
Reasoning about other agents’ beliefs under bounded
resources

Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and Abdur Rakib?

School of Computer Science
University of Nottingham

Nottingham NG8 1BB, UK
{nza,bsl,hnn,rza}@cs.nott.ac.uk

Abstract. There exists a considerable body of work on epistemic logics for
bounded reasoners where the bound can be time, memory, or the amount of in-
formation the reasoners can exchange. In much of this work the epistemic logic
is used as a meta-logic to reason about beliefs of the bounded reasoners from
an external perspective. In this paper, we present a formal model of a system of
bounded reasoners which reason about each other’s beliefs, and propose a sound
and complete logic in which such reasoning can be expressed. Our formalisation
highlights a problem of incorrect belief ascription in resource-bounded reasoning
about beliefs, and we propose a possible solution to this problem, namely adding
reasoning strategies to the logic.

1 Introduction

The purpose of this paper is to investigate a multi-agent epistemic logic which results
from taking seriously the idea that agents have bounded time, memory and communi-
cation resources, and are reasoning about each other’s beliefs. The main contribution
of the paper is to generalise several existing epistemic logics for resource-bounded rea-
soners by adding an ability for reasoners to reason about each other’s beliefs. We show
that a problem of incorrect belief ascription arises as a result, and propose a possible
solution to this problem.

To give the reader an idea where the current proposal fits into the existing body
of research on epistemic logics for bounded reasoners, we include a brief survey of
existing approaches, concentrating mostly on the approaches which have influenced the
work presented here.

In standard epistemic logic (see e.g. [1, 2] for a survey) an agent’s (implicit) knowl-
edge is modelled as closed under logical consequence. This can clearly pose a problem
when using an epistemic logic to model resource-bounded reasoners, whose set of be-
liefs is not generally closed with respect to their reasoning rules. Various proposals to
modify possible worlds semantics in order to solve this problem of logical omniscience
(e.g., introducing impossible worlds as in [3, 4], or non-classical assignment as in [5])
result in agent’s beliefs still being logically closed, but with respect to a weaker logic.

? This work was supported by the UK Engineering and Physical Sciences Research Council
[grant number EP/E031226].



Our work builds on another approach to solving this problem, namely treating be-
liefs as syntactic objects rather than propositions (sets of possible worlds). In [6], Fagin
and Halpern proposed a model of limited reasoning using the notion of awareness: an
agent explicitly believes only the formulas which are in a syntactically defined aware-
ness set (as well as in the set of its implicit beliefs). Implicit beliefs are still closed under
consequence, but explicit beliefs are not, since a consequence of explicit beliefs is not
guaranteed to belong to the awareness set. However, the awareness model does not give
any insight into the connection between the agent’s awareness set and the agent’s re-
source limitations, which is what we try to do in this paper.1 Konolige [7] proposed a
different model of non-omniscient reasoners, the deduction model of belief. Reasoners
were parameterised with sets of rules which could, for example, be incomplete. How-
ever, the deduction model of belief still models beliefs of a reasoner as closed with
respect to reasoner’s deduction rules; it does not take into account the time it takes to
produce this closure, or any limitations on the agent’s memory. Step logic, introduced in
[8], gives a syntactic account of beliefs as theories indexed by time points; each applica-
tion of inference rules takes a unit of time. No fixed bound on memory was considered,
but the issue of bounded memory was taken into account. An account of epistemic logic
called algorithmic knowledge, which treats explicit knowledge as something which has
to be computed by an agent, was introduced in [9], and further developed in e.g. [1,
10]. In the algorithmic knowledge approach, agents are assumed to possess a procedure
which they use to produce knowledge. In later work [10] this procedure is assumed to
be given as a set of rewrite rules which are applied to the agent’s knowledge to produce
a closed set, so, like Konolige’s approach, algorithmic knowledge is concerned with the
result rather than the process of producing knowledge. In [11, 12] Duc proposed log-
ics for non-omniscient epistemic reasoners which will believe all consequences of their
beliefs eventually, after some interval of time. It was shown in [13] that Duc’s system
is complete with respect to semantics in which the set of agent’s beliefs is always fi-
nite. Duc’s system did not model the agents’ reasoning about each others’ beliefs. Other
relevant approaches where epistemic logics were given a temporal dimension and each
reasoning step took a unit of time are, for example, [14], where each inference step is
modelled as an action in the style of dynamic logic, and [15] which proposes a logic
for verification of response-time properties of a system of communicating rule-based
agents (each rule firing or communication takes a unit of time). In a somewhat differ-
ent direction, [16] proposed a logic where agents reason about each others beliefs, but
have no explicit time or memory limit; however there is a restriction on the depth of be-
lief nestings (context switching by the agents). Epistemic logics for bounded-memory
agents were investigated in, for example, [17–20], and the interplay between bounded
recall and bounded memory (ability to store strategies of only bounded size) was stud-
ied in [21].

An epistemic logic BMCL for communicating agents with communication limits on
the number of exchanged messages (and connections to space complexity of proofs and
communication complexity) was investigated in [20]. In this paper we expand BMCL
by adding rules for reasoning about other agents’ beliefs, demonstrate that epistemic

1 We also completely dispense with the notion of implicit beliefs.



reasoning done in resource-bounded fashion has an inherent problem of incorrect belief
ascription, and propose the use of reasoning strategies as a solution to this problem.

2 Model of reasoning agents

The logic BMCL presented in [20] formalises reasoning about the beliefs of a system of
reasoners who reason using propositional resolution and can exchange information to
solve a problem together. The set up is similar to, for example, [22]. BMCL models each
inference rule application as taking a single time step, introduces an explicit bound on
the set of beliefs of each reasoner, and a bound on the number of messages the reasoners
can exchange. In this paper, we generalise this approach by assuming that agents can
also reason about each other’s beliefs. Namely, they assume that other agents use a
certain set of inference rules, and they reason about what another agent may believe at
the next step. For example, if agent A believes that agent B believes two clauses c1 and
c2 and these two clauses are resolvable to a clause c, and agent A assumes that agent B
reasons using resolution, then it is reasonable for agent A to believe that agent B may
believe c at the next step.

We assume a set of n agents. Each agent i has a set of inference rules, a set of
premises KBi, and a working memory. To infer from the premises in KBi, the relevant
formulas must first be read into working memory. We assume that each agent’s working
memory is bounded by nM , which is the maximal number of formulas an agent can
believe at the same time. We also set a limit on the possible size of a formula, or rather
on the depth of nesting of belief operators, nB , and a limit, nC , on the maximal number
of communications an agent can make. For simplicity, we assume that these bounds are
the same for all agents, but this can be easily relaxed by introducing functions nM (i),
nB(i) and nC(i) which assign a different limit to each agent i.

The set of reasoning actions is as follows:

Read KB: an agent can retrieve information from its KB and put it into its working
memory using the Read action. Since an agent has a fixed size memory, adding a
formula to its memory may require erasing some belief already in memory (if the
limit nM would otherwise be exceed). The same applies to other reasoning actions
which add a new formula, in that adding a new formula may involve overwriting a
formula currently in working memory.

Resolution: an agent can derive a new clause if it has two resolvable clauses in its
memory.

Copy: an agent can communicate with another agent to request a clause from the mem-
ory of the other agent. We assume that communication is always successful if the
other agent has the requested clause. If agentA has clause c in memory, then a copy
by B will result in agent B believing that A believes c. Copy is only enabled if the
agent has performed fewer than nC copy actions in the past and the prefix of the
resulting belief has nesting of at most nB .

Idle: an agent may idle (do nothing) at any time step. This means that at the next time
point of the system, the agent does not change its state of memory.

Erase: an agent may remove a formula from its working memory. This action is intro-
duced for technical reasons to simplify the proofs.



In addition to the actions listed above, we introduce actions that enable agents to
reason about other agents’ beliefs, essentially epistemic axioms K (ascribing proposi-
tional reasoning to the other agent) and 4 (positive introspection about the agent’s own
beliefs, and ascribing positive introspection to other agents). The reasons we do not
adopt for example KD45 are as follows. If the agent’s knowledge base is inconsistent,
we want it to be able to derive B⊥ (or B[] where [] is the empty clause). Negative intro-
spection is also problematic in a resource-bounded setting, in that the agent may derive
¬Bα if α is not in its current set of beliefs, and then derive α from its other beliefs, end-
ing up with an inconsistent set of beliefs (¬Bα and Bα by positive introspection from
α), even if its knowledge base is consistent. We could have adopted a restricted version
of negative introspection (see, e.g., [12]) but in this paper we omit it for simplicity.

In addition to the reasoning actions listed above, we therefore add the following
actions:

Other’s Resolution: an agentA can perform this action if it believes that another agent
B believes two resolvable clauses c1 and c2. Then A can conclude that B will
believe in the resolvent clause c of c1 and c2 in the next time point. As a general
case, we can extend the chain agent-believes ... agent-believes. For example, if
agent A believes that agent B believes that agent C believes two resolvable clauses
c1 and c2, then it is possible in the next time point that agent A believes that agent
B believes that agent C believes c which is the resolvent of c1 and c2.

Positive Introspection: if an agent A believes a clause c, it can perform this action to
reach a state where it believes that it believes c.

Other’s Positive Introspection: if an agent A believes that another agent B believes a
clause c, it can perform this action to reach a state where it believes that B believes
that B believes c.

The reasoning actions Positive Introspection and Other’s Positive Introspection are
only enabled if the derived formula has a depth of nesting of at most nB .

Note that the assumption that the agents reason using resolution and positive in-
trospection is not essential for the main argument of this paper. This particular set of
inference rules has been chosen to make the logic concrete; we could have, for exam-
ple, assumed that the agents reason using modus ponens and conjunction introduction
instead of resolution. In what follows, we give a formal definition of an epistemic logic
for communicating agents which reason in a step-wise, memory-bounded fashion using
some well-defined set of inference rules.

3 Syntax and semantics of ERBL

In this section, we give the syntax and semantics of the logic ERBL which formalises
the ideas sketched in the previous section. ERBL (Epistemic Resource Bounded Logic)
is an epistemic and temporal meta-language in which we can talk about beliefs ex-
pressed in the agents’ internal language.

Let the set of agents be A = {1, 2, . . . , nA}. We assume that all agents agree on a
finite set PROP of propositional variables, and that all belief formulas of the internal



language of the agents are in the form of clauses or clauses preceded by a prefix of
belief operators of fixed length.

From the set of propositional variables, we have the definition of all literals as fol-
lows:

LPROP = {p,¬p | p ∈ PROP}

Then, the set of all clauses is Ω = ℘(LPROP ). Finally, the set of all belief formulas
is defined as follows:

BΩ ::= {Bi1 . . . Bikc | c ∈ Ω, 0 ≤ k ≤ nB},

where ij ∈ A. Note that we only include in the set of belief formulas those whose belief
operator nesting is limited by nB . Therefore, BΩ is finite.

Each agent i ∈ A is assumed to have a knowledge base KBi ⊆ BΩ.
For convenience, the negation of a literal L is defined as ¬L, where:

¬L =
{
¬p if L = p for some p ∈ PROP
p if L = ¬p for some p ∈ PROP

The form of resolution rule which will be used in formal definitions below is as
follows: given two clauses c1 and c2 ∈ Ω such that one contains a literal L and the other
has its negation ¬L, we can derive a new clause which is the union c1\{L}∪c2\{¬L}.

The syntax of ERBL is then defined inductively as follows.

– > is a well-formed formula (wff) of ERBL.
– start is a wff of ERBL; it is a marker for the start state.
– cp=n

i (the number of communication actions performed by agent i) is a wff of
ERBL for all n = 0, . . . , nC , and i ∈ A; it is used as a communication counter in
the language.

– If α ∈ BΩ, then Biα (agent i believes α) is a wff of ERBL, i ∈ A.
– If ϕ and ψ are wffs, then so are ¬ϕ, ϕ ∧ ψ.
– If ϕ and ψ are wffs, then so are Xϕ (ϕ holds in the next moment of time), ϕUψ (
ϕ holds until ψ), and Aϕ (ϕ holds on all paths).

Classical abbreviations for ∨,→,↔ are defined as usual. We also have ⊥ ≡ ¬>,
Fϕ ≡ >Uϕ (ϕ holds some time in the future), Eϕ ≡ ¬A¬ϕ (ϕ holds on some path).
For convenience, let CPi = {cp=n

i |n = {0, . . . , nC}} and CP =
⋃
i∈A CPi.

The semantics of ERBL is defined by ERBL transition systems which are based
on ω-tree structures (standard CTL∗ models as defined in [23]).

Let (T,R) be a pair where T is a set and R is a binary relation on T . Let the
relation < be the irreflexive and transitive closure of R, namely the set of pairs of
states {(s, t) ∈ T × T | ∃n ≥ 0, t0 = s, .., tn = t ∈ T such that tiRti+1 for all
i = 0, . . . , n− 1}. (T,R) is a ω-tree frame iff the following conditions are satisfied.

1. T is a non-empty set.
2. R is total, i.e., for all t ∈ T , there exists s ∈ T such that tRs.
3. For all t ∈ T , the past {s ∈ T | s < t} is linearly ordered by <.
4. There is a smallest element called the root, denoted by t0.



5. Each maximal linearly <- ordered subset of T is order-isomorphic to the natural
numbers.

A branch of (T,R) is an ω-sequence (t0, t1, . . .) such that t0 is the root and tiRti+1

for all i ≥ 0. We denote by B(T,R) the set of all branches of (T,R).
A ERBL transition system M is defined as a triple (T,R, V ) where:

– (T,R) is a ω-tree frame,
– V : T × A → ℘(BΩ ∪ CP ) such that for all s ∈ T and i ∈ A: V (s, i) =
Q ∪ {cp=n

i } for some Q ⊆ BΩ and 0 ≤ n ≤ nC . We denote by V ∗(s, i) the set
V (s, i) \ {cp=n

i |0 ≤ n}.

For a branch σ ∈ B(T,R), σi denotes the element ti of σ and σ≤i is the prefix
(t0, t1, . . . , ti) of σ.

The truth of a ERBL formula at a point n of a path σ ∈ B(T,R) is defined
inductively as follows:

– M,σ, n |= >,
– M,σ, n |= Biα iff α ∈ V (s, i),
– M,σ, n |= start iff n = 0,
– M,σ, n |= cp=m

i iff cp=m
i ∈ V (s, i),

– M,σ, n |= ¬ϕ iff M,σ, n 6|= ϕ,
– M,σ, n |= ϕ ∧ ψ iff M,σ, n |= ϕ and M,σ, n |= ψ,
– M,σ, n |= Xϕ iff M,σ, n+ 1 |= ϕ,
– M,σ, n |= ϕUψ iff ∃m ≥ n such that ∀k ∈ [n,m)M,σ, k |= ϕ andM,σ,m |= ψ,
– M,σ, n |= Aϕ iff ∀σ′ ∈ BR such that σ′≤n = σ≤n, M,σ′, n |= ϕ.

The set of possible transitions in a model is defined as follows. Definition 1 below
describes possible outcomes of various actions. For example, performing a resolution
results in adding the resolvent to the set of beliefs. Definition 2 describes when an action
is possible or enabled. For example, resolution is enabled if the agent has two resolvable
clauses in memory.

Definition 1. Let (T,R, V ) be a tree model. The set of effective transitions Ra for
an action a is defined as a subset of R and satisfies the following conditions, for all
(s, t) ∈ R:

1. (s, t) ∈ RReadi,α,β iff α ∈ KBi, α /∈ V (s, i) and V (t, i) = V (s, i) \ {β} ∪ {α}.
This condition says that s and t are connected by agent i’s Read transition if the
following is true: α is in i’s knowledge base but not in V (s, i), α is added to the
set of i’s beliefs at t, and β ∈ BΩ is removed from the agent’s set of beliefs.
The argument β stands for a formula which is overwritten in the transition. If β ∈
V (s, i) then the agent actually loses a belief in the transition, if β 6∈ V (s, i) then
the transition only involves adding a formula α without removing any beliefs.

2. (s, t) ∈ RResi,α1,α2,L,β
whereα1 = Bi1 . . . Bik−1Bikc1 andα2 = Bi1 . . . Bik−1Bikc2

iff α1 ∈ V (s, i), α2 ∈ V (s, i), L ∈ c1,¬L ∈ c2, α = Bi1 . . . Bik−1Bikc /∈ V (s, i)
and V (t, i) = V (s, i) \ {β}∪{α} where c = c1 \ {L}∪ c2 \ {¬L}. This condition
says that s and t are connected by agent i’s Res transition if in s agent i believes



two resolvable clauses α1 and α2 but not α, possibly preceded by the same se-
quence of belief operators, and in t agent i believes their resolvent, preceded by the
same prefix. Again, β ∈ BΩ is overwritten if it is in the set of agent’s beliefs in s.

3. (s, t) ∈ RCopyi,α,β iff α ∈ V (s, j) for some j ∈ A and j 6= i, for any cp=n
i ∈

V (s, i) such that n < nC , Bjα /∈ V (s, i) and V (t, i) = V (s, i) \ {cp=n
i |cp=n

i ∈
V (s, i)} ∪ {cp=n+1

i |cp=n
i ∈ V (s, i)} \ {β} ∪ {Bjα}. s and t are connected by a

Copy transition of agent i if in t, i adds to its beliefs a formula Bjα where α is an
agent j’s belief in s, and i has previously copied fewer than nC formulas. Again
some β ∈ BΩ is possibly overwritten.

4. (s, t) ∈ RIdlei iff V (t, i) = V (s, i). The Idle transition does not change the state.
5. (s, t) ∈ RErasei,β iff V (t, i) = V (s, i) \ {β}. Erase removes one of the agent’s

beliefs.
6. (s, t) ∈ RPIi,α,β iff α ∈ V (s, i), Biα /∈ V (s, i) and V (t, i) = V (s, i) \ {β} ∪
{Biα}. PI is i’s positive introspection: s and t are connected by i’s PI transition
if in s it believes α but not Biα and in t it believes Biα.

7. (s, t) ∈ ROPIi,Bi1 ...Bik−1
,Bik

α,β
iff Bi1 . . . Bik−1Bikα ∈ V (s, i) but not Bi1 . . .

Bik−1BikBikα, V (t, i) = V (s, i) \ {β} ∪ {Bi1 . . . Bik−1BikBikα}. This corre-
sponds to ascribing positive introspection to agent ik.

This specifies the effects of actions. Below, we specify when an action is possible.
Note that we only enable deriving a formula if this formula is not already in the set of
the agent’s beliefs.

Definition 2. Let (T,R, V ) be a tree model. The set Acts,i of possible actions that an
agent i can perform at a state s ∈ T is defined as follows:

1. Readi,α,β ∈ Acts,i iff α 6∈ V (s, i), α ∈ KBi and β ∈ V (s, i) if |V ∗(s, i)| ≥ nM .
2. Resi,α1,α2,L,β ∈ Acts,i iff c = (c1\L)∪(c2\¬L) 6∈ V (s, i),α1 = Bi1 . . . Bik−1Bikc1,
α2 = Bi1 . . . Bik−1Bikc2, L ∈ c1, ¬L ∈ c2, α1, α2 ∈ V (s, i), and β ∈ V (s, i) if
|V ∗(s, i)| ≥ nM .

3. Copyi,α,β ∈ Acts,i iff Bjα 6∈ V (s, i), α ∈ V (s, j) for some j ∈ A and j 6= i,
n < nC for any cp=n

i ∈ V (s, i) and β ∈ V (s, i) if |V ∗(s, i)| ≥ nM .
4. It is always the case that Idlei ∈ Acts,i.
5. PIi,α,β ∈ Acts,i iff iα 6∈ V (s, i), α ∈ V (s, i) and β ∈ V (s, i) if |V ∗(s, i)| ≥ nM .
6. OPIi,Bi1 ...Bik−1Bikα,β

∈ Acts,i iffBi1 . . . Bik−1BikBikα 6∈ V (s, i),Bi1 . . . Bik−1

Bikα ∈ V (s, i) and β ∈ V (s, i) if |V ∗(s, i)| ≥ nM .

There are no specified conditions for enabling Erasei,β . This action is introduced for
technical reasons, to simplify the proofs.

Finally, the definition of the set of models corresponding to a system of reasoners is
given below:

Definition 3. M(KB1, . . . ,KBnA , nB , nM , nC) is the set of models (T,R, V ) which
satisfies the following conditions:

1. |V ∗(s, i)| ≤ nM for all s ∈ T and i ∈ A.
2. cp=0

i ∈ V (t0, i) where t0 is the root of (T,R) for all i ∈ A.
3. R =

⋃
∀aRa.

4. For all s ∈ T , ai ∈ Acts,i, there exists t ∈ T such that (s, t) ∈ Rai for all i ∈ A.



4 Axiomatisation

In this section, we introduce an axiom system which is sound and complete with respect
to the set of models defined in the previous section.

Below are some abbreviations which will be used in the axiomatisation:

– ByReadi(α, n) = ¬Biα∧ cp=n
i . This formula describes the state before the agent

comes to believe formula α by the Read transition. n is the value of i’s communi-
cation counter.

– ByResi(α, n) = ⊥ if α = Bi1 . . . Bik−1¬Bikc for some c ∈ Ω and 1 ≤ k ≤
nB ; otherwise ByResi(α, n) = ¬Biα∧

∨
(α1,α2)∈Res−1(α) (Biα1 ∧Biα2) where

Res−1(Bi1 . . . Bik−1Bikc) = {(Bi1 . . . Bik−1Bikc1, Bi1 . . . Bik−1Bikc2) | ∃L ∈
LPROP such that c = c1 \ {L} ∪ c2 \ {¬L}}. This formula describes the state
of the system before i derives α by resolution. Note that it may not be possible to
derive an arbitrary formula α by resolution; in that case, the state is described by
falsum ⊥.

– ByCopyi(α, n) = ⊥ if α 6= Bjα
′ for some j 6= i or n ≤ 0;

otherwise ByCopyi(Bjα′, n) = ¬BiBjα′ ∧Bjα′ ∧ cp=n−1.
– ByPIi(α, n) = ⊥ if α 6= Biα

′; otherwise ByPIi(α, n) = ¬BiBiα′ ∧ Biα′ ∧
cp=n.

– ByOPIi(α, n) = ⊥ if α 6= Bi1 . . . Bik−1BikBikα
′;

otherwise ByOPIi(α, n) = ¬BiBi1 . . . Bik−1BikBikα
′ ∧ BiBi1 . . . Bik−1Bikα

′

∧ cp=n.

The axiomatisation is as follows.

A1. All axioms and inference rules of CTL∗ [24].
A2.

∧
γ∈QBiγ ∧ cp=n

i ∧ ¬Biα → EX(
∧
γ∈QBiγ ∧ cp=n

i ∧ Biα) for all α ∈ KBi,
and Q ⊆ BΩ such that |Q| < nM .
Intuitively, this axiom says that it is always possible to make a transition to a state
where agent i believes a formula from its knowledge base KBi. In addition, the
communication counter of the agent does not increase, and a set of beliefs Q of
cardinality less than nM can also be carried over to the same state.
Axioms A3 - A6 similarly describe transitions made by resolution (given that re-
solvable clauses are available), copy (with communication counter increased), and
positive introspection (applied by agent i or ascribed by i to another agent).

A3.
∧
γ∈QBiγ ∧BiBi1 . . . Bik−1Bikc1 ∧BiBi1 . . . Bik−1Bikc2 ∧ cp=n

i ∧¬BiBi1 . . .
Bik−1 Bikc→ EX(

∧
γ∈QBiγ ∧ cp=n

i ∧ BiBi1 . . . Bik−1Bikc) for all c1, c2 ∈ Ω
such that L ∈ c1, ¬L ∈ c2 and c = c1 \ {L} ∪ c2 \ {¬L}, k ≥ 0, and Q ⊆ BΩ
such that |Q| < nM .

A4.
∧
γ∈QBiγ ∧Bjα∧ cp=n

i ∧¬BiBjα→ EX(
∧
γ∈QBiγ ∧BiBjα∧ cp

=n+1
i ) for

any α ∈ BΩ, j ∈ A, j 6= i, n < nC , and Q ⊆ BΩ such that |Q| < nM .
A5.

∧
γ∈QBiγ∧Biα∧ cp=n

i ∧¬BiBiα→ EX(
∧
γ∈QBiγ∧BiBiα∧ cp=n

i ) for any
α ∈ BΩ and Q ⊆ BΩ such that |Q| < nM .

A6.
∧
γ∈QBiγ∧BiBi1 . . . Bik−1Bikα∧cp=n

i ∧¬BiBi1 . . . Bik−1BikBikα→EX(
∧
γ∈Q

Biγ ∧ BiBi1 . . . Bik−1BikBikα ∧ cp=n
i ) for any α ∈ BΩ, k ≥ 0 and Q ⊆ BΩ

such that |Q| < nM .



A7. EX(Biα ∧Biβ)→ Biα ∨Biβ.
This axiom says that at most one new belief is added in the next state.

A8. EX(¬Biα ∧ ¬Biβ)→ ¬Biα ∨ ¬Biβ.
This axiom says that at most one belief is deleted in the next state.

A9. EX(Biα∧cp=n
i )→ Biα∨ByReadi(α, n)∨ByResi(α, n)∨ByCopyi(α, n)∨

ByPIi(α, n) ∨ByOPIi(α, n) for α ∈ KBi.
This axiom says that a new belief which is an element of the agent’s knowledge
base can only be added by one of the valid reasoning actions.

A10. EX(Biα∧ cp=n
i )→ Biα∨ByResi(α, n)∨ByCopyi(α, n)∨ByPIi(α, n)∨

ByOPIi(α, n) for α /∈ KBi.
This axiom describes possible ways in which a new belief which is not in the agent’s
knowledge base can be added.

A11. Biα1 ∧ . . . ∧ BiαnM → ¬BiαnM+1 for all i ∈ A, αj ∈ BΩ where j =
1, . . . , nM + 1 and all αj are pairwise different.
This axiom states that an agent cannot have more than nM different beliefs.

A12a start→ cp=0
i for all i ∈ A.

In the start state, the agent has not performed any Copy actions.
A12b ¬EXstart (start only holds at the root of the tree).
A13.

∨
n=0...nC

cp=n
i for all i ∈ A.

There is always a number n between 0 and nC corresponding to the number of
Copy actions agent i has performed.

A14. cp=n
i → ¬cp=n′

i for all i ∈ A and n′ 6= n.
The number of previous Copy actions by i in each state is unique.

A15. ϕ→ EXϕ where ϕ does not contain start.
It is always possible to make a transition to a state where all agents have the same
beliefs and communication counter values as in the current state (essentially an
Idle transition by all agents)

A16.
∧
i∈AEX(

∧
γ∈Qi Biγ ∧ cp

=ni
i ) → EX

∧
i∈A(

∧
γ∈Qi Biγ ∧ cp

=ni
i ) for any

Qi ⊆ BΩ such that |Qi| ≤ nM .
If each agent i can separately reach a state where it believes formulas in Qi, then
all agents together can reach a state where for each i, agent i believes formulas in
Qi.

Notice that since the depth of the nesting of belief operators is restricted by nB , for
any subformula Biα appearing in any above axiom, α ∈ BΩ.

Definition 4. L(KB1, . . . ,KBnA , nB , nM , nC) is the logic defined by the axiomati-
sation A1–A16.

We have the following result.

Theorem 1. L(KB1, . . . ,KBnA , nB , nM , nC) is sound and complete with respect to
M(KB1, . . . ,KBnA , nB , nM , nC).

The proof is omitted due to lack of space; it is based on the proof technique used in
[24].



5 Discussion

Systems of step-wise reasoners with bounded memory and a communication limit are
faithful models of systems of distributed resource-limited reasoners, and various re-
source requirements of such systems can be effectively verified, e.g. by model-checking,
as in for example [20]. However, adding reasoning about beliefs poses a significant
challenge, both in the complexity of the system and in the way this reasoning is mod-
elled. The branching factor of the models is much larger when reasoning about beliefs
is considered, making model-checking less feasible. The main problem however has to
do with the correctness of an agent’s belief ascription. We describe this problem below
and propose a tentative solution.

In the system proposed in this paper, agents correctly ascribe reasoning mechanisms
to each other, and in the limit, their predictions concerning other agents’ beliefs are
correct: if agent j believes that eventually agent i will believe α, then eventually agent
i will believe α, and vice versa. More precisely, for every model M and state s,

{α : M, s |= EFBjBiα} = {α : M, s |= EFBiα}

However, in spite of this, the agents are almost bound to make wrong predictions when
trying to second-guess what other reasoners will believe in the next state. More pre-
cisely,

{α : M, s |= BjBiα} 6⊆ {α : M, s |= Biα}

i.e. agent j may believe that i believes some α when i does not believe α.
Consider the following example. Suppose there are two agents, 1 and 2, each with

a memory limit of two formulas, communication limit of one formula, belief nesting
limit of two, and knowledge bases KB1 = {p} and KB2 = {q}. A possible run of the
system is shown in Figure 1.

State Agent 1 Agent 2
t0 { } { }

transition: Read Read
t1 {p} {q}

transition: Copy Copy
t2 {p, B2q} {q, B1p}

Fig. 1. A possible run of the system

Note that this is only one possible run, and other transitions are possible. For ex-
ample, in t0, one or both agents can idle. In t1, one or both agents can idle, or make a
positive introspection transition. In state t2, the agents’ beliefs about each other’s be-
liefs are correct. However, in most successor states of t2, agent 1 will have incorrect
beliefs about agent 2’s beliefs, and vice versa. Indeed, the options of agent 1 in t2 are:
read p, idle, erase p, erase B2q, apply positive introspection to derive B1p or B1B2q,
ascribe introspection to agent 2 to derive B2B2q. Agent 2 has similar choices. In only



two of these cases do the agents make non-trivial (that is, new compared to the ones al-
ready existing in t2) correct belief ascriptions, namely if agent 1 derives B1p and agent
2 derives B1B1p, and vice versa when agent 2 derives B2q and agent 1 derives B2B2q
(see Figure 2).

State Agent 1 Agent 2
t2 {p, B2q} {q, B1p}

transition: PI, overwrite B2q OPI, overwrite q
t3 {p, B1p} {B1p, B1B1p}

Fig. 2. Continuing from t2: a correct ascription

Figure 3 shows one of many possible incorrect ascriptions. Note that agent 1’s as-
cription is now incorrect because agent 2 has forgotten q, and agent 2’s ascription is in-
correct because it assumed agent 1 will use positive introspection to derive B1p, which
it did not.

State Agent 1 Agent 2
t2 {p, B2q} {q, B1p}

transition: Idle OPI, overwrite q
t4 {p, B2q} {B1p, B1B1p}

Fig. 3. Continuing from t2: an incorrect ascription

This suggests an inherent problem with modelling agents reasoning about each
other’s beliefs in a step-wise, memory-bounded fashion. Note that this problem is es-
sentially one of belief ascription, i.e., of correctly predicting what another agent will
believe given limited information about what it currently believes (of deriving correct
conclusions from correct premises), rather than a problem of belief revision [25], i.e.,
what an agent should do if it discovers the beliefs it has ascribed to another agent are
incorrect. It is also distinct from the problem of determining the consequences of in-
formation updates as studied in dynamic epistemic logic (e.g. [26]). Adding new true
beliefs in a syntactic approach such as ours is straightforward compared to belief update
in dynamic epistemic logic, which interprets beliefs as sets of possible worlds. Essen-
tially, in dynamic epistemic logic an agent acquires a new logically closed set of beliefs
at the next ‘step’ after an announcement is made, while we model the gradual process
of deriving consequences from a new piece of information (and the agent’s previous
beliefs).

The disparity between agent i’s beliefs and the beliefs agent j ascribes to i at each
step is due both to the fact that at most one formula is derived by each agent at any
given step (and agent j may guess incorrectly which inference rule agent i is going
to use) and to memory limitations which cause agents to forget formulas. An obvious
alternative is to do tentative ascription of beliefs to other agents, namely conclude that



the other agent will be in one of several possible belief sets in the next state, e.g.

B2B1p→ EX(B2((B1p ∧B1B1p) ∨ (B1p ∧ ¬B1B1p) ∨ . . .))

However, this implies that one of the agents (agent 2 in this case) has a much larger
(exponentially larger!) memory and a more expressive internal language to reason about
the other agent’s beliefs.

It is clearly not sufficient for correct belief prediction for the reasoners to ascribe
to other agents just a set of inferences rules or a logic such as KD45. They need to be
able to ascribe to other agents a reasoning strategy, or a preference order on the set
reasoning actions used by the other agents which constrains the possible transitions of
each reasoner, and directs each agent’s reasoning about the beliefs of other agents. As
a simple example, suppose agent 2 believes that agent 1’s strategy is to apply positive
introspection to formula p in preference to all other actions. Then in state t2 agent 2 will
derive B1B1p from B1p. If agent 2’s ascription of strategy to agent 1 is correct, agent
1 will indeed derive B1p from p in the next state, making agent 2’s belief prediction
correct.

6 ERBL with strategies

In this section, we modify the semantics of ERBL to introduce reasoning strategies.
First we need to define strategies formally. A reasoning strategy for agent i, ≺i, is

a total order on the set Acti of all reasoning actions of i and their arguments:

Acti = {Readi,α,β , Resi,α1,α2,L,β , Copyi,α,β ,

Erasei,β , Idlei, P Ii,α,β , OPIi,Bi1 ...Bik−1 ,Bikα,β
| α, β, α1, α2 ∈ BΩ}

A simple example of a reasoning strategy for i would be a lexicographic order on Acti
which uses two total orders: an order on the set of transitions, e.g.Res < PI < OPI <
Copy < Read < Idle, and an order on BΩ.

Recall that in Definition 2 we specified which actions are enabled in state s,Acts,i ⊆
Acti. We required in Definition 3 that for each enabled action, there is indeed a transi-
tion by that action out of s. The simple change that we make to Definition 3 is that for
every agent iwe only enable one action, namely the element ofActs,i which is minimal
in ≺i.

Definition 5. The set of reasoning strategy modelsMstrat(KB1, . . . ,KBnA , nB , nM ,
nC) is the set of models (T,R, V ) which satisfies conditions 1-3 from Definition 3 and
the following condition:

4’. For all s ∈ T , there exists a unique state t such that (s, t) ∈ Rai for all i ∈ A,
where ai is the minimal element with respect to ≺i in Acts,i.

Observe that in the reasoning strategy models, the transition relation is a linear order.
Finally, we give one possible definition of a correct ascription of a reasoning strategy

which allows an agent j to have a correct and complete representation of the beliefs



of another agent i, namely ensuring that Biα ↔ BjBiα at each step. Such perfect
matching of i’s beliefs by j is possible if

KBj = {Biα : α ∈ KBi}

and agent i does not use the Copy action (intuitively, because in order to match Copy
by i, agent j has to add two modalities in one step: when agent i derives Blα from α
being in agent l’s belief set, agent j has to derive BiBlα). Below, we also assume that
j is allowed one extra nesting of belief modalities (nB(j) = nB(i) + 1).

Definition 6. Agent j has a strategy which matches the strategy of agent i if for every
natural number k, the following correspondence holds between the kth element of ≺j
and the kth element of ≺i:

– if the kth element of ≺i is Readi,α,β , then the kth element of ≺j is Readj,Biα,Biβ
– if the kth element of ≺i is Resi,α1,α2,L,β , then the kth element of ≺j is
Resj,Biα1,Biα2,L,Biβ

– if the kth element of ≺i is PIi,α,β , then the kth element of ≺j is OPIj,Biα,Biβ
– if the kth element of ≺i is OPIi,Blα,β , then then the kth element of ≺j is
OPIj,BiBlα,Biβ .

– if the kth element of ≺i is Erasei,β , then the kth element of ≺j is Erasej,Biβ
– if the kth element of ≺i is Idlei, then the kth element of ≺j is Idlej .

Theorem 2. If agent j’s strategy matches agent i’s strategy and agent j has complete
and correct beliefs about agent i’s beliefs in state s:M, s |= Biα↔ BjBiα, then agent
j will always have correct beliefs about agent i’s beliefs:M, s |= AG(Biα↔ BjBiα).

Other more realistic matching strategies, for example, those which allow the agent
to have a less than complete representation of other agent’s beliefs, are possible, and
their formal investigation is a subject of future work.

7 Conclusion

We presented a formal model of resource-bounded reasoners reasoning about each
other’s beliefs, and a sound and complete logic, ERBL, for reasoning about such sys-
tems. Our formalisation highlighted a problem of incorrect belief ascription, and we
showed that this problem can be overcome by extending the framework with reasoning
strategies. In future work we plan to extend the framework in a number of ways, in-
cluding producing correct belief ascription under less strict matching between agents’
strategies, and introducing reasoning about other agent’s resource limitations. At the
moment the agents have no way of forming beliefs about another agent’s memory limit
nM or belief nesting bound nB (note that we can also easily make those limits different
for different agents). If they could represent those limitations, then one agent could infer
that another agent does not believe some formula on the grounds that the latter agent’s
memory is bounded.
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17. Ågotnes, T.: A Logic of Finite Syntactic Epistemic States. Ph.D. thesis, Department of
Informatics, University of Bergen, Norway (2004)
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