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Abstract. We present a family of sound and complete logics for reasoning about
deliberation strategies for Simple APL programs. SimpleAPL is a fragment of the
agent programming language 3APL designed for the implementation of cognitive
agents with beliefs, goals and plans. The logics are variants of PDL, and allow us
to prove safety and liveness properties of SimpleAPL agent programs under dif-
ferent deliberation strategies. We show how to axiomatise different deliberation
strategies for Simple APL programs, and, for each strategy we prove a correspon-
dence between the operational semantics of SimpleAPL and the models of the
corresponding logic. We illustrate the utility of our approach with an example in
which we show how to verify correctness properties for a simple agent program
under different deliberation strategies.

1 Introduction

The design and development of software agents have become important and challeng-
ing topics of research. However there remains a gap between theory and practice in
this area, in particular when the design of cognitive, BDI-based agents is concerned.
For this kind of advanced software agent, methods are needed to verify whether their
implementation conforms to their specification. In this paper we pursue our investiga-
tions in this direction in the sense that we aim at verifying (agent) programs written in a
BDI-based agent programming language. In particular we focus here on logical means
to reason about the agent’s deliberation strategy.

The deliberation strategy, also called the deliberation process, is the core building
block of the interpreters of the agent programming languages. The deliberation strategy
determines which goals the agent will attend to and when, and how the agent’s plans to
achieve these goals are executed. Even if the agent’s program is capable in principle of
achieving a particular goal in a given situation, a particular deliberation strategy may
mean that the relevant actions never get executed, or are executed in such a way as not
to achieve the goal.

For some existing BDI-based agent programming languages [6] the deliberation
strategy forms integral part of their semantics. However most agent platforms provide
customisation mechanisms that allow the agent developers to influence aspects of the
deliberation strategy, for example, Jason [7], 3APL [12], 2APL [9] and Jadex [20].
In some cases, a BDI-based agent programming language gives the agent developer
complete control of the deliberation strategy. For example, PRS [14] allows an agent’s



deliberation strategy to be tailored to a particular problem through the use of ‘Meta-
Acts’—plans which can determine which goals or events give rise to intentions and the
order in which the currently intended plans are executed. In our opinion, such control
over (aspects of) program execution and the deliberation process in particular is ex-
tremely important in allowing the agent developer to tailor the execution of an agent’s
program to the requirements of a particular problem, e.g., by varying the balance be-
tween reactive and deliberative behaviour, or varying the number of goals an agent will
attend to simultaneously.

As an agent’s behaviour is determined by both the agent’s program and the delib-
eration strategy used, it is important for the agent developers to verify properties of
programs in the context of a particular deliberation strategy. Of course, one can ignore
the impact of any particular deliberation strategy and examine the properties of an agent
program that are valid under all deliberation strategies. However, we believe that most
interesting properties of agent programs, e.g., goal attainment, depend critically on the
chosen deliberation strategy, and that the correctness of agent programs can only be
examined if one is able to reason about deliberation strategies. While there has been
considerable research on reasoning about and verification of BDI agents, e.g., [16,4, 8,
17,22], there has been much less work on deliberation strategies. An exception is the
work of Mulder et al. [19] who present a model of the execution of PRS in an executable
temporal logic, MML. Agent plans are represented as temporal formulas and deliber-
ation strategies are represented by sets of MML rules. The rules define the behaviour
of a meta-interpreter operating on terms which are names for temporal formulas. The
MML model allows the direct specification and verification (via execution in concurrent
MetateM) of agent properties.

In this paper we explore a different approach. We present a family of PDL-like
logics for reasoning about deliberation strategies; deliberation strategies are expressed
as axioms in the logics, and the logics are complete and decidable. Declarative agent
programs can naturally be expressed in the form of logical axioms (compared to, say,
a model-checking approach). We believe such axiomatisations helps in understanding
the semantics of different deliberation strategies. We consider deliberation strategies
in the context of a simple APL-like [11, 6] agent programming language, SimpleAPL
introduced in [2]. We sketch the syntax of SimpleAPL, give its operational semantics,
and define four alternative deliberation strategies for SimpleAPL programs which are
typical of those used in BDI-based agent programming languages. We then introduce
the syntax and semantics of the logics to reason about safety and liveness properties of
SimpleAPL programs under these deliberation strategies. We provide sound and com-
plete axiomatisations of the logics, and prove a correspondence between the operational
semantics of SimpleAPL and the models of the logics for the program deliberation
strategies we consider. Finally, we show how to translate agent programs written in
SimpleAPL into logical expressions, and, using a simple example program, show how
the agent’s deliberation strategy can determine whether a given program will achieve a
particular goal.

In contrast to previous work, e.g., [2] where two basic deliberation strategies, inter-
leaved and non-interleaved, were ‘hard-coded’ into the translation of an agent program
or model-checking based approaches, the approach presented here uses a single fixed



translation of the agent program together with an axiomatisation of the agent’s deliber-
ation strategy. The modularity of our approach makes it easy to verify a property under
different deliberation strategies—rather than developing a new encoding for the com-
bined program and deliberation strategy, we simply need to replace the axioms which
define the deliberation strategy. Moreover, although we focus on a particular agent pro-
gramming language and a small number of deliberation strategies, our methodology
is general enough to accommodate any deliberation strategy that can be formulated in
terms of distinct phases such as plan selection and plan execution phases, and the kinds
of operations that can be performed in each phase. As such, we believe it represents
a significant advance on previous work, both in the ease with which meta reasoning
strategies can be expressed and in more clearly characterising their properties.

2 SimpleAPL

SimpleAPL is a fragment of the agent-oriented programming language 3APL [11,6].
SimpleAPL contains the core features of 3APL, and allows the implementation of
agents with beliefs, goals, actions, plans, and planning rules. The main features of
3APL we have omitted are a first order language for beliefs and goals, belief and goal
test actions, and some basic actions such as actions for adopting/dropping goals and
beliefs. We have omitted these features in order to simplify the presentation; they do
not present a significant technical challenge for our approach. 3APL assumes finite
domains and can be reduced to a propositional language by considering all possible
substitutions. Belief and goal test actions were considered in [2] and the omission of
actions to adopt/drop subgoals, while an important practical issue, does not result in a
reduction in expressive power. SimpleAPL retains the declarative goals of 3APL and
the agent chooses which plan to adopt to achieve a goal using planning goal rules (see
below).

In SimpleAPL, an agent’s state is specified in terms of its beliefs and goals and its
program by a set of plans. The beliefs of an agent represent the agent’s information
about its environment, while its goals represent situations the agent wants to realise
(not necessary all at once). For simplicity, we only allow the agent’s beliefs to be a set
of atoms (positive literals) and goals to be a set of literals. For beliefs we assume the
closed-world assumption, i.e., the agent believes —p if and only if p is not a belief. For
example, an agent might believe that it is at home and that it is raining:

Beliefs: home, raining
and its goals may be to have breakfast and go to work:
Goals: breakfast, work

The beliefs and goals of an agent are related to each other: if an agent believes p, then
it will not pursue p as a goal. In other words, in each state, the agent’s beliefs and goals
are disjoint.

Belief update actions change the beliefs of the agent. A belief update action is spec-
ified in terms of its pre- and postconditions (which are sets of literals), and can be



executed if the belief literals in one of its preconditions are entailed by the agent’s cur-
rent set of beliefs (under the closed-world assumption). Executing the action updates
the agent’s beliefs with the belief literals in the action’s postcondition. For example, the
following belief update specification

BeliefUpdates:
{home} walk.work {-home, work}

can be read as “if the agent is at home it can walk to work, after which it is at work (and
not at home)”. Belief update actions maintain consistency of the agent’s beliefs, i.e.,
if p is in the belief set and the belief set is updated by —p, then p is removed from the
belief set. Goals which are achieved by the postcondition of an action are dropped. For
example, if the agent is at home and has a goal of being at work, executing a walk_work
action will cause it to drop the goal. For simplicity, we assume that the agent’s beliefs
about its environment are always correct and its actions in the environment are always
successful. This assumption can be relaxed, which would require including the state of
the environment in the models, so that we can talk about properties of the environment
and about agent’s beliefs about those properties. Pre- and post-conditions of actions
would then be expressed in terms of propositions about the environment, and the agent
may have incorrect beliefs concerning preconditions or results of actions.

In order to achieve its goals, an agent adopts plans. A plan consists of belief update
actions composed by sequence, conditional choice and conditional iteration operators.
The sequence operator ‘; ’ takes two plans as arguments and indicates that the first plan
should be performed before the second plan. The conditional choice and conditional
iteration operators allow branching and looping and generate plans of the form ‘1 f ¢
then m else w3 and ‘while ¢ do 7 respectively. The condition ¢ is evalu-
ated with respect to the agent’s current beliefs. For example, the plan

if raining then take_umbrella else take_sunglasses ;
walk_work

causes the agent to take an umbrella if it is raining and sunglasses if it is not, and then
walk to work.

To select appropriate plans, the agent uses planning goal rules. A planning goal rule
consists of three parts: an (optional) goal query specifying the goal(s) the plan achieves,
a belief query characterising situation(s) in which it could be a good idea to adopt the
plan, and the body of the rule. Applying a planning goal rule causes the agent to adopt
the plan which forms the body of the rule. For example, the planning goal rule:

work <- home | if raining then take_umbrella
else take_sunglasses ;
walk_work

states that “if the agent’s goal is to be at work and it believes it is at home, then it
will adopt the specified plan”. For simplicity, we assume that agents do not have initial
plans, i.e., plans can only be generated during the agent’s execution by planning goal
rules.

The syntax of SimpleAPL is given below in EBNF notation. We assume a set of
belief update actions and a set of propositions, and use {aliteral) to denote the name of
a belief update action, (atom) to denote an atom, and (literal) to denote a literal.



(APL_Prog) :="BeliefUpdates:" (updatespecs)
"Beliefs:" (beliefs)
"Goals": (goals)
"PG rules:" (pgrules)

(updatespecs) ::=[{updatespec) (", " (updatespec> *]

(updatespec)y = "{" (literals) "}" (aliteral) "{"( ztemls)" "

(beliefs) :=[(atom) (", " {atom))*]

(goals) = [(literals)]

(plan) = (baction) | (sequenceplan) | (ifplan) | {whileplan)
(baction) := (aliteral)

(sequenceplan) ::= (plan) "; " (plan)

(ifplan) :="if" (query) "then {" (plan) "}" ["else {" (plan) "}"]
(whileplan) '="while"<qumy>"do {" (plan) "}

(pgrules) = [{pgrule) (", " {pgrule))*]

(pgrule) = [(literal)] "<=" (query) " | " (plan)

(query) := (literal) | (query) "and" (query) | {(query) "or" (query)
(literals) := [(literal) (", " (literal))*]

We will use the following simple agent program as a running example in the re-
mainder of the paper:

BeliefUpdates:
{home} take_umbrella {umbrella}
{home} take_sunglasses {sunglasses}
{home} walk_work {-home, work}
{home} eat breakfast {breakfast}

Beliefs:
home, raining

Goals:
breakfast, work

PG rules:
rl: work <- home |
if raining then take_umbrella
else take_sunglasses;
walk_work

r2: breakfast <- home | eat_breakfast

This program implements an agent that initially believes it is at home and it is
raining, and wants to have breakfast and to be at work. It is important to note that
the agent does not necessarily need to achieve these goals at the same time. The first
planning goal rule can be applied to get the agent from home to work. The application
of this rule causes the agent to take an umbrella if it rains or otherwise take sunglasses,
after which it will walk to work. The second planning goal rule can be applied to get
the agent to have breakfast when it is at home. As already explained, the belief updates
specify when the agent’s actions can be performed and what are their effects.



3 Operational Semantics

We define the formal semantics of SimpleAPL in terms of a transition system. Each
transition corresponds to a single execution step and takes the system from one config-
uration (defined as the agent’s current beliefs, goals and plans) to another. We assume
that the execution of basic actions and the application of planning goal rules are atomic
operations.

Definition 1. The configuration of an agent is defined as (o,~,II) where o is a set
of atoms representing the agent’s beliefs, v is a set of literals representing the agent’s
goals, and 11 is a set of plan entries r; : T representing the agent’s current active plans,
where T is a plan (possibly partially executed) and r; the planning goal rule which
caused the agent to adopt this plan. An agent’s initial beliefs and goals are specified by
its program, and 11 is initially empty.

For the formulation of the operational semantics we need to formalise some basic
assumptions. In particular, we use the notion of belief entailment based on the closed-
world assumption. This notion of entailment, which we denote by =y, is defined as
follows:
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The notion of goal entailment, denoted by =4, corresponds to a formula being clas-
sically entailed by one of the goals in the goal base +, and is defined as follows:
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Note that these are the only goal queries allowed by the EBNF definition of the lan-
guage above.

Each belief update action o has a set of preconditions precy(«), ..., precg(a).
Each prec;(«) is a finite set of belief literals, and any two preconditions for an action
«, prec;(a) and prec;(a) (i # j), are mutually exclusive (both sets of propositional
variables cannot be satisfied simultaneously). For each prec; («) there is a unique cor-
responding postcondition post; («), which is also a finite set of literals. A belief update
action «v can be executed if o |=c.q prec;(a) for some precondition j. The effect of
updating a set of beliefs o with cvis given by 7 (e, 0) = cU({p : p € post;(a)} \{p:
—p € postj(a)}), (i.e., executing the belief update action o adds the positive literals
in its postcondition to the agent’s beliefs and removes any existing beliefs if their nega-
tions are in the postcondition).

Executing the agent’s program modifies its (initial) configuration in accordance with
the transition rules presented below.



The successful execution of a belief update action « in a configuration where the
plan 7; : ;7 is in the set of the agent’s current plans is given by:

riia;m €I 0 Fewa prec;(a)  Ti(a,0) =o'
(o,v, ) — (o', ", (T \{ri: cs7}) U{r; : 7})

where v = v\ {¢ € v | 0’ Fcwa ¢} (executing a belief update action causes the agent
to drop any goals it believes to be achieved as a result of the update). In this and the
following transition rules, the plan 7 in the sequence plan «; 7 can be empty in which
case «; 7 is identical to o. Moreover, we stipulate that IT U {r; : } = II.

If an agent has a plan 7; : a; 7 but none of the preconditions of « hold, then attempt-
ing to execute « removes the plan from the plan base and does not change the agent’s
beliefs and goals:

(la)
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Composite plans. The following transition rules specify the effect of executing the
conditional choice and conditional iteration operators, respectively.

r; : (if ¢ thenm elsem);m € II 0 FEcwa ¢
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r; : (if ¢ thenm elsemo);m € II 0 Fcwa ¢
<0575H> - <O’,’7,H/ U {Ti : 71'2;71'})

where IT" = IT \ {r; : (if ¢ then m else my);7}.

(20)

ri ¢ (while pdom);m € II 0 Fcwa ¢
@ TT) — (o4, 17U {1, - (17 while 6 do m1); 7))

(3a)

r; : (while pdomi);m € I 0 Fcwa ¢

(0,7, 1) — (o, v, IT' U {ri : 7})
where [T’ = IT \ {r; : (while ¢ do m);m}. Note that the sequence operator is
specified implicitly by the other rules which specify how to execute the first operation
in the sequence.

A planning goal rule r; = k; «— (;|m; can be applied if x; is entailed by the agent’s
goals and (3; is entailed by the agent’s beliefs, and if the plan base does not already
contain a (partially executed) plan added by 7;. Applying the rule r; adds 7; to the
agent’s plans.

(3b)
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3.1 Specifying deliberation strategies

The transition rules presented above define the most general model of agent execution
in which any atomic operation can be interleaved with any other. More precisely, this
fully-interleaved deliberation strategy (which we denote by (i)) can be defined as: “ei-
ther apply a planning goal rule, or execute the first action in any of the current plans;



repeat”. Particular deliberation strategies are restrictions of this fully-interleaved delib-
eration which prohibit certain execution paths. For example, a simple non-interleaved
deliberation strategy which executes a single plan to completion before choosing an-
other plan, i.e., “when in a configuration with no plan, choose a planning goal rule
non-deterministically, apply it, execute the resulting plan; repeat”.

Many deliberation strategies are possible and it is impossible to consider them all
in detail. Instead we characterise some typical deliberation strategies in terms of the
execution paths they admit. We focus on the non-interleaved strategy (which we denote
by (ni)) and two simple ‘alternating’ strategies: one which first applies a planning goal
rule and then executes a single basic action of one of the agent’s current plans (which
we denote (as)); and another which first applies a planning goal rule and then executes
a single basic action from each of the agent’s current plans (which we denote (am)).
These strategies were chosen as representative of deliberation strategies found in the
literature and in current implementations of BDI-based agent programming languages.
However none of these strategies (or any other single strategy) is clearly “best” for
all agent task environments. For example, the (ni) strategy is appropriate in situations
where a sequence of actions must be executed ‘atomically’ in order to ensure the success
of a plan. However it means that the agent is unable to respond to new goals until the
plan for the current goal has been executed. Conversely, the (as) and (am) strategies
allow an agent to pursue multiple goals at the same time, e.g., allowing an agent to
respond to an urgent, short-duration task while engaged in a long-term task. However
they can increase the risk that actions in different plans will interfere with each other.
It is therefore important that the agent developer has the freedom to choose the strategy
which is most appropriate to a particular problem.

To define the deliberation strategies, we assume that the following control actions
are available:

apply_rule (II, A) if the conditions of transition rule (4) are satisfied for some
planning goal rule r; in A, returns IT U {r; : m;} where ; is the plan which forms
the body of r;; otherwise returns 17

choose_plan (II) choose a plan m; from I

execute_step (II, m;) ifthe appropriate conditions of transition rules (1a)—(3b) are
satisfied, executes the next step in m; € II, updates the configuration accordingly
and returns the updated plan base; otherwise (if the next step in 7 is not executable)
returns I7 \ {m;}.

Note that the apply_rule (II, A) control action constitutes to the plan selection
phase (transition rule (4)). Similarly, the choose_plan (II) control action followed
by one or more execute_step (II, m;) control actions together form the plan exe-
cution phase (transition rules (1)-(3)).

The non-interleaved strategy (ni) can then be defined as:

repeat
Il := apply.rule (I, A)
7; := choose_plan (II)

while (IT != {})
Il := execute_step (I, ;)



The alternating (single action) strategy (as) can be defined as:

repeat
Il := apply.rule (I, A)
m; := choose_plan (I])
Il := execute_step (II, m;)

and the alternating (multi-action) strategy (am) as:

repeat
Il := apply.rule(Il, A)
foreach m; in II
Il := execute_step (II, ;)

Other strategies can be defined in a similar way. For example, by changing the defini-
tion of the apply-rule control action we can prioritise adopting plans for particular
types of goals or which are triggered by particular beliefs (e.g., high priority beliefs or
goals). Similarly, by changing the definition of the choose_plan control action, we
can preferentially return plans which achieve high priority goals etc.

Consider the planning goal rules from the example program:

rl: work <- home |
if raining then take_umbrella
else take_sunglasses;
walk_work

r2: breakfast <- home | eat_breakfast

In a state where both rules are applicable and it is raining, the non-interleaved exe-
cution strategy results in one of two possible executions. The first one will apply rule rl
first - the resulting plan base will contain if raining then take_umbrella
else take_sunglasses; walk_work and executing the plan. Note that after
getting to work, the second rule is not applicable. Informally, for brevity, we will repre-
sent the sequence of steps in this execution as

rl, rain?, take_umbrella, walk_work
Another possible sequence of steps is
r2, eat_breakfast, rl, rain?, take_umbrella, walk_work
However, if the agent adopts the alternating single step strategy, we may get
rl, rain?, r2, take_umbrella, (no rule), walk_work

(note that at the action execution stage, the agent has to execute the next step of some
plan in the plan base, so it may always execute the next step of the plan asserted by
rl. After the agent performed walk_work, the next step of the second plan, namely
eat_breakfast, is not executable). An example of program execution under the
alternating multi-step strategy would be

rl, rain?, r2, take_umbrella, eat_breakfast, (no rule), walk_work

Note that after eat _breakfast is executed, no rule is applicable, so we again execute
the first step of a plan.



4 Logic

In this section we introduce a series of logics to describe transition systems correspond-
ing to the (i), (ni), (as) and (am) deliberation strategies. The language of our logic is
based on (test-free) Propositional Dynamic Logic PDL (see, e.g., [15]). PDL is a logic
to reason about programs. The language of test-free PDL language is defined with re-
spect to a set of propositional variables and a set of atomic programs. Complex program
expressions are built from atomic programs, sequential composition ‘;’ (p1; p2 means
program p; followed by p2), union ‘U’ (p1 U p2 means executing either p; or p3), and
finite iteration ‘x’ (p* means executing p O or finitely many times). For each program
expression p, the language contains a modality (p). PDL formulas are defined as fol-
lows: p | =¢ | p1 A2 | (p)¢ and interpreted on labelled transition systems, where labels
are atomic programs. A formula (p)¢ is true in a state s if there exists a state reachable
from s by a path described by p, which satisfies ¢; intuitively, if there is a possible
execution of program p which results in a state satisfying ¢.

4.1 Language

We extend the standard language of PDL with belief and goal operators, and with an
interleaving program constructor || [1], where p; || p2 means the interleaved execution
of actions of p; and actions of py.! The belief modality B and goal modality G are in-
troduced to indicate the modality of a proposition, i.e., to indicate whether a proposition
should be evaluated with respect to an agent’s beliefs or to its goals. They are not inter-
preted using accessibility relations but as properties of the agent’s state. Essentially, the
agent believes a propositional variable if it is in the agent’s belief base, and the agent
has a literal as a goal if it is in the agent’s goal base. We have chosen this approach since
it has an obvious correspondence with the semantics of Simple APL.

We define the language of our logic relative to a set of planning goal rules A with
plans I7(A) and pre- and post conditions for belief updates C(A).Let A = {rq,...,7r,}
be the set of planning goal rules, each of which is of the form r; = x; — 3; | m;. Let
II(A) = {my,...m,} be the set of plans occurring in the rules, and Ac(A) the finite set
of belief update actions occurring in those plans. Let P be the set of atoms, i.e., positive
belief and goal literals, occurring in A. For each belief update a, we have a set of pre-
and postcondition pairs C'(a) = {(prec;s(a),postyi(a)),..., (preck(a), posty(a))}.
We denote the set of all pre- and postconditions for all belief updates in A by C'(A4),
that is, C(A) = {C(a) : a € Ac(A)}.

We identify key phases in the deliberation cycle by propositional flags, and then
write axioms which capture the possible transitions between phases. For the (i), (ni),
(as) and (am) strategies we consider, the flags are: start;, which indicates that plan 7;
has started execution; step;, which indicates that the next step of ; has been executed;
and fail;, which indicates that 7r; has failed, namely the next belief update action in ;
cannot be executed because its preconditions do not hold.

The set of atomic propositions of our logic consists of:

! Note that every formula with the interleaving operator can be rewritten without the interleaving
operator, however the resulting formula may be doubly exponentially larger [1].



— aset of propositional variables P
— aset of boolean flags P. = {start;, fail;, step; : r; € A};

The set of ‘atomic programs’ of our logic consists of:

— for every rule r; € A, an atomic action §,.; for apply r;

— aset of atomic actions Ac;nq(A) = {a; | & € Ac(A) and o appearsin w; € II(A)}
(i.e. we introduce a new atomic action «; for every plan 7; in which the belief
update action o appears)

— for every test formula ¢ (appearing in an if- or while- plan) in a plan 7; € I1(A),
a test action t;((—)¢). Essentially this is a PDL test operator restricted to tests
expressible in SimpleAPL, however unlike PDL tests, it can change the state (set
step; to true, for example)

— for each plan 7;, an atomic action e;. This action is introduced for technical reasons,
and will be used in our translation of A as a PDL expression. We append it after
each plan to reset the control flags after the plan has finished executing.

A formula of L is defined as follows: if p € P, then Bp and G(5)p are formulas (note
that B and G operators cannot be nested and that the B operator can only be applied to
positive literals). If p € P,., then p is a formula; if p is a program expression and ¢ a
formula, then (p)¢ is a formula; and L is closed under the usual boolean connectives.
We define [p]¢ as =(p)—¢ and use the abbreviation ([p])¢ for [p]¢ A (p)¢p. (As will be
clear from the next section, in general [p]¢ does not entail (p)®.)

4.2 Semantics
A model M is defined as (W, { R, : o € Acina(A)}, {Rs,, : i € A}, Re,, V') where

— W is a non-empty set of states

-V = (W, Vy, Vo) is the evaluation function consisting of belief and goal valuation
functions V;, and V,; and control valuation function V, such that for every s € W,
Vo(s) = {p1,...,0m : ;i € P} is the agent’s beliefs in s
Vo(s) ={(u1,...,(un : u; € P} is the agent’s goals in s (note that V, assigns
literals rather than propositional variables)
V.(s) C P, are the control variables true in s

- Ry, Ry, (4), Rs,,» Re, are binary relations on W; R, corresponds to belief up-
dates, Rti(cb) to belief tests, R, , to firing a rule, and ., corresponds to executing
the e; action (intuitively, removing a plan from the plan base).

The conditions on R,,,, Rs,, and R, depend on the deliberation strategy and are de-
fined below.

Given the relations corresponding to atomic programs in M, we can define sets of
paths in the model corresponding to any PDL program expression p in M. A set of
paths 7(p) C (W x W)* is defined inductively:

- () = {(s,5) : Ra,(s,5")}
= 7(ti(¢)) = {(s,8") : Ry;(9(s,8")}
= 7(p1Up2) ={z:2€7(p1) UT(p2)}



- 7(p1;p2) ={z1022: 21 € T(p1), 22 € T(p2)}, where o is concatenation of paths.

— 7(p*) is the set of all paths consisting of zero or finitely many concatenations of
paths in 7(p)

— 7(p1 || p2) is the set of all paths obtained by interleaving atomic actions and tests
from 7(p1) and 7(p2).

By an interleaving of two sequences of atomic programs ai;...;a, and by;...; by,
we mean any sequence of as and bs such that the order within as and bs is preserved;
namely a; should precede a; in the sequence if ¢+ < j, and the same for bs. The set
of all interleavings of a1;as and by is {a1; as; b, ai;b;as, b;ay;as}. However, in the
definition of 7(p; || p2) we talk about interleavings of paths from 7(p1) and 7(p2),
where paths are sequences of pairs of states. In order to be able to define all possible
interleavings of paths inductively, we allow ‘illegal paths’ of the form (sg, s1), (82, $3)
in 7(p), where s1 # $2; in other words, concatenation z; o z is defined for paths
z1 and z9 even when the last state of z; is not the same as the first state of z5. This
is different from standard PDL. To see why this is necessary in the presence of the
interleaving operator, consider the following example. A path (sg, $1),(s1, s2), (s2, S3)
where (sg, $1) € T(1), (s1,82) € T(3) and (s2, s3) € 7(a2) should be in 7(a1; @z ||
a3) but this means that an illegal path (sg, s1),(s2, s3) should be in 7(ay; ag). We will
call paths without such ‘jumps’ legal paths. Only legal paths are used in evaluating PDL
modalities (see the truth definition below).

The satisfaction relation |= of a formula being true in a state of a model is defined
inductively as follows:

- M,s |E Bpiffp € Vi(s)

— M.s = GOpiff ()p € V,(s)

- M,s=piff pe V,(s), where p € P,

- M,skE=—¢iff M,s |~ ¢

- M,sEoNYIff M,sl=¢and M, s =

- M, s | (p)¢ iff there is a legal path in 7(p) starting in s which ends in a state s’
such that M, s’ = ¢.

We use the start; flags to signal that plan 7; has started executing; it is set to true
when the planning goal rule r; is applied and prevents repeated application of ;. We use
the step; flags to say that a single step of plan m; has been executed. If a belief update
action «; of plan m; cannot be executed, the fail; flag is set. Finally, the special action
e;, which is appended to the end of plan 7; in our translation of the agent program,
resets the start;, step; and fail; flags to false.

Models for all deliberation strategies satisfy the following conditions, forall s € W':
C1 Vy(s)NVy(s) =0 and {p:—p € V,(s)} C Vi(s) (Beliefs and goals are disjoint.)
C2 If fail; € V.(s), then for every u; where u; is an action «; or test t;(¢) of plan m;,

R,,(s,s)and forno s’ # s, Ry, (s, s).

(If the fail; flag has been set, this causes all subsequent actions in 7; to be ‘con-

sumed’ without changing the state, mimicking the deletion of the remaining steps

of 7Ti~)

C3 R.,(s,s)iff Vi(s') = Vi(s), V4(s") = Vy(s) and V(') = Vi(s)\{start;, fail;, step;}.

(e; sets start;, fail; and step; to false.)



C4 If ¢ and fail; are false in s, then there is no s" such that Ry, 4)(s,s") (strictly
speaking, if the translation of ¢ in our logical language, f;,(¢), which is defined in
the next section, is false in s).

5 Axiomatisation

Different deliberation strategies require different conditions on applicability of actions
and rules and can be characterised by different sets of axioms. In order to specify differ-
ent conditions and axiomatisations for different strategies, we first explain how different
components of agent programs can be translated into PDL expressions.

The beliefs, goals and plans of agent programs are translated into PDL expressions
using translation functions f, fq and f, as follows:

— translation of belief formulas: let p € P and ¢, be belief query expressions of
SimpleAPL (boolean combinations of literals)
* fo(p) =B
o fo(¢and ¥) = fu() A fo (1))
o folpory) = fi(d)V fu(¥)
In addition,
o fy(—=¢) = = f,(¢) (we need this clause for translating expressions of the form
t;(—¢) in translations of if- and while- plans below)
o f1i(X) = Apex Bp AN\ ex ~Bp where X is a set of literals (this is for
translating pre- and post-conditions of a belief update)
— translation of goal formulas: letp € P
e fy(p) =
o fo(=p) = —p

— translation of plan expressions: let o be a belief update action, ¢ a belief query
expression, and 7,7, 72 be plan expressions of SimpleAPL, all occurring in a
plan i:

o fpla) =0y

o fp(misma) = fp(m); fp(ma)

* fp(if ¢ thenm else mo) = (ti(9); fp(m)) U (ti(=9); fp(m2))

* fp(while ¢ do7) = (ti(¢); fp(m))"; ti(=)

Different deliberation strategies require different conditions on models. We now
state these conditions and provide complete axiomatisations for the corresponding classes
of models.

5.1 Conditions on models for the fully-interleaved strategy (i)

Models corresponding to the fully-interleaved deliberation strategy (i) in addition con-

form to the following constraints.

CS5 If fy(prec;(a)) and —fail; are true in s, then Ry, (s, 8') iff Vi, (s") = Tj(a, Vi (s)),
Vy(s') = Vy(s)\ ({p p € Vo(s')} Ufp : p & Vi(s)}) and V(s) = V().
(Corresponds to transition (1a): when action « is successfully executed, transit to a
state where the beliefs and goals are modified according to the action specification.)



C6 If f,(¢) and — fail; are true in s, then Ry, (4)(s,s") iff Vi (s") = Vi(s), Vy(s') =
Vy(s) and V.(s") = Ve(s). (Corresponds to evaluating the test formula in transitions
(2a) and (3a).)

C7 1f v, fy(prec;()) and fail; are false in s, then R, (s, s') iff Vy(s") = V;(s) and
Vog(s") = Vg(s) and V,(s') = Vi(s) U { fail;}.

(Corresponds to transition (1b): if an action of ; is not executable (i.e., none of its
preconditions hold) transit to a state where fail; is true.)

C8 If r; = k; < (; | m; is a PG rule, then Rs (s, ') iff —start;, fq(k:), fo(B;) are
true in s and V,(s') = Vi(s), Vy(s') = Vy(s), and V.(s") = Vi(s) U {start;}.
(Corresponds to transition (4): r; can be fired if, and only if, 7; has not started and
the belief and goal conditions of r; are true.)

Let the class of transition systems defined above be denoted M (A, i).

5.2 Axiomatisation for the fully-interleaved strategy (i)

CL classical propositional logic
PDL axioms of PDL (see, e.g., [15]) excluding interleaving since it is expressible

Al Bp — —Gp (corresponds to C1)

A2 G—p — Bp (corresponds to C1)

A3 fail; A ¢ — {[ui])(fail; A ¢) where ¢ is any formula and w; is either o; or t;(¢)
(corresponds to C2)

Ad ¢ — ([e;])(p A—start; A= fail; A—step;) for any formula ¢ not containing start;
and fail; (corresponds to C3).

A5 =fy(¢) A —fail; — [ti(¢)]L (corresponds to C4: test is not executable if the for-
mula is false and the plan has not failed)

A6 fiy(precj(a))A-fail; N¢ — ([ou])(fo(postj(a)) A @), where ¢ does not contain
variables from post;(c) (corresponds to C5)

A7 fo(P) AN — ([t:(9)])9 (corresponds to C6: tests are executable and don’t change
the state if the test formula is true)

A8 A, - reci(a)) A ~fail; N ¢ — (|og])(fail; A ¢) where ¢ does not contain
]/“\(;ili{i(()};respjo(nd)s)to C7f) e ezt ) ’

A9 —start; A fo(ki) A fo(Bi) A ¢ — ([0r4])(start; A @), where ¢ does not contain
start; (corresponds to C8; ¢ encodes the frame condition that the state does not
change apart from setting the start; flag to true)

A10 start; V = (fq(Ki) A fo(8i)) — [0r;]-L (corresponds to C8 ‘only if”)

Let us call the axiom system above Ax(A, 1).

Theorem 1. Ax(A, 1) is sound and (weakly) complete for the class of models M (A, 1).

Proof. The proof of soundness is by straightforward induction on the length of a deriva-
tion. All axioms are clearly sound (since they closely correspond to conditions on mod-
els), and the inference rules are standard.

The proof of completeness is standard as far as the PDL part is concerned, see for
example [5]. Take a consistent formula ¢. As the building blocks in our construction



we will use a set C'L(¢) which includes subformulas of ¢ and a finite number of other
formulas specified below. First of all, we define the set of subformulas of ¢ in the usual
way, but considering subformulas of the form Bp and G(—)p as atomic formulas (that
is, p and —p are not included in the set of subformulas). Then we require that C'L(¢) is
closed under subformulas and in addition satisfies the usual conditions for the Fischer-
Ladner closure and closure under single negations:

if (p1; p2)1p € CL(9) then (p1)(p2)v € CL(¢)

if (p1 U p2)1h € CL(¢) then (p1)¥ V (p2)v € CL(9)

if (p*)1 € CL(¢) then (p)(p*)¢) € CL(¢)

if ¢ € CL(¢) and 1) is not of the form -, then —¢) € CL(¢).

plus the following extra conditions:

- start;, step;, fail; € CL(¢)

— if an action «; occurs in ¢, then C'L(¢) contains f;, translations of all pre- and
postconditions for «, e.g. if one of a’s preconditions is {p,—q¢} then Bp,~Bgq €
CL(¢)

— if (t(¢"))v € CL(¢) then fy(¢') € CL(¢)

The states of the satisfying model M will be all maximal consistent subsets of
CL(¢). Let A, B be such maximal consistent sets, and a be any of «;, ¢;(¢), d,; or e;.
Then R, (A, B) holds if and only if the conjunction of formulas in A, A, is consistent
with (a)B (conjunction of formulas in B preceded by (a)). Similarly for accessibility
relations corresponding to complex programs p: R,(A, B) iff A A (p)B is consistent.
By the standard PDL proof, R, so defined does in fact correspond to the relation in a
regular model, for example R,,,, = R,, U R,,, similarly for ; and *.

We define the assignments V3, V;; and V.. in an obvious way:

- pe W(A)iff Bp € A, where Bp € CL(¢);
- e V,(A)iff G(-)p € A, where G(—)p € CL(¢);
— peV.(A)iffp € A.

The truth lemma follows easily: for every ¢ € C'L(¢),
YveEA S MAEY

Since our formula ¢ is consistent, it belongs to at least one maximal consistent set A,
so it is satisfied in some state in M.

Now we have to show that the model we constructed satisfies conditions on M(A, (x))
for the interleaved strategy. First we show that the conditions common to all strategies
hold for the model we constructed:

C1 Clearly, since the states are consistent with respect to the axiom schemas Al and
A2, and by the truth lemma, beliefs are consistent, and beliefs and goals are disjoint.

C2 Let A be a maximal consistent set containing fail;. By axiom A3, if fail; A Ais
consistent, then fail; A A A (u;) A is consistent, so R, (A, A) holds. Observe that
forany B # A, R, (A, B) does not hold because by A3 again, fail; A A — [u;] A
so all the states accessible by R,,; should satisfy all the formulas in A. Since the
states are maximal, this means that the only accessible state is A.



C3 Let R, (A, B). Let us denote by A® (B?) the set of all formulas in A (B) starting
with the belief operator Since Ab does not contain start;, fazl and step;, by
ax10m A4, Ab — [ez]Ab so since A A (e;)B is consistent, so is A? A B, therefore

= A and Vi (B) = V,(A). Similarly for the goal formulas and control flags
other than start;, fail; and step;. Finally, since A — [e;](—start; A = fail; A
—step;), Ve(B) = Ve(A) \ {start;, fail;, step; }. Similarly, using the (e;) version
of A4 we can show that for any B which differs from A only in its assignment of
false to start;, fail; and step;, R.,(A, B) holds.

C4 If the test formula f;(¢) is not true in A, and — fail; is true in A, then there is no
t;(¢) transition out of A by AS.

For the conditions specific to i strategy, the proof also exploits the close correspon-
dence between the axioms and conditions on models:

C5 If a state A does not contain a control flag fail; indicating that some action of plan
7; 18 not executable, and precondltlons of an action «; hold, axiom A6 ensures that
all states B for which A A (o;) B is consistent, that is Ry, (A, B) holds, satisfy the
postconditions of «; and are otherwise the same as A.

C6 Similar condition for test actions is enforced by axiom A7.

C7 If A contains none of the preconditions of «;, then the only R,,, transition out of A
is to a state which is the same as A but contains fail;, by the axiom A8.

C8 Let A contain —start;, fq(k;), fp(5;) (which are the conditions for firing a plan-
ning goal rule 7;). Then by the axiom A9 ({(,.) part), A A (6,.)B is consistent,
where B has the same formulas as A apart from start; instead of —start;. By the
[0,,] part of the same axiom, all Bs such that R;, .(A, B) holds are like that, so
they have the same assignment of belief and goal formulas and the only difference
in control flags is assigning true to start;. Axiom A10 ensures that if a state does
not satisfy the conditions for firing a planning goal rule, there is no 4, transition
from that state.

5.3 Conditions on models for the non-interleaved strategy (ni)

Models corresponding to the non-interleaved strategy (ni) satisfy conditions C1-C7

above. C8 is replaced with

C9 If A\, ~start;, fo(k;) and f,(5;) are true in s, then R;, (s, ') iff Vi (s") = Vi (s),
Vy(s") = Vy(s) and V(") = Ve(s) U {start,}.
(This strengthens C8 to require that no other planning rule has been fired (not just
r;) to ensure that the agent has only one plan at a time.)

Let the class of transition systems defined above be denoted M (A, ni).

5.4 Axiomatisation of the non-interleaved strategy (ni)

CL, PDL, A1-A8 as above:

A1 fo(ki) A fo(Bi) NN\ —start; Ad — ([0,4]) (start; A¢), where ¢ does not contain
start;



A12 =(fg(ri) A fo(Bi)) V V start; — [074] L.

A1l and A12 replace A9 and A10 from the fully-interleaved strategy and corre-
spond to C9.

Let us call the axiom system above Ax (A, ni).

Theorem 2. Ax(A,ni) is sound and (weakly) complete for the class of models M (A, ni).

The proof of soundness and completeness is similar to the proof of Theorem 1. The only
difference is in the condition on models for PG rule transitions R;,_,, which corresponds
to the axioms A1l and A12.

5.5 Conditions on models for the (as) strategy

Recall that the (as) strategy assumes the application of one planning goal rule followed
by the execution of one action of one plan. We use boolean flags step; to say that a
single step of plan 7; has been executed; when this flag is true for some ¢, all actions are
disabled and we must apply a planning goal rule. Rule application sets all step; flags to
false, re-enabling action execution and disabling rule application. If some step; is true,
but no rules are applicable, we continue to execute actions; conversely, if all step; are
false but all current plans have failed, we re-enable rule application.
To make the conditions more readable, we introduce several abbreviations:

— execution phase: x = /\”6 4 Tstep;
— plan base is empty:
noplans = A\, . (start; — fail;)
— no rules are applicable:
norules = A\, (start; V =(fy(ri) A fo(5i)))

Models corresponding to (as) strategy satisfy C1-C4 above and in addition conform
to the following constraints.

C10 If fy(prec;(a)), ~fail; and xVnorules are true in s, then Ry, (s, 8') iff Vi (s) =
T3(@, Vi), Vo(s') = Vy(s) \ ({p : p € Vo(s)} U{p : p & Vi(s)}) and
Vo(s") = Vi(s) U {step;}.

(Corresponds to transition (1a) for (as): an action can be executed if one of its pre-
conditions holds and either action execution is enabled or no rules are applicable.)

C11 If fy(¢), ~fail; and x V norules are true in s, then Ry, (4)(s,s') iff V3(s') =
Vi(s), Vy(s') = Vy(s) and Vo(s') = Vi(s) U {step; }.
(Corresponds to transitions (2a) and (3a) for (as): a test action can be executed if
one of its preconditions holds and either action execution is enabled or no rules are
applicable.)

C12 If V/; fo(prec;(c)) and fail; are false in s, and x V norules is true, then
Ro,(s,8")iff Vi(s") = Vi(s) and V(') = Vy(s) and Vo(s") = Vo(s)U{ fail;, step; }.
(Corresponds to transition (1b): if an action is not executable (i.e., none of its pre-
conditions hold), transit to a state where fail; and step; are true, enabling rule
execution.)



C13 If \/, step; and = fail; are true in s and norules is false in s, then Ry, (s, s')
holds for no u; (where u; is «; or t;(¢)) (it is not possible to execute the next step
of any plan if a step of some plan has been executed, and there are applicable rules).

Cl4 Rs (s, s')iff start;, fg(ki), fo(5i) and -xVnoplans are true in s and Vj,(s') =
Vi(8), V4(s') = Vy(s) and Vo(s') = Ve(s) U {start;} U {-step; : r; € A}.
(Corresponds to transition (4) for the (as) strategy: a rule is applicable if the corre-
sponding plan is not in the plan base, the belief and goal conditions of the rule hold,
and either rule execution is enabled or all the plans in the plan base have failed.)

Let the class of transition systems defined above be denoted M (A, as).

5.6 Axiomatisation of the (as) strategy
CL, PDL, A1-AS5 as above

A13 fy(precj(a)) A—fail; A (x V norules) A ¢ — ([as])(step; A fo(postj(a)) A
¢), where ¢ does not contain variables from post;(a) and step;. (Corresponds to
C10.)

Al4 fy () A—fail; A (x V norules) A ¢ — ([ti(¥)]) (step; A ¢), where ¢ does not
contain step;. (Corresponds to C11.)

A15 A\, —~fo(precj(a)) A ~fail; A (x V norules) A ¢ — ([au])(fail; A step; A ¢)
where ¢ does not contain fail; and step;. (Corresponds to C12.)

A16 \/, stepj A ~fail; A —norules — [u;] L where u; is either a; or t;(¢). (Corre-
sponds to C13.)

A17 —start; A fg(ri) A fo(Bi) A(—x V noplans)A¢ — ([0,4]) (start; AN\ —stepj Ao)
where ¢ does not contain start; and step; for any j. (Corresponds to C14.)

A18 —(fy(ki) A fo(8:)) V (x A —noplans) — [§,;]L. (Corresponds to C14, only if.)

Let us call the axiom system above Ax(A, as).

Theorem 3. Ax(A, as) is sound and (weakly) complete for the class of models M(A, as).

Again the proof is very similar to the proof of Theorem 1. It exploits the same close
correspondence between conditions on models and axioms. The main difference is in
the use of an extra type of control flag step; in conditions and axioms.

5.7 Conditions on models for the (am) strategy

Recall that (am) strategy assumes the application of one planning goal rule followed by
the execution of one action of each plan in the plan base. Below we use the following
abbreviation:

— planning phase: p = A,  ,(start; — step; V fail;)

Models corresponding to the (am) strategy satisfy C1-C4 above and in addition
C15 If fy(prec;(a)), —~fail; and —step; are true in s, then R, (s,s’) iff Vi(s") =

Ty(0, Va(3))s Vy(s') = Vo(s) \ ({p : p € Va(s)} Ufp ¢ p & Vi(s)}) and

Vo(s") = Vi(s) U {step;}.

(Corresponds to transition (1a) with the additional requirement that 7r; has not yet

executed the next step; executing «; sets step; to true.)



C16 If fy(prec;(a)), = fail; and pAnorules are true in s, then Ry, (s, s) iff Vi (s) =
Ty (0, Vo(s))s Vy(s') = Vo(s) \ ({p : p € Vi(s)} Ufp : p & Vo())}) and
Vols') = Vals) \ {step; : j # i}.

(Corresponds to transition (la) with the additional requirement that no planning
rules are applicable; in such a case every current plan gets to execute one more
step.)

C17 If fy(¢), ~fail; and —step; are true in s, then Ry, (4)(s, s') iff Vi (s') = Vi(s),
Vy(s') = Vy(s) and V,(s') = V(s) U {step; }.

C18 If fy(¢), —fail;, p and norules are true in s, then Ry, (4)(s,s) iff Vi(s') =
Vi(s). Vy(s') = Vy(s) and Vo(s') = Vils) \ {step; : j # i}.

C19 1t \/; fy(prec;(a)) and fail; are false in s, and —step; is true, then Ry, (s, s') iff
Vo (s") = Vio(s) and Vi (s") = Vg (s) and V.(s") = Ve(s) U { fail;, step;}.
(Corresponds to transition (1b) for the case when 7; has not performed a step.)

C20 1f\/, fo(prec,(a)) and fail; are false in s, and pAnorules is true, then Ro, (s, s')
iff Vi (s") = Vi(s) and V(s") = V,(s) and V. (s") = (Ve(s) U {fail;}) \ {step; :
i #i)

(Corresponds to transition (1b) when m; has performed a step, but no rules are
applicable.)

C21 If step; and —fail; are true in s and (p A norules) is false in s, then Ry, (s, s’)
holds for no u; (where u; is a; or t;(¢)) (it is not possible to execute the next step
of a plan if a step of this plan has been executed, and there are applicable rules).

C22 Rs,.(s,s) iff —start;, fq(ki), fo(Bi) and p are true in s and Vi(s") = V4 (s),
Vy(s") = Vy(s) and V.(s") = Vi(s) U {start;} U {—step; : r; € A}.

(A rule can be applied if the corresponding plan has not started, the belief and goal
conditions of the rule hold, and all current plans have performed a step or failed.)

Let the class of transition systems defined above be denoted M (A, am).

5.8 Axiomatisation of the (am) strategy

CL, PDL, A1-A5 as above

A19 fy(prec;(a)) A—fail; A—step; Ao — (o)) (step; A fi(post;(ar)) A @), where
¢ does not contain variables from post;(«) and step;. (Corresponds to C15.)

A20 fy(precj(a)) A —~fail; A step; Ap Anorules A ¢ —
(lei]) (fo(posts(a)) A A, —step; A @), where ¢ does not contain variables from
post;(a) and step; for all j # i. (Corresponds to C16.)

A21 fy(¥)) A =fail; A —step; Ao — ([ti(1)])(step; A @), where ¢ does not contain
step;. (Corresponds to 17.)

A22 fy(¥) A= fail; Ap Anorules Ad — ([t;(¥)]) (A\;4; —stepj A @), where ¢ does
not contain step; for all j # i. (Corresponds to C18.)

A23 A\, ~fo(preci(a)) A —~fail; A —stepi A ¢ — ([ai])(fail; A step; A ¢) where ¢
does not contain fail; and step;. (Corresponds to C19.)

A24 A\, —fo(precj(a))A—fail;ApAnorules Ad — ([ai])(faili A\ 4; —stepi Ag)
where ¢ does not contain fail; and step; for all j # 7. (Corresponds to C20.)



A25 step; A —fail; A —(p Anorules) — [u;]L where u; is either «; or t;(¢). (Cor-
responds to condition C21).

A26 —start; NGk N BB; Ap A ¢ — ([0,]) (start; A \; —step; A ¢) where ¢ does
not contain start; and step; for any j. (Corresponds to C22.)

A27 —(Gk; A BB;) V —start; V —p — [0,;] L (Corresponds to C22 only-if.)
Let us call the axiom system above Ax(A,am).

Theorem 4. Ax(A,am) is sound and (weakly) complete for the class of models M(A, am).

The proof is again similar to the proof of Theorem 1 and exploits close correspondence
between conditions on models and axioms.

6 Verifying agent programs

Our aim is to verify properties of the agent such as ‘in all states (or in some state) reach-
able by a path corresponding to the execution of the agent’s program, property ¢ holds’.
In this section we show how to translate the agent’s program into an expression of L
which does not depend on the agent’s deliberation strategy but which describes exactly
the paths corresponding to the agent’s execution under a given deliberation strategy in
the models for this strategy.

The basic building blocks of our translation are expressions of the form 6,.;; f,(m;); e;
which correspond to firing a rule, executing the corresponding plan, and resetting the
boolean flags for this plan. Before the agent fires the rule r; again, it has to finish execut-
ing the plan (or the plan has to fail). The agent may also interleave this plan execution
with firing other rules and executing the corresponding plans. It may also be that several
consecutive executions of d,;; f,(m;); €;, that is (8,45 fp(m;); ;) T, may be interleaved
with several consecutive executions of d,.;; fp,(7;); e;, that is, (8, ;; fp(m;);€;)T. Note
that the agent does not have to and probably will not be able to execute all of its rules
and plans.

This gives rise to the following translation of the agent program:

= U

A CAN#D

r, €A’ (5ri§fp(7Ti);6i)+

that is, the interleaving of one or more repetitions of all possible subsets of the agent’s
plans.

We are interested in safety and liveness properties of agent programs, namely prop-
erties of the form ¢g — [£(A)]¢ and ¢y — (£(A))¢ where @y is the description of the
initial state and ¢ is the property of interest (such as achievement of a goal). To prove
properties of the agent program under a particular deliberation strategy we need to show
that the property is derivable from the corresponding axioms. For example, to show that
an agent with program A, initial belief p and goal ¢ is guaranteed to achieve its goal un-
der the interleaved deliberation strategy, we need to derive Bp A Gg Ainit — [£(A)]Bg
from Ax(A, i) (where init = A\, _,(=start; A = fail; A —step;) describes the initial
configuration).



To prove such properties, we must ensure that there is a correspondence between
paths in the operational semantics plus a deliberation strategy and paths in the PDL
models satisfying the axioms for this strategy. If a path exists in the operational seman-
tics, then there is a corresponding path in the PDL model. Note that the converse is
not true; for example, in the PDL model from any state there is a transition by a belief
update action, and in the operational semantics this only holds if the belief update is the
first action of some plan which is in the plan base in that state. However, we can prove
that if a there is a path in the PDL model which is described by £(A), then there is a
corresponding path in the operational semantics.

Before we state the theorems precisely, we need to introduce some definitions. For
each deliberation strategy, we define what it means for configurations of an agent and
states in the models of the logic to correspond to each other. First we define this corre-
spondence for the (i) deliberation strategy. Given a configuration ¢ = (o, v, IT = {ry :
Ty, ...,Tn i T, }), a state s is in the correspondence relation ~ ;) to ¢, s ~(3) ¢, if:

Vi(s) = o, Vy4(s) = v (beliefs and goals are the same in ¢ and s),

start; € Ve(s) iff r; : m € II (start; means that a plan has been added to the plan
base by r;)

fail; & Ve(s) for any r; € A (only the states where fail; is false for all plans
correspond to ‘real’ configurations).

By a path in an operational semantics transition system S, we will mean a sequence
of configurations c;, labelq, c2,labels, . . ., ¢, Where cj4 is obtained from c; by one
of the transition rules (1a)-(4). For convenience, we label each transition by the corre-
sponding operation; a (1a) transition executing an update action o by ‘execute « in 7;’,
a (1b) transition by ‘fail «v in 7;’, a (2a) transition by ‘test if ¢ in 7;’, a (2b) transition
by ‘test if —¢ in m;’, similarly for (3a) and (3b), and a (4) transition of firing a rule r;
by ‘fire r;”. We claim that if there is a path ¢ = ¢1,...,¢, = ¢ in S with a certain
sequence of labels, then there is a corresponding path s = s1,...,s; = s’ in M such
that s ~(;) c and 5" ~(;) c’. It remains to define what we mean by a ‘corresponding
path’. For each single step c;, label;, c;1 on a path in S, the corresponding path in M
is as follows:

(1a): ¢;, ‘execute «v in 7;’, c¢;j41: the corresponding path is s;,¢,554; OF 55,5541
depending on whether « is the last action in 7;, where s; ~(1) Cj and 5511 ~(i) Cj+1-
If o is the last action in 7;, then R, (s;,t) and R, (t, sj+1). If « is not the last action,
then Rai (Sj, 8j+1).

(Ib): ¢;, ‘fail o in m;’, ¢j41: the corresponding path is sj,t,...,%,s;41 Where
55 ~(1) Cj» Sj41 ~(i) Cit1s Ra,(8j,1), t satisfies fail; and has otherwise the same
assignments as s;, and R, (t, s;+1). Intuitively, the path contains as many ¢ loops as
there are update actions remaining in the plan when it failed, and the last step on the
path is along the e; action which resets the start; and fail; flags to false and leaves the
rest of the assignments the same. Figure 1 illustrates this point; we assume that action
« in a plan generated by a PG rule r; is not executable, so in the operational semantics
the plan is removed from the plan base, while in the model the rest of the plan is ‘con-
sumed’ in a state where fail; flag is set to true. The e; transition resets the start; and
fail; flags to false.



Fig. 1. Correspondence between operational semantics and models (c« not executable)

(2a)-(3b): the corresponding path is s;, s;41 where s; ~(1) ¢j, 8541 ~(1) ¢j+1 and
Sj4+1 = Sj5.

(4): the corresponding path is s;, 5541 where s; ~(5) ¢j, Sj+1 ~() ¢j+1 and
Rs, ,(sj,8541)-

Theorem 5. Let A be the program of an agent using the (i) deliberation strategy. Let ¢
be an initial configuration in a operational semantics transition system S for this agent.
Let M € M(A, i) be generated by so ~ 1) co. There exists a path from cg to cin S, if
and only if, there is a path in M described by §(A) from sq to a state s ~ ;) c.

To prove the theorem, we need the following two lemmas. .S and M in the lemmas refer
to S and M in Theorem 5.

Lemma 1. For any two configurations ¢ = (o,7,II) and ¢ = (¢',~',II") in S, if
there is a path between them in S, then there is a corresponding path in M between a
state s ~ sy c and a state ' ~ s c'.

Proof. By induction on the number of labels in the path in S, using the preconditions
of the transitions of the operational semantics, the definition of the deliberation strategy
cycle, and conditions on M(A,i). We show that for every configuration ¢, the set of
transitions possible in c is included in the set of transitions possible in a state s ~(3) ¢,
and moreover the configurations reachable from c are in the relation ~ ;) with the states
reachable by the corresponding transitions from s.

Under the interleaved execution strategy, the possible transitions from ¢ = {c,~, IT =

{ry : @, ...,rn = m,}) are (1a)—(4), namely the agent can fire an applicable rule r;
which is notin {ry,...,r,}, or apply transition rules (1a)—(3) with respect to one of its
plans {7,...,m, }. Let s ~() c.

(1a): if some plan in II is of the form r; : o;m and 0 Fcwa prec; (), then
there is a transition to ¢’ where the belief base is 0’ = T}(«, o), the goal base is the
same apart from removing goals which became true, and instead of r; : «;m the plan
base contains r; : m. By the condition C5, R,, (s, s") where Vi,(s') = Tj(a, V4 (s)),



Vo) =Vo\N{p:p e V(U {p:p¢&V(s')}) and control flags do not change.
In other words, s’ ~(4) c.

(1b): if some plan in I7 is of the form r; : a;7 and none of the preconditions of
« holds in o, there is a transition to ¢’ with the same belief and goal base but the plan
base IT' = IT \ {r; : o;7}. By C6, R,,(s,t) where ¢ has the same beliefs and goals
but satisfies fail;. By C3, R, (t, s’) where s’ has the same beliefs and goals, but fail;
is false and start; is false. So, " ~ (3 c'.

(2a), (2b), (3a), (3b): if ¢ is true in c, then f;(¢) is true in s, s0 Ry, (4)(s, s) and
s ~ (1) ¢'; otherwise f,(—¢) is true in ¢, and Ry, (~4)(s, s) and s ~ (3 ¢’

(4): if there is some rule r; which is not in {ry, ..., r,}, and its belief and goal
conditions 3; and k; hold in c, then there is a reachable configuration ¢’ which has
the same belief and goal base, and contains the plan 7; : ; in its plan base. Then by
condition C4, Rs,_, (s, s") where beliefs and goals are the same as in s and start; is set
to true. Therefore, s” ~ (5 .

Lemma 2. For every pair of states s and s’ in M, which have a corresponding config-
uration with an empty plan base in S, there exists a path between s and s’ described by
§(A) iff there is a corresponding path between c and c’, where s ~ 3y cand s' ~ 3y c'.

Proof. The ‘only if’ direction is easy to show by an argument similar to the previous
lemma. For the ‘if” direction, assume that there is a path between s and s’ which is
described by £(A). We want to show that a corresponding path exists between ¢ and ¢’
Imagine that we have two markers, one for states in M and another for configurations
in S. The first marker starts at s and the second at c. We move the first marker along
the path in M, sometimes several steps at a time, and the second marker along the
corresponding transition in S, so that when the markers are on s; and c;, s; ~(i) Cj-
If such a move is always possible, we will find a corresponding path in .S, because by
the time the first marker reaches s’, the second one is on ¢’ such that s’ ~ ;) ¢’. Since
the path in M is fixed, we always know what is the next move in M and hence what
should be the answering move in S. The existence of the corresponding transition in .S
follows from the fact that the conditions enabling a transition in M match exactly the
conditions for corresponding configurations in S, given the history of the corresponding
configuration. For example, if the next transition from s; is «;, this means that earlier
on the path there was an J,.; transition, followed by transitions corresponding to the
statements preceding « in 7; (this is because the path is described by £(A)). So we can
assume that c; has r; : o; 772 in its plan base, and the preconditions of « hold in c;; the
first marker moves to a state s, such that R, (s;, s;j4+1) and the second marker to a

/

configuration c; 1 such that s;11 ~(s) ¢;j41 where the plan base contains r; : ;.

Theorem 5 follows immediately from the two lemmas. Correspondence proofs for
other deliberation strategies are similar.

Theorem 6. Let A be the program of an agent using the (ni) deliberation strategy. Let
S be the transition system generated by the operational semantics for this agent with
initial configuration co. Let M € M(A, ni) be generated by so ~ ;) co. There exists
a path from cq to ¢ if, and only if, in M there is a path described by £(A) from sg to a
State s ~(y) C.



The proof is similar to the proof of Theorem 5 but uses the restrictions imposed by (ni)
strategy on transition rules, and corresponding conditions on M (A, ni).

Correspondence for the alternating strategies needs to take into account the step;
flags. We define s ~(,¢) ¢ to hold if s ~(;) c and in addition the following condition
holds:

- step; € V,(s) iff this configuration has been obtained by transition (1a) (executing
a belief update for plan ;).

Theorem 7. Let A be the program of an agent using the (as) deliberation strategy. Let
S be the transition system generated by the operational semantics for this agent with
initial configuration cy. Let M € M(A, as) be generated by s ~ (as) co. There exists
a path from cg to c if, and only if, in M there is a path described by £(A) from sg to a
state s ~(a5) C.

The proof is similar to the proof of Theorem 5 but uses the restrictions imposed by (as)
strategy on transition rules, and corresponding conditions on M (A, as).

Correspondence between states and configurations for (am) is defined as: s ~ (4 €
if s ~(3) c and in addition the following condition holds:

— step; € V.(s) iff on the path leading to ¢, since the last execution of a planning
rule, a belief update in 7; was executed.

Theorem 8. Let A be the program of an agent using the (am) deliberation strategy. Let
S be the transition system generated by the operational semantics for this agent with
initial configuration co. Let M € M(A,am) be generated by so ~ (am) Co. There exists
a path from cg to ¢ if, and only if, in M there is a path described by £(A) to a state
S ™~ (am) C.

The proof is similar to the proof of Theorem 5 but uses the restrictions imposed by (am)
strategy on transition rules, and corresponding conditions on M(A, am).

6.1 Complexity of the verification problem

Given an agent program A, the size of its translation £(A) is linear in A. The axioma-
tisation of any execution strategy involves schema axioms such as A5 which hold for
arbitrary formulas ¢ (essentially such axioms serve as frame axioms and state that if
¢ was true before an action was executed, and ¢ does not mention any effects of the
action, then ¢ remains true). A naive automatic generation of all possible frame ax-
ioms is exponential in the number of literals in A (since it has to talk about all possible
states). Therefore, the set of axioms Ax(A) required for proving properties of A may
be exponential in the size of A. Once we have Ax(A), the problem of checking whether
it entails a property ¢ of A has the same complexity as satisfiability problem for PDL
with interleaving [18]: double exponential in the size of A and ¢. In other words, the
problem is decidable but triple exponential in the size of A.



6.2 Example

In this section, we briefly illustrate how to prove properties of agents in our logic using
the running example.

Let us abbreviate home as h, work as o (for “office”), breakfast as b, raining as
r, take_ umbrella as u, take_sunglasses as s, walk_work as w, and eat_breakfast
as t.

The translation of the agent’s program A = {ry;ra} is

£(4) =
(615 ((t2(r);un) U (t1(—r); 81)); wise1) T U
(6roita;e2)T U
((0r1; ((F1(r);u1) U (tl(ﬁr);81));w1;€1)+ [ (5r2;t2;€2)+)

The expression £(A) has an equivalent interleaving-free form which can be gen-
erated automatically, and we can use a PDL theorem prover such as PDL-TABLEAU
[21] to automatically verify properties of the agent program. For example, the agent
is guaranteed to achieve both its goals under the (am) strategy. Namely, the following
formula:

init A Bh A Br A Gb A Go — {[£(A)])(Bb A Bo)

where init = \,_, ,(—start; A= fail; A\ —step;), is derivable in Ax(A, am) from the
axioms such as the following instances of A26, A21, AS, A25:

—starty A —starta A Go A Gb A Bh A Br — ([6,1])(starty A —starta A —stepy A
Go ANGb A Bh A Br)

starty A mstarty A —stepr A Go A Gb A Bh A Br — {([t1(r)])(starty A —starty A
stepy A Go A Gb A Bh A Br)

starty A\ —starta A —stepy A Go A Gb A Bh A Br — [t1(—r)]L

start) A\ —starty A stepy A Go AN Gb A Bh A Br — [ug] L

Under other strategies, the agent is not guaranteed to achieve both its goals. As a
simple counterexample, consider the following path which is possible from the start
state under (i) and (ni): d,.q;¢1(r); u1;ws;er. In the state reachable by this path, 0,5
cannot be applied since its belief condition h fails. Therefore, from that state it is im-
possible to reach a state where Bb is true by following &,.5; t2; e2. Similarly, for (as),
a sequence d,.1;t1(r); uy; 0r0; wi; ta does not reach the goal, because w; destroys the
preconditions of ¢5, so although, there are states reachable by this sequence under (as),
execution of ¢, fails and does not make its postcondition true.

7 Related Work

There has been a considerable amount of work on verifying properties of agent pro-
grams implemented in other agent programming languages such as ConGolog, MetateM,
3APL, 2APL, and AgentSpeak. Shapiro et al. in [22] describe CASLve, a framework
for verifying properties of agents implemented in ConGolog. CASLve is based on



the higher-order theorem prover PVS and has been used to prove, e.g., termination of
bounded-loop ConGolog programs. However, its flexibility means that verification re-
quires user interaction in the form of proof strategies. Properties of agents implemented
in programming languages based on executable temporal logics such as MetateM [13],
can also easily be automatically verified. However these languages are quite differ-
ent from languages like SimpleAPL, in that the agent program is specified in terms of
temporal relations between states rather than branching and looping constructs. Other
related attempts to bridge the gap between agent programs such as 3APL and 2APL on
the one hand and verification logics on the other, e.g., [16, 10], have yet to result in an
automated verification procedure.

In [19] Mulder et al. present a model of the execution of PRS in an executable
temporal logic, MML. Agent plans are represented as temporal formulas and deliber-
ation strategies are represented by sets of MML rules. The rules define the behaviour
of a meta-interpreter operating on terms which are names for temporal formulas. The
MML model allows the direct specification and verification (via execution in concurrent
MetateM) of agent properties.

There has also been considerable work on the automated verification of multi-agent
systems using model-checking [4, 17]. For example, in [8], Bordini et al. describe work
on verifying programs written in Jason, an extension of AgentSpeak(L). In this ap-
proach, agent programs together with the semantics of Jason are translated into either
Promela or Java, and verified using Spin or JPF model checkers respectively. There has
also been work on using model checking techniques to verify agent programming lan-
guages similar to SimpleAPL [23,3]. In this approach agent programs and execution
strategies are encoded directly into the Maude term rewriting language, allowing the
use of the Maude LTL model checking tool to verify temporal properties describing the
behaviour of agent programs.

The work reported here is closely related to our previous work on using theorem
proving techniques to verify agent deliberation strategies [2]. However in that work,
different execution strategies were specified using different PDL program expressions,
rather than in terms of a fixed general execution strategy which is constrained by the
execution model to obtain different execution strategies, as in this paper.

8 Conclusion

In this paper we analysed the implications of an agent’s deliberation strategy in deter-
mining the behaviour of BDI-based agent programs. In order to illustrate the problem,
we presented a simple agent programming language, SimpleAPL, and explored some
of its possible deliberation strategies. We proposed a family of logics to reason about
deliberation strategies of SimpleAPL programs and showed how these can be used to
verify the correctness of agent programs. Using a simple example program, we illus-
trated how the choice of deliberation strategy can determine whether a given program
will achieve a particular goal. Although we investigated only a small number of delib-
eration strategies, our approach of associating propositions with phases in the agent’s
deliberation cycle and using these transitions to axiomatise the possible transitions be-
tween phases is general enough to accommodate any deliberation strategy that can be



formulated in terms of distinct phases of execution and the kinds of operations that can
be performed in each phase. The axiomatisations share significant structure, concisely
characterising the similarities and differences between strategies, and facilitating the
formalisation of new strategies.

In future work we plan to investigate other deliberation strategies. For example,
it would also be interesting to investigate strategies which prioritise particular goals
and the plans that achieve them. Another direction for future work is extending the
programming language, e.g., to introduce variables in the language of beliefs, goals,
plans and planning goal rules, and to extend the setting to include additional phases
in the agent’s cycle, such as events or sensing, and actions performed in an external
environment.
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