

F6 Region(c, France) (from F5, F3, R1)

F7 ¬Region(c, Australia) (from F6, R2)
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To illustrate the need for such an agent to revise its beliefs, assume further
that the agent is told that Chateau Lafite Rothschild Pauillac is a region of
Tasmania:

F8 Region(c, Tasmania)

This new statement does not directly contradict the agent’s beliefs, in the
sense that the belief base does not contain a literal ¬Region(c, Tasmania).
However it does lead to inconsistency, since it derives

F9 Region(c, Australia) (from F8, F4, R1)

which is inconsistent with F7. The agent now needs to revise its beliefs to
restore consistency. It needs to contract either by Region(c, Australia) or
by ¬Region(c, Australia).

4. McAllester contraction

In this section, we define a contraction operation for rule-based reasoners. In
defining our contraction operation we have chosen to allow contraction only
by literals, and not by rules. For many rule-based agents it is reasonable to
suppose that the agent’s rules are not open to revision: for example, if the rules
constitute certain knowledge about the domain, e.g., ontological rules, or if
they constitute its program and so cannot safely be revised. On the other hand,
facts or literals may be acquired from multiple, perhaps unreliable sources,
and as such are a possible source of inconsistencies. To model sources of
belief, we assume that the agent prefers some beliefs to others. For example,
it may trust communicated information (such as F8 in the example above)
less than the information in its original knowledge base (such as F1). Those
preferences are used to decide which beliefs to remove to restore consistency.
To make the notion of preference precise, we assume that there is a preference
order(, which is a total order on the set of ground literals.3 For example, each
literal Amay be assigned a numerical degree of preference p(A), and A ( B
if p(A) < p(B); if p(A) = p(B) for two different literals A and B, we can
use, for example, a lexicographical order to decide which one precedes the
other in (. For any finite set of ground literals Γ, we denote by w(Γ) (‘the
weakest element of Γ’) the element of Γ which is minimal with respect to (.

3 A total or linear order % on a setX is a binary relation satisfying, for all A,B, C ∈ X:
(reflexivity) A % A

(antisymmetry) if A % B and B % A, then A = B

(transitivity) if A % B and B % C, then A % C

(comparability) A % B or B % A.
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Let us denote the set of the agent’s beliefs (rules and ground literals) by
K. For two ground literals δ(A) and δ(B), let us say that δ(B) depends on
δ(A) in K, in symbols δ(A) )K δ(B), if either:

1. δ(A) = δ(B); or,

2. A1, . . . , An → B ∈ K, δ(A1), . . . , δ(An) ∈ K, and δ(A) is the least
preferred premise of the rule instance δ(A1, . . . , An → B), formally:
δ(A) = w(δ(A1), . . . , δ(An)); or

3. A1, . . . , An → C ∈ K, δ(A1), . . . , δ(An) ∈ K,
δ(A) = w(δ(A1), . . . , δ(An)), and δ(C) )K δ(B).

This notion of dependence is different from entailment. In order forA )K B
to hold,A and B have to be inK,B should be derivable fromK ,A should be
a literal which is actively involved in the derivation of B, and, in addition, it
has to be involved as the weakest premise of some rule used in the derivation.4

DEFINITION 1. A McAllester contraction of K by a literal A, K .
− A, is

defined as
K

.
− A

df= Cn(K\Γ)

where Γ ⊆ {C : C )K A} and K\Γ *$ A.

The motivation behind this definition of contraction is simple: to contract
by A, we need to ‘destroy’, by removing some premise, each rule instance
which can be used to derive A, and we choose to remove those beliefs which
are least preferred. 5 Note that since some rule instances may share premises,
‘destroying’ one rule instance may mean that another rule instance becomes
destroyed, too, and it is not always necessary to remove all of {C : C )K A}
to make A underivable.
McAllester contractions can be characterised by the following set of pos-

tulates.
4 It is also different from the notion of dependence in logic programming (Kowalski, 1979)

where the head of a rule depends on any literal in the body (not just the weakest).
5 This is similar in spirit to safe contraction (Alchourrón and Makinson, 1985) and

kernel contraction (Hansson, 1994) but does not involve considering all the kernels/inclusion-
minimal subsets of K which imply A. It can also be shown to remove, in some cases, a
different set of literals than any kernel contraction would remove. The following example
demonstrates this. Let K = {A(0), A(1), A(2), r}, where r = A(x),A(0) → A(y), and
the preference order is A(2) % A(1) % A(0). Suppose we contract by A(2). There are
three rule instances of r which derive A(2), obtained by substitutions (x/0, y/2), (x/1, y/2)
and (x/2, y/2). McAllester contraction may remove the weakest premise from each, namely
A(0), A(1) and A(2). However there are only two A(2)-kernels, namely {A(2)} and
{A(0), r}, so there is no function which removes one element from every kernel which would
remove three literals. Hence there is no kernel contraction corresponding to this particular
McAllester contraction.
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THEOREM 1. Each McAllester contraction satisfies the postulates (K.
−1)–

(K .
−F) below, and conversely, if a contraction operation satisfies the postu-

lates, then it is a McAllester contraction.

(K .
−1) K

.
− A = Cn(K .

− A), where Cn(K) denotes the closure of K
with respect to GMP (closure)

(K .
−2) K

.
− A ⊆ K (inclusion)

(K .
−3) If A /∈ K, then K

.
− A = K (vacuity)

(K .
−4) A /∈ K

.
− A (success)

(K .
−6) If Cn(A) = Cn(B), then K

.
− A = K

.
− B (equivalence)

(K .
−R) For each rule A1, . . . , An → B, if A1, . . . , An → B ∈ K , then

A1, . . . , An → B ∈ K
.
− B (rule persistence)

(K .
−F) If C ∈ K and C /∈ K

.
− A then C )K A (minimality)

Proof. First we show that McAllester contractions satisfy the postulates. (K.
−1)

is satisfied because we explicitly deductively close K\Γ. (K.
−2) is satisfied

because we never add literals to K. (K.
−3) is satisfied because we remove

only A and the literals on which A depends; if A is not in K, it is also not
derivable fromK, hence there are no such literals. (K.

−4) is satisfied because
we remove A and destroy all means of deriving A from K . (K.

−6) is trivially
true, since Cn(A) = Cn(B) for literals A,B with respect to GMP if, and
only if, A = B (note that we are concerned with the consequences of a single
literal with respect to GMP, not in Cn({A}∪K)). Finally, (K.

−R) is satisfied
because McAllester contraction removes only literals, and (K.

−F) is satisfied
because it removes only the literals on which A depends.
Now assume we have an operation .

− which satisfies the postulates. We
need to show that it removes a subset Γ of {C : C )K A} such that K\Γ
does not derive A, and is deductively closed. (K.

−2) and (K .
−R) guarantee

thatK .
− A is obtained fromK by removing some literals. (K.

−F) guarantees
that only those literals C such that C )K A are removed. (K .

−1) and (K .
−4)

guarantee that enough of these literals are removed to make A underivable.
Finally, (K .

−1) guarantees that the set is closed under consequence. !

Note that, for a McAllester contraction, (K.
−3) follows from the other pos-

tulates. Namely, by (K .
−2), K .

− A ⊆ K; by (K .
−R), all the rules remain in

K
.
− A; by (K .

−F), all the literals C apart from those for which C )K A
holds, remain inK

.
− A; and from A /∈ K and (K .

−1), we conclude that there
are no such C inK. (K .

−6) is also not required for the representation theorem
and is included to allow comparison with the classic AGM postulates.
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McAllester contraction does not satisfy the recovery postulate (K.
−5). The

reason (K .
−5) is not satisfied is simple. Suppose we have a single ruleA(x) →

B(x),K contains A(c) and B(c), and that A(c) )K B(c). After contraction
by B(c), both A(c) and B(c) are removed. When we expand by B(c), this
becomes the only fact inK, since there is no way to re-derive A(c). However,
there are significant objections in belief revision literature to the recovery
postulate (see for example Tennant (2006)) and there have been a number of
proposals for rational belief revision on finite bases which do not satisfy the
recovery postulate (see e.g., (Makinson, 1987; Hansson, 1991)).

5. Complexity

In this section, we show that McAllester contraction can be implemented so
as to run in time polynomial in the size of its belief set (the set of literals in
working memory and the set of the agent’s rules).
Assume that the agent maintains a directed graph of beliefs and justi-

fications for beliefs, corresponding to fired rule instances. Each justifica-
tion consists of a belief and a support list containing premises of the rule
used to derive this belief: for example, the justification of a belief B(c) de-
rived using the rule A1(x), . . . , An(x) → B(x) from A1(c), . . . , An(c) is
(B(c), [A1(c), . . . , An(c)]). In the example in section 3, there is a single
justification for Region(c, Bordeaux), which is

(Region(c, Bordeaux), [Region(c, Pauillac), PartOf(Pauillac, Bordeaux)])

with the support list

[Region(c, Pauillac), PartOf(Pauillac, Bordeaux)].

Foundational (non-derived) beliefs have a justification with an empty support
list, for example, (Region(c, Pauillac), [ ]). In the graph, each justifica-
tion has one outgoing edge to the belief it justifies, and an incoming edge
from each belief in its support list. We assume that each support list s has a
designated least preferred member w(s), which is accessible in constant time.
Algorithm 1 implements McAllester contraction byA. The algorithm con-

sists of two main loops. The first loop removes all justifications which have
an incoming edge from A. The second loop iterates through all justifications
forA, and for each justification, either removes it (if it has an empty support),
or recurses to contract by the weakest member of the justification’s support
list, w(s). Note that the algorithm computes a deductively closed set by en-
suring that justifications for each of the removed literals are destroyed. The
algorithm runs in time O(kr + n), where r is the number of rule instances,
k the maximal number of premises in a rule, and n the number of literals in
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Algorithm 1McAllester contraction by A

for all j = (B, s) with an edge from A do
remove j (and all edges to and from j) from the graph

end for
for all j = (A, s) with an edge to A do
if s == [] then

remove j (and the edge from j to A)
else

contract by w(s)
end if

end for
remove A

K. The upper bound on the number of steps required to remove justifications
corresponding to rule instances is r(k + 1) (one constant time operation for
each premise and one for the conclusion of the rule instance). The last step in
the contraction algorithm (removing a belief) is executed at most n times.
Note that in the propositional case, when the number of rules equals the
number of rule instances, the algorithm runs in time linear in the size of the
agent’s belief set (Alechina et al., 2006b).
It is straightforward to modify algorithm 1 to perform reason-maintenance

style contraction. Reason-maintenance contraction by A involves removing
not only those justifications whose supports contain A, but also all beliefs
which have no justifications whose supports do not contain A. In this case, in
addition to removing the justifications whereA is in the support list, we check
to see if this leaves some literal with no incoming edges (no justifications for
it). If so, we remove the literal and recurse forwards, following edges to the
justifications in whose support list it appears. This adds another traversal of
the graph, but the overall complexity remains O(kr + n).

6. Preferences

In this section, we give an example of a preference order on beliefs based on
assigning degrees of preference to beliefs. Recall from section 4 that, given a
function p assigning numerical preferences to beliefs, we can define A ( B
as p(A) < p(B); if p(A) = p(B) for two distinct literals A and B, we use,
for example, lexicographic order to decide whether A ( B or vice versa.
We define preferences using a notion of quality associated with justifi-

cations. We assume that the quality of a justification is represented by non-
negative integers in the range 0, . . . ,m, where the value of 0 means lowest
quality and m means highest quality. We assume that an agent associates
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an a priori quality with each non-inferential justification for its foundational
beliefs. In our example, the justification (Region(c, Pauillac), [ ])will have
some number assigned to it; so will (Region(c, Tasmania), [ ]). The first jus-
tification may have a higher quality since it is part of the original knowledge
base, while the second may have lower quality if it has been communicated
by an unreliable source.
We take the preference of a literal A, p(A), to be that of its highest quality

justification:
p(A) = max{qual(j0), . . . , qual(jn)},

where j0, . . . , jn are all the justifications for A, and define the quality of an
inferential justification to be that of the least preferred belief in its support:

qual(j) = min{p(A) : A ∈ support of j}.

Literals with no supports (as opposed to an empty support) are viewed as
having an empty support of lowest quality. This is similar to ideas in ar-
gumentation theory: an argument is only as good as its weakest link, yet a
conclusion is at least as good as the best argument for it. It is also related
to Williams’s partial entrenchment ranking (1995), which assumes that the
entrenchment of any sentence is the maximal quality of a set of sentences
implying it, where the quality of a set is equal to the minimal entrenchment
of its members. While this approach is intuitively appealing, nothing hangs
on it and Theorem 1 holds for any total order over literals. For example, the
preference of a derived literal could be a property of the rule used to derive it
or given by some function of the preferences of its antecedents.
To perform a preferred contraction, we preface the contraction algorithm

given in section 5 with a step which computes the preference of each literal in
K, and for each justification, finds the position of the least preferred member
of its support list. An algorithm for computing preferences which runs in
O(n log n + kr) is given in (Alechina et al., 2006b).
A McAllester contraction based on the order of preference induced by the

numerical values of preferences, minimises the preference value of the literals
removed as a result of contraction. The following notion makes this precise.
Define the worth of a set of literals as worth(Γ) = max{p(A) : A ∈ Γ}.
We can prove that McAllester contraction removes the set of literals with the
least worth:

PROPOSITION 1. If contraction of the set of literals in K by A results in
the removal of the set of literals Γ, then for any other set of literals Γ′ such
that K \ Γ′ does not imply A, worth(Γ) ≤ worth(Γ′).

Proof. If A *∈ K, the statement is immediate since Γ = ∅. Assume that
A ∈ K. In this case, A ∈ Γ and A ∈ Γ′ (otherwise K \ Γ and K \ Γ′

would still derive A). It is also easy to see that A is the maximal element of
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Γ, because a literal B is in Γ if and only if either (1) p(B) = qual(ji) for
some justification ji for A, and since p(A) = max(qual(j0), ..., qual(jn)),
p(B) ≤ p(A); or (2) B is the least preferred element of a support set for
some literal A depends on, in which case its preference is less or equal to the
preference of the literal it is justification for, which in turn is less or equal
to p(A). So, since A is an element of both Γ and Γ′, and A has the maximal
preference in Γ, then worth(Γ) ≤ worth(Γ′). !

7. Minimal change and least worth

The set of literals removed as a result of McAllester contraction ofK by A is
not necessarily a minimal set of literals which has to be removed from K to
make A underivable. Consider the following example:

K = {(B,C → A), (C,D → A), A,B,C,D}

and assume B ( C ( D. Contraction by Amay result in removing A,B and
C , but it would have been sufficient to remove just A and C .
Proposition 1 tells us however that given the preference order defined in

Section 6, the set of literals removed as a result of McAllester contraction is
minimal in the following order on subsets of K:6

Γ ≤ Γ′ df= ∀ A ∈ Γ ∃ B ∈ Γ′ (p(A) ≤ p(B))

This means that the Γ removed by McAllester contraction by A may contain
some less preferred belief B which did not need to be removed to prevent the
rederivation of A, i.e.,K \ (Γ \ B) would not have derived A. However, any
other set of literals Γ′ which has to be removed in order to makeA underivable
will have to contain at least one belief which is at least as preferred as the most
preferred belief removed by the McAllester contraction.
It is possible to extend the algorithm for McAllester contraction so that

the set of literals it removes both has least worth and is minimal, in the
sense that no proper subset of this set would be sufficient for contraction.
The complexity of the algorithm remains polynomial.

DEFINITION 2. The minimal McAllester contraction of K by a literal A,
K

.
−m A, is defined as

K
.
−m A

df= Cn(K \ Γ)

where Γ is a subset of {C : C )K A} which is minimal in the sense that for
every Γ′ ⊂ Γ, K \ Γ′ $ A.

6 This definition of the order on subsets is similar to Rott’s !− (1998).
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Algorithm 2 describes a polynomial-time procedure to compute the mini-
mal McAllester contraction by A.7

Algorithm 2Minimal McAllester contraction by A
K

.
−m A = K

.
− A

Γ = K \ (K .
− A)

for all C in Γ do
if A *∈ Cn((K .

−m A) ∪ {C}) then
K

.
−m A = (K .

−m A) + C
end if

end for

A representation theorem for a minimal McAllester contraction is very
similar to Theorem 1, except that the minimality postulate (K.

−F) in Theorem
1 must be replaced by the following strong minimality postulate:

(K .
−F-strong) If C ∈ K and C /∈ K

.
−m A then C )K A and (K .

−m

A) ∪ C $ A (strong minimality)

8. Revision

In the previous sections we described contraction. Now let us consider re-
vision, which is adding a new belief in a manner that does not result in an
inconsistent set of beliefs. Recall that a set of beliefs K is inconsistent if for
some literal A, both A and ¬A are in K .
As noted in section 2, if the agent is a reasoner in classical logic, revision is

definable in terms of contraction and vice versa. Given a contraction operator
.
− which satisfies postulates (K.

−1)–(K .
−4) and (K .

−6), a revision operator .
+

which satisfies (K .
+1)–(K .

+6) can be defined via the Levi identity as

K
.
+ A

df= (K .
− ¬A) + A.

Conversely, if a revision operator satisfies (K.
+1)–(K .

+6), then contraction
defined via the Harper identity as

K
.
− A

df= (K .
+ ¬A) ∩ K

satisfies postulates (K.
−1)–(K .

−6): see Gärdenfors (1988).
However, for an agent which is not a classical reasoner, contraction and

revision are not necessarily inter-definable in this way. In particular, they are
7 To simplify the exposition we give a naive algorithm here; more efficient algorithms are

possible.
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not inter-definable when the consistency of K + A is not equivalent to K "
¬A. For a rule-based agent which reasons in the logic W , applying the Levi
identity to McAllester contraction results in a revision operation which does
not satisfy (K .

+5). One of the reasons for this is that contracting the agent’s
belief set by ¬A does not make this set consistent with A, so (K .

− ¬A) + A
may be inconsistent. Instead, we define revision by A as (K + A) .

− ⊥, that
is, as expansion by A followed by elimination of all contradictions.8

Algorithm 3 Revision by A
Add A toK and run rules to quiescence
Let L = {(B1,¬B1), . . . , (Bn,¬Bn)} be the list of all contradictions in
K, ordered by preference order on w({Bi,¬Bi})
for (Bi,¬Bi) in L do

contract by w({Bi,¬Bi})
end for

Algorithm 3 implements this revision operation. Note that we need to
specify the order in which the contradictions are eliminated, for McAllister
contraction is order-dependent. That is:

(K .
− B1)

.
− B2 *= (K .

− B2)
.
− B1.

To see why this is so, consider the following example. Let:

K = {A1, A2 → B1, A2 → B2, A1, A2, B1, B2}

andw({A1, A2}) = A1. Then (K .
− B1) = {A2, B2} and (K .

− B1)
.
− B2 =

∅. On the other hand, (K .
− B2) = {A1, B1} and (K .

− B2)
.
− B1 = {A1}.

The declarative definition of the revision operation computed by algorithm
3 is as follows. Let (B1,¬B1), . . . , (Bn,¬Bn) be the list of all contradictions
inK + A = Cn(K ∪ {A}), ordered by preference order on w(Bi,¬Bi), and
let ∼Bi = w({Bi,¬Bi}). Then

K
.
+ A

df= (K + A) .
− ∼B1

.
− ∼B2

.
− . . .

.
− ∼Bn.

Call this revision ordered contraction by contradictions (OCC).

THEOREM 2. Each OCC revision satisfies the postulates (K.
+1)–(K .

+OCC)
below and, conversely, if a revision operation satisfies the postulates, then it
is an OCC revision.

(K .
+1) K

.
+ A = Cn(K .

+ A)

(K .
+3) K

.
+ A ⊆ K + A

8 This is called semi-revision by Hansson (1997).
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(K .
+4) If {A} ∪ K is consistent, then K + A = K

.
+ A

(K .
+5) K

.
+ A is inconsistent if, and only if, A is inconsistent.

(K .
+6) If Cn(A) = Cn(B), then K

.
+ A = K

.
+ B

(K .
+R) For each rule A1, . . . , An → B, A1, . . . , An → B ∈ K iff

A1, . . . , An → B ∈ K
.
+ B

(K .
+OCC) If C ∈ K + A and C *∈ K

.
+ A, then for some i,

C )(K+A)
.
−∼B1

.
−...

.
−∼Bi−1

∼Bi

where (B1,¬B1), . . . , (Bn,¬Bn) are all the contradictions in K + A,
∼Bi = w(Bi,¬Bi), ∼B1 ( . . . ( ∼Bn, and i ∈ {1, . . . , n}.

Proof. (K .
+1) is satisfied because after we add A, we run the rules to quies-

cence. (K .
+3) is satisfied because the construction of K

.
+ A starts with A

being added toK, which is then closed under consequence (which isK +A),
and after that literals can only be removed from K . (K.

+4) holds because, if
adding A does not cause an inconsistency, then K

.
+ A = K + A by the

definition of OCC revision. (K .
+5) holds trivially because A and K

.
+ A are

never inconsistent. Finally, recall that in the agent’s logic, Cn(A) = Cn(B)
only if A = B, so (K .

+6) holds trivially. (K .
+R) holds because the set of the

agent’s rules does not change as a result of closing under consequence (since
only literals are derivable by GMP) or contracting by contradictions (due to
(K .

−R)). (K .
+OCC) holds because the only beliefs removed from (K + A) .

−
∼B1

.
− . . .

.
− ∼Bi−1 when contracting by ∼Bi are the weakest premises of

rules which can be used to derive ∼Bi in (K + A) .
− ∼B1

.
− . . .

.
− ∼Bi−1.

Now assume that .
+ is an operation satisfying the postulates above. By

(K .
+3), we know that K

.
+ A = (K + A) \ Γ for some (possibly empty)

set Γ. By (K .
+R), Γ is a set of literals. If K + A is consistent, by (K.

+4),
K

.
+ A = K + A, in other words, it is the result of contracting K + A by an

empty set of literals, so it is an OCC revision.
Suppose K + A is not consistent, namely it contains contradictions

(B1,¬B1), . . . , (Bn,¬Bn)

for some n ≥ 1. As before, let w(Bi,¬Bi) be denoted by ∼Bi, and assume
that ∼B1 ( . . . ( ∼Bn. We need to prove that K

.
+ A is really the result of

a series of McAllester contractions by ∼B1, . . . ,∼Bn. By (K
.
+6), we know

that a literal C is in Γ (is removed from K + A as a result of the revision
operation) only if there exists a McAllester contraction .

− such that for some i,
C ∈ (K + A) .

− ∼B1
.
− . . .

.
− ∼Bi−1 and C )(K+A)

.
−∼B1

.
−...

.
−∼Bi−1

∼Bi.
This makes it is easy to prove by induction on n that we do indeed have
a series of contraction operations applied to K + A. Namely, we partition
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Γ into sets of literals Γi removed at stage i (if different contractions would
remove some literal at different stages, we choose the latest stage to make
sure that each successive set is deductively closed):

Γ1 ⊆ {C : C )K+A ∼B1},

Γi ⊆ {C : C )(K+A)
.
−∼B1

.
−...

.
−∼Bi−1

∼Bi}.

If n = 1, then by (K .
+1) and (K .

+6), K .
+ A = Cn(K \ Γ1)) in other words,

(K+A) .
− ∼B1. If by the inductive hypothesis, (K+A)\(Γ1∪. . .∪Γn−1) =

(K + A) .
− ∼B1

.
− . . .

.
− ∼Bn−1, then removing Γn will give a McAllester

contraction by ∼Bn:

K
.
+ A = (K + A) \ Γ =( K + A) .

− ∼B1
.
− . . .

.
− ∼Bn.

Hence, any operation satisfying (K.
+3), (K .

+4), (K .
+R) and (K .

+OCC) is an
OCC revision. !

Note that (K .
+2), A ∈ K

.
+ A, does not hold. Suppose we add A toK and

derive some literal B, but ¬B is already in K and has a higher preference
value than B. Then we contract by B, which may well result in contraction
by A. Another example of a situation in which (K.

+2) is violated is revision
by A in the presence of a rule A → ¬A.
One could question whether (K .

+2) is a desirable property. For example,
Galliers (1992) has argued that it would not be satisfied by an agent which
performs autonomous belief revision. However, if we do want to define a
belief revision operation which satisfies (K.

+2), we need to ensure that: (1) A
is preferred to all other facts in working memory; and (2)A on its own cannot
be responsible for an inconsistency. One way to satisfy the first requirement
is to use a preference order based on timestamps: more recent information
is more preferred. To satisfy the second requirement, we may postulate that
the agent’s rules are not perverse. We call a set of rules R perverse if there
is a literal A such that running R to quiescence on K = {A} ∪R results in
deriving a contradiction {B,¬B} (including the possibility of deriving ¬A).
This is equivalent to saying that no singleton set of literals is exceptional in
the sense of Bezzazi et al. (1998).
Analogously to the minimal McAllester contraction defined in section 7

we can define a maximal revision by A operation, K .
+m A, which retains a

maximal set of literals consistent withA. To do this we replace theMcAllester
contraction in the definition of OCC by the minimal McAllester contraction.
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9. Related work

The problem of characterising rational belief change has been intensively in-
vestigated, and there is a substantial literature. In this section, we give a brief
overview of the work most closely related to our own, focusing specifically
on resource-bounded revision and contraction.
Our contraction algorithm is inspired by the algorithm proposed by

McAllester (1980) for eliminating inconsistencies resulting from boolean
constraint propagation. He also used a notion of the certainty of a node,
which is similar to our definition of preference. McAllester’s algorithm was
implicitly resource-bounded in that it was intended to form part of a prac-
tical AI system. However his reason maintenance system was designed to
work with arbitrary boolean formulas, and was not logically complete. To the
best of our knowledge, the relationship between the retraction, backtracking
and refutation operations in (McAllester, 1980) and AGM contraction and
revision has not been investigated.
The use of preference or epistemic entrenchment orderings to define re-

vision and contraction was proposed by Gärdenfors (1988) and Gärdenfors
and Makinson (1988), although the properties of entrenchment and the way
in which entrenchment determines the result of contraction differs from that
proposed in this paper. An anytime algorithm for computing a series of ap-
proximations of a new entrenchment order corresponding to a changed degree
of belief in a given sentence (and hence the resulting new belief set) was
proposed by Williams (1997); however even one iteration of this algorithm
involves computing all minimal sets of sentences entailing the given sentence,
and hence has a higher complexity then our revision algorithm.
Our approach to defining the preference order on beliefs is similar to

the approach developed by Dixon (1993), Dixon and Wobcke (1993) and
Williams (1995). Again, since they work with full classical logic, and
calculating entrenchment of a sentence involves considering all possible
derivations of this sentence, the complexity of their contraction and revision
operations is at least exponential.
Wasserman (2001) has proposed an approach to resource-bounded be-

lief revision which has similar motivations to our work. Her approach is
based on a compartmentalised belief base, defined by a prior notion of rel-
evance between beliefs. Given a belief and a degree of relevance, there is
a compartment of the belief base which contains the beliefs relevant to that
degree, to the specified belief. A revision operation takes a formula and a
degree of relevance and revises the beliefs in the corresponding compart-
ment of the agent’s belief set. The revision procedure itself is classical belief
base revision; however, as the compartments of the belief base are typically
much smaller than the entire belief base, revision of a compartment typically
requires less computation than a revision of the entire base.
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Wasserman’s approach does not ensure that the belief set as a whole is
consistent after revision; it ensures only that the compartment in question is
consistent. The idea is that the agent is mainly interested in ensuring con-
sistency between the beliefs that are relevant (to some degree) to the present
task, rather than ensuring the consistency of its belief set as a whole. A similar
approach is taken by Chopra et al. (2001). They define a contraction operation
which approximates a classical AGM contraction operation. Their contraction
operation has complexity O(|K| · |A| · 2S), where K is the knowledge base,
A the formula to be contracted, and S is a set of ‘relevant’ atoms. As S
gets larger, their contraction operation becomes a closer approximation of
classical contraction. Our approach differs both from Wasserman’s and from
Chopra et al.’s in that it can be applied to ensure the consistency of large
rule-based belief sets as a whole.
The complexity of Horn clause knowledge base belief revision was studied

by Eiter and Gottlob (1996) but with respect to the consequence relation in
classical logic. Perhaps the work most similar to ours is that of Bezzazi et al.
(1998). They also consider forward-chaining agents whose program consists
of a set of literals and a set of rules. They propose several revision operators,
some of which revise both the rules and the literals, and some of which revise
only the literals, and consider which of the rationality postulates for belief
revision or update (proposed by Katsuno and Mendelzon (1991)) they satisfy.
However, Bezzazi et al. are mostly concerned with belief revision operations
which are minimal, which results in algorithms with high (exponential) com-
plexity. The only polynomial-time operation they consider, ranked revision,
makes sense only in the setting of default rules; for programs where rules
do not have exceptions, ranked revision of a program P by a program P′ is
P + P ′ if P and P ′ are consistent and P ′ otherwise.

10. Conclusions

In this paper we have shown how rule-based agents can be modelled as rea-
soners in a logic with a single inference rule of generalised modus ponens.
Their belief sets are deductively closed with respect to this rule; the closure of
a finite set of sentences in this logic is still a finite set, thus reducing the differ-
ence between belief bases and theories for rule-based reasoners. We defined a
contraction operation, McAllester contraction, for rule-based reasoners which
revise only by facts, and showed that it satisfies all the basic Alchourrón,
Gärdenfors and Makinson (AGM) postulates for contraction (apart from the
recovery postulate) and at the same time can be computed in polynomial
time. We proved a representation theorem for McAllester contraction with
respect to the basic AGM postulates (minus recovery), and two additional
postulates. We also showed how our contraction operation can be used to
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define a corresponding revision operation which is also polynomial time, and
proved a representation theorem for the revision operation.
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