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Abstract. We present a framework for verifying systems composed of heterogeneous rea-
soning agents, in which each agent may have differing knowledge and inferential capabilities,
and where the resources each agent is prepared to commit to a goal (time, memory and com-
munication bandwidth) are bounded. The framework allows us to investigate, for example,
whether a goal can be achieved if a particular agent, perhaps possessing key information
or inferential capabilities, is unable (or unwilling) to contribute more than a given portion
of its available computational resources or bandwidth to the problem. We present a novel
temporal epistemic logic, BMCL-CTL, which allows us to describe a set of reasoning agents
with bounds on time, memory and the number of messages they can exchange. The bounds
on memory and communication are expressed as axioms in the logic. As an example, we
show how to axiomatise a system of agents which reason using resolution and prove that
the resulting logic is sound and complete. We then show how to encode a simple system of
reasoning agents specified in BMCL-CTL in the description language of the Mocha model
checker (Alur et al., 1998), and verify that the agents can achieve a goal only if they are
prepared to commit certain time, memory and communication resources.

1. Introduction

A key application of multiagent systems research is distributed problem solv-
ing. Distributed approaches to problem solving allow groups of agents to
collaborate to solve problems which no single agent could solve alone (e.g.,
because no single agent has all the information necessary to solve the prob-
lem), and/or to solve problems more effectively (e.g., in less time than a single
agent). For a given problem and system of reasoning agents, many different
solution strategies may be possible, each involving different commitments
of computational resources (time and memory) and communication by each
agent. For different multiagent systems, different solution strategies will be
preferred depending on the relative costs of computational and communica-
tion resources for each agent. These tradeoffs may be different for different
agents (e.g., reflecting their computational capabilities or network connec-
tion) and may reflect the agent’s commitment to a particular problem. For a
given system of agents with specified inferential abilities and resource bounds
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it may not be clear whether a particular problem can be solved at all, or, if
it can, what computational and communication resources must be devoted
to its solution by each agent. For example, we may wish to know whether a
goal can be achieved if a particular agent, perhaps possessing key information
or inferential capabilities, is unable (or unwilling) to contribute more than a
given portion of its available computational resources or bandwidth to the
problem.

There has been considerable work in the agent literature on distributed
problem solving in general (e.g., (Faltings and Yokoo, 2005; Jung and Tambe,
2005; Provan, 2002; Wooldridge and Dunne, 2006)) and on distributed rea-
soning in particular (e.g., (Adjiman et al., 2004; Amir and McIlraith, 2005)).
Much of the work on distributed reasoning analyses the time and communica-
tion complexity of distributed reasoning algorithms. However, while we have
upper bounds (and some lower bounds) on time and memory requirements
for reasoning in distributed systems, we lack tools for reasoning about trade-
offs between computational and communication resources. In this paper we
present a framework for reasoning about tradeoffs between time, memory and
communication in systems of distributed reasoning agents. We assume that
the agents reason using resolution. However this is not essential for the results
in the paper, and we briefly sketch how reasoners using other inference meth-
ods can be formalised. We introduce a novel epistemic logic, BMCL-CTL,
for specifying resource-bounded reasoners. Critically, the logic allows upper
bounds on the resource commitments (time, memory and communication) of
each agent in the system to be specified. We prove that the logic is sound and
complete. Using simple resolution examples, we show how to encode systems
of distributed reasoning agents specified in the logic in a model checker, and
verify some example properties. In contrast to previous work, e.g., (Albore
et al., 2006; Alechina et al., 2006a; Alechina et al., 2006b; Ågotnes and
Alechina, 2006) which focused primarily on memory limitations of single
reasoners, the approach proposed in this paper enables us to specify bounds
on the number of messages the agents can exchange, allowing the investi-
gation of tradeoffs between different resources. This allows us to determine
whether, for example, giving a reasoner more memory will result in a shorter
proof, or whether communication between agents can reduce either time or
memory requirements or both. The logic presented in this paper is a re-
vised and simplified version of that presented in (Alechina et al., 2008b). We
changed the language of the logic by introducing communication counters
and by replacing the underlying temporal logic PCTL∗ with CTL. We have
also substantially simplified the axiomatisation of the logic.

The structure of the paper is as follows. In Section 2 we introduce the
problem of resource bounds in distributed reasoning and in Section 3 we
explain how we measure time, space and communication costs for a dis-
tributed reasoning problem. In Section 4 we introduce the epistemic logic
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BMCL-CTL. Model checking experiments are described in Section 5. We
survey related work in Section 6 and conclude in Section 7.

2. Distributed Reasoners

We define the ‘shape’ of a proof in terms of the maximum space requirement
at any step in the proof and the number of inference steps it contains. The
lower bound on space for a given problem is then the least maximum space
requirement of any proof, and the lower bound on time is the least number of
inference steps of any proof. In general, a minimum space proof and a mini-
mum time proof will be different (have different shapes). Bounding the space
available for a proof will typically increase the number of inference steps
required and bounding the number of steps will increase the space required.
For example, a proof which requires only the minimum amount of space may
require rederivation of intermediate results.

We define the bounds on a reasoning agent in terms of its available re-
sources expressed in terms of memory, time and communication. We assume
that the memory required for a particular proof can be taken to be its space
requirement (e.g., the number of formulas that must be simultaneously held
in memory) times some constant, and the number of inference steps executed
times some constant can be taken as a measure of the time necessary to solve
the problem. The communication requirement of a proof is taken to be the
number of messages exchanged with other agents. In what follows, we ignore
the constants and assume that the units of problem size and resources are the
same.

For a particular agent solving a particular problem, the space available for
any given proof is ultimately bounded by the size of the agent’s memory and
the number of inference steps is bounded by the time available to the agent,
e.g., by a response time guarantee offered by the agent, or simply the point in
time at which the solution to the problem becomes irrelevant. The question
then arises of whether a proof can be found which falls within the resource
envelope defined by the agent’s resource bounds.

For a single agent which processes a single goal at a time, the lower
bounds on space for the goal determines the minimum amount of memory the
agent must have if it is to solve the problem (given unlimited time); and the
lower bound on time determines the time the agent must commit to solving
the problem (given unlimited memory). In the general case in which the agent
is attending to multiple goals simultaneously, the memory and time bounds
may be given not by the environment, but by the need to share the available
resources between multiple tasks. For example, the agent may need to share
memory between multiple concurrent tasks and/or devote no more than a
given proportion of CPU to a given task. In both cases, the agent designer
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may be interested in tradeoffs between resource bounds; for example, whether
more timely responses can be provided by pursuing fewer tasks in parallel
(thereby making more memory available to each task) or whether more tasks
can be pursued in parallel if each task is allowed to take longer.

In the distributed setting we distinguish between symmetric problem dis-
tributions, where all agents have the same premises, and asymmetric problem
distributions where different premises may be assigned to different agents.
We also distinguish between homogeneous reasoners (when all agents have
the same rules of inference and resource bounds) and heterogeneous reason-
ers, (when different agents have different rules of inference and/or resource
bounds).

Distribution does not necessarily change the shape (maximum space re-
quirement and number of inference steps) of a proof. However, in a dis-
tributed setting the tradeoffs between memory and time bounds are compli-
cated by communication. Unlike memory and time, communication has no
direct counterpart in the proof. However like memory, communication can
be substituted for time (e.g., if part of the proof is carried out by another
agent), and, like time, it can be substituted for memory (e.g., if a lemma is
communicated by another agent rather than having to be remembered). In the
distributed setting, each agent has a minimum memory bound which is de-
termined by its inference rules and which may be smaller than the minimum
space requirement for the problem. If the memory bound for all agents taken
individually is less than the minimum space requirement for the problem, then
the communication bound must be greater than zero. (If the memory bound
for all agents taken together is less than the minimum space requirement for
the problem, then the problem is insoluble for any communication bound).

With a symmetric problem distribution, if the memory bound for at least
one agent is greater than the minimum space requirement for the problem, the
minimum communication bound is zero (with unbounded time). If the prob-
lem distribution is asymmetric, i.e., not all agents have all the premises, then
the lower bound on communication may again be non-zero, if a necessary
inference step requires premises from more than one agent.

In the next section, we present measures of space, time and communica-
tion for distributed reasoning agents which allow us to make these tradeoffs
precise.

3. Measuring Resources

We assume a set of n agents. Each agent i has a set of propositional infer-
ence rules Ri (for example, Ri could contain conjunction introduction and
modus ponens, or it could contain just a single rule of resolution) and a set of
premises Ki.
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For a single agent, the notion of a derivation, or a proof of a formula
G from Ki is standard, and the time and space complexity of proofs are
well studied (starting from the seminal paper by Haken on the length of
resolution proofs (Haken, 1985)). Our model of space complexity is based
on (Alekhnovich et al., 2002). We view the process of producing a proof ofG
from Ki as a sequence of configurations or states of a reasoner, starting from
an empty configuration, and producing the next configuration by one of the
following operations:

Read copies a formula fromKi into the current configuration (possibly over-
writing a formula from the previous configuration)

Infer applies a rule fromRi to formulas in the current configuration (possibly
overwriting a formula from the previous configuration)

The sequence of configurations constitutes a proof of G if G appears in
the last configuration. Time complexity corresponds to the length of the se-
quence, and space complexity to the size of configurations.1 The size of a
configuration can be measured either in terms of the number of formulas ap-
pearing in the configuration or in terms of the number of symbols required to
represent the configuration. Clearly, for some inference systems, for example,
where the set of inference rules contains both conjunction introduction and
conjunction elimination, the first size measure results in constant space usage.
However, for other systems, such as resolution, counting formulas results in
non-trivial space complexity (Esteban and Torán, 1999). In this paper, we
take the size of a configuration to be the maximal number of formulas, since
all the reasoning systems we consider have a non-trivial space complexity for
this measure.

# Configuration Operation

1 { }
2 {A1} Read
3 {A1, A2} Read
4 {A1, A1 ∧A2} Infer
5 {A1 ∧A2, A1 ∧A2 → B1} Read
6 {A1 ∧A2, B1} Infer

Figure 1. Example derivation using
∧

I
and MP

1 Note that we deviate from Alekhnovich et al. (2002) in that we do not have an explicit
erase operation, preferring to incorporate erasing (overwriting) in the read and infer opera-
tions. This obviously results in shorter proofs; however including an explicit erase operation
gives proofs which are no more than twice as long as our proofs if we do not require the last
configuration to contain only the goal formula.
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As an illustration, Figure 1 shows the space and time complexity of the
derivation of the formula B1 from A1, A2, A1 ∧ A2 → B1 in an infer-
ence system which contains only conjunction introduction and modus ponens.
The length of the proof is 6 and the space usage is 2 (at most 2 formulas
need to be present in the configuration at any given time). It is worth ob-
serving that the inference system consisting of just conjunction introduction
and modus ponens does not have constant space complexity when space is
measured as the number of formulas; a sequence of derivation examples
requiring (logarithmically) growing space can easily be constructed start-
ing from the example above, and continuing with a derivation of C1 from
A1, A2, A3, A4, A1 ∧A2 → B1, A3 ∧A4 → B2, B1 ∧B2 → C1, etc.

# Configuration Operation

1 { }
2 {A1 ∨A2} Read
3 {A1 ∨A2,¬A1 ∨A2} Read
4 {A1 ∨A2, A2} Infer
5 {A2, A1 ∨ ¬A2} Read
6 {A2, A1 ∨ ¬A2,¬A1 ∨ ¬A2} Read
7 {A2,¬A2,¬A1 ∨ ¬A2} Infer
8 {∅,¬A2,¬A1 ∨ ¬A2} Infer

Figure 2. Example derivation using resolution

Most research in time and space complexity of proofs has focused on the
lower bounds for the inference system as a whole. While we are interested in
the lower bounds, we are also interested in the trade-offs between time and
space usage for particular derivations. For example, consider a set of premises
A1, A2, A3, A4, A1 ∧ A2 → B1, A3 ∧ A4 → B2, B1 ∧B2 → C1 and a goal
formulaA1∧A2∧C. It is possible to derive the goal from the premises using
conjunction introduction and modus ponens and configurations of size 3 in
17 steps (deriving A1 ∧A2 twice). On the other hand, with configurations of
size 4 the proof is 3 steps shorter.

Different inference systems have different complexity and different trade-
offs. Figure 2 illustrates the (non-trivial) space complexity of resolution proofs
in terms of the number of formulas in a configuration. The example, which is
due to Esteban and Torán (1999), shows the derivation of an empty clause by
resolution from the set of all possible clauses of the form

∼A1∨ ∼A2 ∨ . . .∨ ∼An

(where ∼ Ai is either Ai or ¬Ai), for n = 2. Its space usage is 3 and the
length of the proof is 8.
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In the multiagent case, when several reasoners can communicate to derive
a common goal, an additional resource of interest is how many messages the
reasoners must exchange in order to derive the goal. In the distributed setting,
we assume that each agent has its own set of premises and inference rules and
its own configuration, and that the reasoning of the agents proceeds in lock
step. In addition to Read and Infer, each reasoner can perform two extra
operations:

Skip which leaves its configuration unchanged

Copy if agent i has a formula A in its current configuration, then agent j can
copy it to its next configuration

The goal formula is derived if it occurs in the configuration of one of the
agents. Our model of communication complexity is based on (Yao, 1979),
except that we count the number of formulas exchanged by the agents rather
than the number of bits exchanged. The communication complexity of a joint
derivation is then the (total) number of Copy operations in the derivation.

Agent 1 Agent 2

# Configuration Op. Configuration Op.

1 {} {}
2 {A1 ∨A2} Read {A1 ∨ ¬A2} Read
3 {A1 ∨A2,¬A1 ∨A2} Read {¬A1 ∨ ¬A2, A1 ∨ ¬A2} Read
4 {A1 ∨A2, A2} Infer {¬A2, A1 ∨ ¬A2} Infer
5 {A1 ∨ ¬A2, A2} Read {¬A2, A2} Copy
6 {A1, A2} Infer {{}, A2} Infer

Figure 3. Example derivation using resolution with two agents

In general, in a distributed setting, trade-offs are possible between the
number of messages exchanged and the space (size of a single agent’s con-
figuration) and time required for a derivation. The total space use (the total
number of formulas in all agent’s configurations) clearly cannot be less than
the minimal configuration size required by a single reasoner to derive the
goal formula from the union of all knowledge bases using all of the avail-
able inference rules, however this can be distributed between the agents in
different ways, resulting in different numbers of exchanged messages. Simi-
larly, if parts of a derivation can be performed in parallel, the total derivation
will be shorter, though communication of the partial results will increase the
communication complexity. As an illustration, Figure 3 shows one possi-
ble distribution of the resolution example in Figure 2. As can be seen, two
communicating agents can solve the problem faster than a single agent.
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4. A bounded memory and communication logic BMCL-CTL

In this section we present BMCL-CTL, a temporal epistemic logic which
allows us to describe a set of reasoning agents with bounds on memory and
on the number of messages they can exchange. In this logic, we can express
statements like ‘the agents will be able to derive the goal formula in n infer-
ence steps’ (see Section 5 for the translation). The bounds on memory and
communication ability are expressed as axioms in the logic. In this paper, as
an example, we have chosen to axiomatise a set of agents reasoning using
resolution. Other reasoning systems can be axiomatised in a similar way,
and we briefly sketch how to add model conditions and axioms for reasoners
which reason using conjunction introduction and modus ponens to our logic
at the end of this section.

The language of the logic contains belief operators Bi, for each agent i.
The meaning of the belief operator reflects the purpose for which the logic is
designed: namely, Biα is true if the formula α is in agent i’s memory. We in-
terpretBiα syntactically (as a property of a formula φ, rather than of a propo-
sition denoted by φ). This is inevitable since we consider resource-limited
reasoning agents, and we cannot assume that the agents can instantaneously
identify logically equivalent formulas. For the same reason, we do not inter-
pret beliefs using an accessibility relation, since this would cause beliefs to
be immediately closed under logical consequence. We also do not consider
nested belief operators because we do not model agents reasoning about each
other’s beliefs. However it is possible to model agents which reason using
positive introspection in a similar way, see for example (Alechina et al.,
2008a). Since this is a logic for reasoning about the way beliefs of agents
change over time, we feel justified in calling it an epistemic (or doxastic)
temporal logic.

Let the set of agents be Ag = {1, 2, .., nAg}. For simplicity, we assume
that they agree on a finite set PROP of propositional variables (this as-
sumption can easily be relaxed, so that only some propositional variables
are shared). Since each agent uses resolution for reasoning, we assume that
all formulas of the internal language of the agents are in the form of clauses.
For convenience, we define a clause as a set of literals in which a literal is
a propositional variable or its negation. Then the set of literals is defined as
LPROP = {p,¬p | p ∈ PROP}. If L is a literal, then ¬L is ¬p if L is a
propositional variable p, and p if L is of the form ¬p. Let Ω be the set of all
possible clauses over PROP , i.e., Ω = ℘(LPROP). Note that Ω is finite.

The only rule of inference that each agent has is the resolution rule which
is defined as follows:

α β

(α \ {L}) ∪ (β \ {¬L})
Res
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where α and β are clauses, L ∈ α and ¬L ∈ β.
Each agent i has a memory of size nM (i) where one unit of memory

corresponds to the ability to store an arbitrary clause. Each agent i has a
knowledge base or a set of premises Ki ⊆ Ω and can read clauses from
Ki. The communication ability of the agents is expressed by the copy action
which copies a clause from another agent’s memory. The limit on each agent’s
communication ability is nC(i): in any valid run of the system, agent i can
perform at most nC(i) copy actions.

4.1. SYNTAX OF BMCL-CTL

The syntax of BMCL-CTL is defined inductively as follows.

− > is a well-formed formula (wff) of BMCL-CTL.

− If α is a clause, then Biα is a wff of BMCL-CTL, for all i ∈ Ag.

− ci = n is a wff of BMCL-CTL, for all i ∈ Ag and n ∈ N.

− If φ and ψ are wffs, then so are ¬φ, φ ∧ ψ.

− If φ and ψ are wffs, then so are EXφ, E(φUψ), and A(φUψ).

Classical abbreviations for ∨,→,↔ and ⊥ are defined as usual.
The language contains both temporal and epistemic modalities. For the

temporal part of BMCL-CTL, we have CTL, a branching time temporal
logic. Intuitively, CTL describes infinite trees, or all possible runs of the
system, over discrete time. In the temporal logic part of the language, X
stands for next step, U for until, A for ‘on all paths’ and E for ‘on some
path’. We will also use abbreviations for other usual temporal operators AX ,
EF ,AF ,EG andAG, in which F stands for ‘some time in the future’ andG
for ‘always from now’. The epistemic part of the language consists of belief
modalities Biα, which means that agent i has α in its memory.

For convenience, we define the following sets:

BiΩ = {Biα | α ∈ Ω},

BΩ =
⋃
i∈Ag

BiΩ,

CPi = {ci = n | n = 0, . . . , nC(i)},

CP =
⋃
i∈Ag

CPi.

4.2. SEMANTICS OF BMCL-CTL

The semantics of BMCL-CTL is defined by BMCL-CTL transition systems.
A BMCL-CTL transition system M = (S,R, V ) is defined as follows.
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− S is a non-empty set of states.

− R ⊆ S × S is a serial binary relation, that is for all s ∈ S, there exists
s′ ∈ S such that (s, s′) ∈ R.

− V : S × Ag → ℘(Ω ∪ CP ); we define the ‘belief part’ of the assign-
ment V B(s, i) = V (s, i) \ CP and the communication counter part
V C(s, i) = V (s, i) ∩ CP . V satisfies the following conditions:

1. |V C(s, i)| = 1 for all s ∈ S and i ∈ Ag.

2. If (s, t) ∈ R and ci = n ∈ V (s, i) and ci = m ∈ V (t, i) then
n ≤ m.

For each model M = (S,R, V ), a path in M is a sequence of states
(s0, s1, . . .) in which (sk, sk+1) ∈ R for all k ≥ 0.

The truth of a BMCL-CTL formula at a state s ∈ S of a model M =
(S,R, V ) is defined inductively as follows.

− M, s |= Biα iff α ∈ V (s, i).

− M, s |= ci = n iff ci = n ∈ V (s, i).

− M, s |= ¬φ iff M, s 6|= φ.

− M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ.

− M, s |= EXφ iff there exists s′ ∈ S such that (s, s′) ∈ R and M, s′ |=
φ.

− M, s |= E(φUψ) iff there exists a path (s0, s1, . . . , sn, . . .) in M with
s = s0 and n ≥ 0 such that M, sk |= φ for all k = 0, . . . , n − 1 and
M, sn |= ψ.

− M, s |= A(φUψ) iff for all paths (s0, s1, . . .) in M with s = s0, there
exists n ≥ 0 such that M, sk |= φ for all k = 0, . . . , n− 1 and M, sn |=
ψ.

Now we describe conditions on the models. The first set of conditions
refers to the accessibility relation R. The intuition behind the conditions is
that R corresponds to the agents executing actions 〈a1, . . . , anAg〉 in parallel,
where action ai is a possible action (transition) for the agent i in a given state.
The actions an agent i can perform are: Readi,α,β (reading a clause α from
the knowledge base and erasing β), Resi,α1,α2,L,β (resolving α1 and α2 on L
and erasing β), Copyi,α,β (copying α from another agent and erasing β), and
Idlei (doing nothing), where α, α1, α2, β ∈ Ω and L ∈ LPROP . Intuitively,
β is an arbitrary clause which gets overwritten if it is in the agent’s memory.
If the agent’s memory is full (|V B(s, i)| = nM (i)), then we require that β has

kra08-esslli.tex; 8/04/2009; 10:17; p.10



Verifying time, memory and communication bounds in systems of reasoning agents 11

to be in V B(s, i). Not all actions are possible in any given state. For example,
to perform a resolution step from state s, the agent has to have two resolvable
clauses in s. The message counter of each agent i starts with the value 0 and
is incremented every time i copies a clause. When the value of the counter
becomes equal to nC(i), i cannot execute the Copy action any more.

Let us denote the set of all possible actions by agent i in state s by Ri(s).
Below is the definition of Ri(s):

DEFINITION 1 (Available actions). For every state s and agent i,

1. Readi,α,β ∈ Ri(s) iff α ∈ Ki and β ∈ Ω, or if |V B(s, i)| = nM (i) then
β ∈ V B(s, i),

2. Resi,α1,α2,L,β ∈ Ri(s) iff α1, α2 ∈ Ω, α1 3 L, α2 3 ¬L, α1, α2 ∈
V (s, i), α = (α1 \ {L}) ∪ (α2 \ {¬L}); β is as before,

3. Copyi,α,β ∈ Ri(s) iff there exists j 6= i such that α ∈ V (s, j) and
ci = n ∈ V (s, i) for some n < nC(i); β is as before,

4. Idlei is always in Ri(s).

Now we define effects of actions on the agent’s state, i.e., the assignment
V (s, i).

DEFINITION 2 (Effects of actions). For each i ∈ Ag, the result of perform-
ing an action a in state s is defined if a ∈ Ri(s) and has the following effect
on the assignment of clauses to i in the successor state t:

1. if a is Readi,α,β: V (t, i) = V (s, i) ∪ {α} \ {β},

2. if a is Resi,α1,α2,L,β: V (t, i) = V (s, i) ∪ {α} \ {β} where α = (α1 \
{L}) ∪ (α2 \ {¬L}),

3. if a is Copyi,α,β , ci = n ∈ V (s, i) for some n: V (t, i) = V (s, i) ∪
{α, ci = (n+ 1)} \ {β, ci = n},

4. if a is Idlei: V (t, i) = V (s, i).

DEFINITION 3. BMCM (K1, ..,KnAg , nM , nC) is the set of models M =
(S,R, V ) such that:

1. For every s and t, R(s, t) iff for some tuple of actions
〈a1, . . . , anAg〉, ai ∈ Ri(s) and the assignment in t satisfies the effects of
ai for every i in {1, . . . , nAg},

2. For every s and a tuple of actions 〈a1, . . . , anAg〉, if ai ∈ Ri(s) for every
i in {1, . . . , nAg}, then there exists t ∈ S such that R(s, t) and t satisfies
the effects of ai for every i in {1, . . . , nAg},

kra08-esslli.tex; 8/04/2009; 10:17; p.11



12

3. The bound on each agent’s memory is set by the following constraint on
the mapping V :

|V B(s, i)| ≤ nM (i) for all s ∈ S and i ∈ Ag.

Note that the bound nC(i) on each agent i’s communication ability (no branch
contains more than nC(i) Copy actions by agent i) follows from the fact that
Copyi is only enabled if i has performed fewer than nC(i) copy actions in
the past.

4.3. AXIOMATISATION OF BMCL-CTL

The idea of the axiomatisation is as follows. Given that the internal language
Ω of the agents is finite, we can describe the contents of the memory of each
agent in each state by a formula, and describe all possible successor states of
each state in the same way.

We can identify a state s with the set of all atomic formulas true in s. The
set of all possible state descriptions x for a given Ω is given below:

Ŝ = {x ∈ ℘(BΩ ∪ CP ) | |x ∩BΩ| ≤ nM (i) ∧ |x ∩ CP | = 1}

(recall the definitions of BΩ and CP given at the end of Section 4.1). An
example of an element x of Ŝ would be a set {B1p, c1 = 0, B2q, c2 = 0}
which describes a state where agent 1 believes p, agent 2 believes q, and none
of the agents has copied any clauses. We implicitly assume that for every
atomic formula φ ∈ ℘(BΩ ∪ CP ) \ x, φ is false in the corresponding state.
So in particular, x above describes a state where agent 1 does not believe q.

Given x ∈ Ŝ, we will denote by xi the formulas in x which describe i’s
beliefs and the value of i’s communication counter:

xi = (x ∩BiΩ) ∪ (x ∩ CPi)

For the example above, x1 = {B1p, c1 = 0}.
We define Ri(x) similarly to Definition 1 for all x ∈ Ŝ. Then, for each

a ∈ Ri(x), we define an effect function a(x) as follows:

− Readi,α,β(x) = xi ∪ {Biα} \ {Biβ},

− Resi,α1,α2,L,β(s) = xi ∪{Biα} \ {Biβ} where α = (α1 \ {L})∪ (α2 \
{¬L}),

− Copyi,α,β(s) = xi ∪ {Biα, ci = (n+ 1)} \ {Biβ, ci = n},

− Nulli(s) = xi.
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The effect function for a joint action a = 〈a1, . . . , anAg〉 is defined as
the union of the individual effect functions, i.e. a(x) =

⋃
i∈Ag

ai(x). We also

define R(x) = {〈a1, . . . , anAg〉 | ai ∈ Ri(x)}.
Consider the following set of axiom schemata:

A1 Axioms and rules of CTL as given in (Emerson and Halpern, 1985),

A2
∧
α∈Γ

Biα→ ¬Biβ for all Γ ⊆ Ω such that |Γ| = nM (i) and β /∈ Γ,

A3
∨

n=0,...,nC(i)
ci = n,

A4 ci = n→ ¬ci = m for any m 6= n,

A5
∧
φ∈x

φ∧
∧
ψ∈x
¬ψ → EX(

∧
φ∈a(x)

φ∧
∧

ψ∈a(x)

¬ψ) where x ∈ Ŝ, x = (BΩ∪

CP ) \ x, a ∈ R(x) and a(x) = (BΩ ∪ CP ) \ a(x),

A6
∧
φ∈x

φ ∧
∧
ψ∈x
¬ψ → AX(

∨
a∈R(x)

(
∧

φ∈a(x)
φ ∧

∧
ψ∈a(x)

¬ψ)), where x ∈ Ŝ,

x = (BΩ ∪ CP ) \ x, a ∈ R(x) and a(x) = (BΩ ∪ CP ) \ a(x).

Let BMCL − CTL(K1, ..,KnAg , nM , nC) be the logic defined by the
our axiomatisation. Then we have the following result.

THEOREM 1. BMCL-CTL(K1, ..,KnAg , nM , nC) is sound and weakly com-
plete with respect to BMCM (K1, ..,KnAg , nM , nC).

Proof. The proof of soundness is standard. Axiom A2 assures that at a state,
each agent can store maximally at most nM (i) formulas in its memory. Mean-
while, axioms A3 and A4 force the presence of a unique counter for each
agent to record the number of copies it has performed so far. In particular, A3
makes sure that at least a counter is available for any agent and A4 guaranties
that only one of them is present. Axiom A5 states that if a joint action is
available, then there exists a ‘next’ state which is the result of that action
on the current state. Finally, A6 guaranties that ‘next’ states can only be
generated by their predecessor based on available joint actions.

The proof of completeness follows that forCTL in (Emerson and Halpern,
1985). That is, we construct a model for a consistent formula, then use the
axioms to show that this model is in BMCM (K1, . . ., KnAg , nM , nC).

Given a consistent formulaϕ0, we construct the generalised Fischer-Ladner
closure of ϕ0, FL(ϕ0), as the least set H of formulas containing ϕ0 such
that:

1. ¬ϕ ∈ H , then ϕ ∈ H ,
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2. ϕ ∧ ψ ∈ H , then ϕ, ψ ∈ H ,

3. E(ϕUψ) ∈ H , then ϕ, EXE(ϕUψ) ∈ H ,

4. A(ϕUψ) ∈ H , then ϕ, AXA(ϕUψ) ∈ H ,

5. EXϕ ∈ H , then ϕ ∈ H ,

6. AXϕ ∈ H , then ϕ ∈ H ,

7. ϕ ∈ H and ϕ is not of the form ¬ψ, then ¬ϕ ∈ H ,

8. BΩ, CP ⊆ H

Clearly, FL(ϕ0) is finite. A subset s of FL(ϕ0) is maximally consistent if
s is consistent and for all ϕ, ¬ϕ ∈ FL(ϕ0), either ϕ or ¬ϕ is in s. Repeat the
construction of a model M for ϕ0 as in (Emerson and Halpern, 1985) based
on the set of maximally consistent sets of FL(ϕ0), with the condition that the
assignment is defined as follows:

− α ∈ V (s, i) iff Biα ∈ s,

− ci = n ∈ V (s, i) iff ci = n ∈ s.

Note that |V B(s, i)| ≤ nM (i) by axiom A2, and |V C(s, i)| = 1 by axioms
A3 and A4.

The truth lemma for atomic formulas is trivial, for temporal formulas the
proof is the same as in (Emerson and Halpern, 1985).

It remains to show that M satisfies the conditions on R and if (s, t) ∈ R
and ci = n ∈ V (s, i) and ci = m ∈ V (t, i) then n ≤ m. This follows
from the axioms A5 and A6 which exhaustively describe all, and only, the
transitions which conform to the conditions on R. In particular, the value of
communication counter never goes down. 2

4.4. SYSTEMS OF HETEROGENEOUS REASONERS

Changing the logic to accommodate agents which reason using a different
set of inference rules rather than resolution is relatively straightforward. As
an illustration, we show how to add model conditions and axioms for agents
which use modus ponens and conjunction introduction. We assume that the
premises of these reasoners contain literals and implications of the form L1∧
. . . ∧ Ln → L.

First of all, we need to change the conditions on models so that instead
of using the Res action, an agent can change its state by performing MP
and AND actions. Let i be an (MP , AND) reasoner. Define Ω as ∪iKi

closed under subformulas and the following conjunction introduction: if Q
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is a set of distinct literals from ∪iKi, then ∧Q ∈ Ω. An agent i has actions
Readi,φ,ψ for any formula φ in Ki and ψ ∈ Ω (where ψ is the overwritten
formula), Copyi,φ,ψ for any formula φ ∈ Ω, Idlei, and instead of Res it has
MPi,φ1,φ1→φ2,ψ and ANDi,φ1,φ2,ψ.

DEFINITION 4 (Availability of MP and AND). For any s ∈ S:

1. MPi,φ1,φ1→φ2,ψ ∈ Ri(s) iff φ1, φ1 → φ2 ∈ V (s, i) and ψ ∈ Ω,

2. ANDi,φ1,φ2,ψ ∈ Ri(s) iff φ1, φ2 ∈ V (s, i) and ψ ∈ Ω.

DEFINITION 5 (Effects of MP and AND). For every s ∈ S, the result of
performing action a is defined if a ∈ Ri(s) and has the following effect on
the resulting state t:

1. If a is MPi,φ1,φ1→φ2,ψ then V (t, i) = V (s, i) ∪ {φ2} \ {ψ},

2. If a is ANDi,φ1,φ2,ψ then V (t, i) = V (s, i) ∪ {φ1 ∧ φ2} \ {ψ}.

The corresponding notationsRi(x),MPi,φ1,φ1→φ2,ψ(x) andANDi,φ1,φ2,ψ(x)
for the (MP , AND) reasoner are defined similarly, where x ∈ Ŝ. In partic-
ular, we have:

− MPi,φ1,φ1→φ2,ψ(x) = xi ∪ {φ2} \ {ψ},

− ANDi,φ1,φ2,ψ(x) = xi ∪ {φ1 ∧ φ2} \ {ψ}.

Then, the corresponding axioms for the (MP , AND) reasoners can be
easily adapted from the system for resolution reasoners and we obtain an
axiomatisation for the heterogeneous system of reasoners.

5. Verifying Resource Bounds

The logic BMCL-CTL allows us to express precisely how the beliefs of a
set of resource-bounded agents change over time, and, given a memory and
communication bound for each agent, to verify formulas which state that a
certain belief will or will not be acquired within a certain number of steps. For
example, given a system of two agents which reason using resolution from
premises K1 = {{p1, p2}, {¬p1, p2}} and K2 = {{p1,¬p2}, {p1,¬p2}},
with bounds nM (1) = 2, nM (2) = 2 (both agents have a memory of size 2)
and nC(1) = 0, nC(2) = 1 (agent 1 cannot copy anything and agent 2 can
copy one clause), we can prove EX5B2({}) (i.e., the agents can derive the
empty clause in 5 steps—recall that we consider the goal achieved if one of
the agents has the formula in its memory).
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However, rather than deriving such properties by hand, it is more conve-
nient to use an automatic method to verify them. In this section, we describe
how the models in BMCM (K1, ..,KnAg , nM , nC) can be encoded as an in-
put to a model checker to allow the automatic verification of the properties
expressing resource bounds using standard model checking techniques.

The model checking complexity of BMCL-CTL is the same as that of
CTL, since all the additional constructs in the language are constant-time
checkable state properties:

THEOREM 2. The model checking problem for BMCL-CTL (given M and
φ, does M |= φ) can be solved in time O(|M | × |φ|).

Proof. Direct from the CTL model checking algorithm from (Clarke et al.,
1986). 2

5.1. MODEL CHECKER ENCODING

It is straightforward to encode a BMCM model of such a system for a stan-
dard model checker. For the examples reported here, we have used the Mocha
model checker (Alur et al., 1998).

States of the BMCM models correspond to an assignment of values to
state variables in the model checker. The state variables representing an agent’s
memory are organised as a collection of ‘cells’, each holding at most one
clause. For an agent i with memory bound nM (i), there are nM (i) cells.
Each cell is represented by a pair of vectors of state variables, each of length
k = |PROP |, representing the positive and negative literals in the clause
in some standard order (e.g., lexicographic order). For example, if PROP
contains the propositional variables A1, A2 and A3 with index positions 0, 1
and 2 respectively, the clause A1 ∨¬A3 would be represented by two vectors
of state variables: “100” for the positive literals and “001” for the negative
literals. We assume that the premises do not include any tautologies, and our
encoding of resolution (see below) does not produce tautologies as resolvents.
The index corresponding to a propositional variable is therefore set to 1 in at
most one of the vectors representing a memory cell. This gives reasonably
compact states.

Actions by each agent such as reading a premise, resolution and commu-
nication with other agents are represented by Mocha atoms which describe
the initial condition and transition relation for a group of related state vari-
ables. Reading a premise (Readi,α,β) simply sets the vectors representing an
arbitrary cell in agent i’s memory to the appropriate values for the clause
α. Resolution (Resi,α1,α2,L,β) is implemented using simple bit operations on
cells containing values representing α1 and α2, with the results being as-
signed to an arbitrary cell in agent i’s memory. Communication (Copyi,α,β)
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is implemented by copying the values representing α from a cell of agent
j to an arbitrary cell of agent i. To express the communication bound, we
use a counter for each agent which is incremented each time a copy action
is performed by the agent. After the counter for agent i reaches nC(i), the
Copyi,α,β action is disabled.

Mocha supports hierarchical modelling through composition of modules.
A module is a collection of atoms and a specification of which of the state
variables updated by those atoms are visible from outside the module. In our
encoding, each agent is represented by a module. A particular distributed
reasoning system is then simply a parallel composition of the appropriate
agent modules.

The specification language of Mocha is ATL (Alur et al., 1997), which
includes CTL. We can express properties such as ‘agent i may derive belief
α in n steps’ as EXn tr(Biα) where EXn is EX repeated n times and
tr(Biα) is a suitable encoding of the fact that the clause α is present in agent
i’s memory, either as a disjunction of possible values of cell vectors or as a
special boolean variable which becomes true when one of the cells contains
a particular value. For example, if α is the empty clause, then both of the
vectors of state variables representing one of agent i’s cells should contain all
0s. (In practice, the situation is slightly more complex, as we need to check
that a memory cell which contains all 0s at the current step was actually
used in the proof, i.e., it contained a literal at the previous step.) To obtain
the actual derivation we can verify the negation of a formula, for example
AG ¬tr(Biα), and use the counterexample trace generated by the model
checker to show how the system reaches the state where α is proved. Note
that we are interested in the properties involving simple reachability (there
is a path to a state where one of the agents has derived a property) rather
than in more complicated properties of strategic ability (there is a sequence
of actions by the agents, such that for all responses by other agents, a state
satisfying the property can be reached). In future work, we plan to consider
logics for resource-bounded reasoners where explicit coalitional ability can
be expressed.

5.2. EXAMPLES

Consider a single agent (agent 1) whose knowledge base contains all clauses
of the form ∼A1∨ ∼A2 where ∼Ai is either Ai or ¬Ai, and which has the
goal of deriving the empty clause. We can express the property that agent 1
will derive the empty clause at some point in the future as EF B1{}.

Using the model checker, we can show that deriving the empty clause
requires a memory bound of 3 and 8 time steps (see Figure 2).2 We can also

2 The space required for problems of this form is known to be logarithmic in the number
of premises (Esteban and Torán, 1999).
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Table I. Tradeoffs between resource bounds

# agents Distrib. Memory Comm. Time

1 Symmetric 3 – 8

2 Symmetric 2, 2 1, 0 6
2 Symmetric 3, 3 1, 0 6
2 Symmetric 3, 3 0, 0 8
2 Symmetric 2, 1 1, 1 9

2 Asymmetric 2, 2 2, 1 7
2 Asymmetric 3, 3 2, 1 7
2 Asymmetric 3, 1 1, 0 8

show that these space and time bounds are minimal for a single agent; i.e.,
increasing the space bound does not result in a shorter proof.

With two agents and a symmetric problem distribution (i.e., each agent
has all the premises ∼A1∨ ∼A2), we can show that a memory bound of 2
(i.e., the minimum required for resolution) and a communication bound of 1
gives a proof of 6 steps (see Figure 3). Reducing the communication bound
to 0 results in no proof, as, with a memory bound of 2 for each agent, at least
one clause must be communicated from one agent to the other. Increasing the
space bound to 3 (for each agent) does not shorten the proof, though it does
allow the communication bound to be reduced to 0 at the cost of increasing
the proof length to 8 (i.e., the single agent case). Reducing the total space
bound to 3 (i.e., 2 for one agent and 1 for the other, equivalent to the single
agent case) increases the number of steps required to find a proof to 9 and the
communication bound to 1 for each agent. In effect, one agent functions as a
cache for a clause required later in the proof, and this clause must be copied
in both directions.

If the problem distribution is asymmetric, e.g., if one agent has premises
A1∨A2 and ¬A1∨¬A2 and the other has premises ¬A1∨A2 andA1∨¬A2,
then with a memory bound of 2 for each agent, we can show that the time
bound is 7, and the communication bound is 2 for the first agent and 1 for
the second. Increasing the memory bound for each agent to 3 does not reduce
the time bound. However the memory bound can be reduced to 1 and the
communication bound reduced to 1 for one agent and 0 for the other, if the
time bound is increased to 8 (this is again equivalent to the single agent case,
except that one agent copies the clause it lacks from the other rather than
reading it). These tradeoffs are summarised in Table I.
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Increasing the size of the problem increases the number of possible trade-
offs, but similar patterns can be seen to the 2-variable case. For example, if
the agent’s premises contain all clauses of the form∼A1∨ ∼A2∨ ∼A3, then
a single agent requires a memory bound of 4 and 16 steps to achieve the goal.
In comparison, two agents, each with a memory bound of 2, require 13 steps
and 4 messages to derive the goal.

While extremely simple, these examples serve to illustrate the interaction
between memory, time and communication bounds, and between the resource
distribution and the problem distribution.

6. Related work

There exist several approaches to epistemic logic which model reasoners as
resource-bounded (not logically omniscient), including the deduction model
of belief (Konolige, 1986), step logic and active logic (Elgot-Drapkin and
Perlis, 1990; Grant et al., 2000), algorithmic knowledge (Halpern et al., 1994;
Fagin et al., 1995; Pucella, 2004), and other syntactic epistemic logics (Duc,
1997; Ågotnes and Walicki, 2005; Alechina et al., 2004; Jago, 2006) where
each inference step takes the agent into the next (or some future) moment
in time. A logic where the depth of belief reasoning is limited is studied in
(Fisher and Ghidini, 1999).

A considerable amount of work has also been done in the area of model
checking multi-agent systems (see, e.g., (Bordini et al., 2004; Benerecetti
et al., 1998)). However, this work lacks a clear connection between the way
agent reasoning is modelled in the agent theory (which typically assumes that
the agents are logically omniscient) and the formalisations used for model
checking, and emphasises correctness rather than the interplay between time,
memory and communication, and the ability of agents to derive a certain
belief.

The current paper extends the work of Albore et al. (2006) which proposed
a method of verifying memory and time bounds in a single reasoner which
reasons in classical logic using natural deduction rather than resolution. We
also extend the work in (Alechina et al., 2006c) which analyses a system
of communicating rule-based reasoners and verifies time bounds for those
systems, but assumes unlimited memory.

7. Conclusion

In this paper, we analyse the time, space and communication resources re-
quired by a system of reasoning agents to achieve a goal. We give a rigourous
definition of the measures for each of those resources, and introduce the
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epistemic logic BMCL-CTL in which we can express properties of a system
of resource-bounded reasoning agents. In particular, we can express bounds
on memory and communication resources as axioms in the logic. We ax-
iomatise a system of agents which reason using resolution (other reasoning
systems can be axiomatised in a similar way), prove that the resulting logic
is sound and complete, and show how to express properties of the system
of reasoning agents in BMCL-CTL. Finally, we show how BMCL-CTL
transition systems can be encoded as input to the Mocha model-checker and
how properties, such as the existence of derivations with given bounds on
memory, communication, and the number of inference steps, can be verified
automatically.

In future work, we plan to consider logical languages containing primitive
operators which would allow us to state the agents’ resource limitations as
formulas in the language rather than axioms, and consider agents reason-
ing about each other’s resource limitations. We also would like to consider
agents reasoning in a simple epistemic or description logic. We also plan to
investigate extending ATL to include reasoning about resources.
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