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Abstract

Recent work on Alternating-Time Temporal Logic and Coalition Logic
has allowed the expression of many interesting properties of coalitions and
strategies. However there is no natural way of expressing resource require-
ments in these logics. In this paper we present a Resource-Bounded Coali-
tion Logic (RBCL) that has explicit representation of resource bounds in the
language. We give a complete and sound axiomatisation of RBCL, a pro-
cedure for deciding satisfiability of RBCL formulas, and a model-checking
algorithm.

1 Introduction

Recent work on Alternating-Time Temporal Logic ATL and Coalition Logic CL,
for example, [13, 10, 14, 7, 17], has allowed the expression of many interesting
properties of coalitions and strategies. However, there is no natural way of ex-
pressing resource requirements in these logics. For example, there is no easy way
to verify properties of the form ‘a set of agents C can achieve a state of the world
satisfying ϕ under the given resource bound b’. Essentially, this is the successful
coalition under resource bound problem investigated by Wooldridge and Dunne
in [18]. However, unlike Wooldridge and Dunne, we consider multi-shot games
where the agents need to perform a sequence of actions to achieve the goal. As a
motivating example, consider a system of distributed reasoning agents as described
∗This work was supported by the UK Engineering and Physical Sciences Research Council [grant

number EP/E031226].
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in [2, 6]. Agents’ actions involve inferring new clauses from their knowledge bases
and communicating derived clauses to other agents. Clearly these activities require
resources such as time (which can be identified with the number of inference steps),
memory (the space required to store premises in reasoning, and any intermediate
lemmata, which can be measured as the number of clauses in the agents memory at
any one time) and communication bandwidth (which can be measured as the num-
ber of communicated clauses). Properties of interest for such systems may include
‘the set of reasoners C can derive the clause [p] under the resource bound 10 for
time, 3 for memory and 2 for communication’. In general, we would like to be
able to express properties of systems where the abilities of individual agents and
coalitions of agents are constrained by available resources in a non-trivial way.

In this paper we present a sound and complete logic, RBCL, in which we
can express the costs of (multi-step) strategies and hence coalitional ability under
resource bounds in multi-shot games. The logic is sufficiently expressive to for-
malise, e.g., the decision problems for Coalitional Resource Games discussed in
[18] and the properties of resource-bounded communicating reasoners investigated
in [2]. We show how to verify properties expressed in RBCL and give a model-
checking algorithm for RBCL. While there has been work on introducing resource
bounds into temporal logic [9], we believe that our contribution presents a signif-
icant advance on this work. In [9], a logic RTL∗ is introduced, which is CTL∗

extended with quantifiers representing the cost of paths. However using CTL∗ as
a starting point means that only single-agent systems can be analysed in RTL∗.
The setting of [9] is also different from the one considered in this paper, in that
the actions not only consume but also produce resources. As a result, the model-
checking problem for RTL∗ is quite complex, and only partial solutions (e.g. for
RTL rather than RTL∗ where actions only consume resources) are presented in [9].
No axiomatisation of RTL∗ is given.

This paper is a revised and extended version of [4]. The main differences with
respect to [4] are the decidability result for RBCL, the model-checking algorithm
and proofs of all theorems. In [3] we introduced a logic CLRG for verifying
properties of Coalitional Resource Games (with single step strategies) and gave
a model-checking algorithm for CLRG, which is essentially a special case of the
model-checking algorithm given in this paper.

The work presented in this paper is motivated by our research on epistemic
logics for non-omniscient reasoners such as [6] and on belief ascription to non-
omniscient reasoners such as [1, 5], which encouraged us to consider general is-
sues of representing resources in logic. However the emphasis and the formal
setting of those papers is very different to that considered here. In [6, 5] we con-
sider a syntactic temporal epistemic logic based on CTL which contains an explicit
counter modality cp=n

i which is true in a state if agent i has performed n commu-
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nication actions in the past. The reasoners are assumed to have bounded memory
and require time to perform inference steps, but the time and memory resources
do not have corresponding counters in the language (time bounds are modelled
using temporal operators and memory bounds have a corresponding axiom which
says that the agent cannot have more than m different beliefs). In [1] we pre-
sented a dynamic logic for describing the observation-inference-action cycle of a
non-omniscient agent; resources are not considered, and the emphasis is on correct
belief ascription to the agent at different points in the cycle. The present work does
not extend and is not technically related to our work in epistemic logic, apart from
the latter providing a motivation for introducing resources explicitly in the logic.

The remainder of this paper is organised as follows. In the next section, we
introduce a simple formalism based on Coalition Logic [14] extended with resource
bounds, RBCL1, which describes single-step strategies. We then motivate multi-
step strategies in section 3 and introduce a more complex logic, RBCL, which can
express multi-step strategies (similarly to the Extended Coalition Logic of [13]).
We give a sound and complete axiomatisation of RBCL in section 4 and show
that the satisfiability problem for RBCL is decidable in section 5. In section 6
we present a model-checking algorithm for RBCL. In section 7 we conclude and
outline directions for future work.

2 Formalising single step strategies

We assume a set of agents A = {1, . . . , n} and a set of resources R = {1, . . . , r}.
Agents can perform actions from a set Σ = ∪i∈AΣi, where Σi is the set of ac-
tions that can be performed by agent i. Each action a ∈ Σ has an associated
cost Res(a), which is a vector of costs (assumed to be natural numbers) for each
resource in R. A joint action executed by a coalition C ⊆ A is a tuple of ac-
tions aC = (a1, . . . , ak) (for simplicity, we assume, unless otherwise stated, that
C = {1, . . . , k} for some k ≤ n). For the moment, we stipulate that the cost of
a joint action aC is the vector sum of costs of actions in aC (we generalise the
way costs for different resources are combined in section 3). We compare vectors
of resources using pointwise vector comparison ≤, e.g., for b = (b1, . . . , br) and
d = (d1, . . . , dr), b ≤ d iff for each j ≤ r, bj ≤ dj .

The language of RBCL1 is defined relative to the sets A and R and a set of
propositional variables Prop. Formulas of RBCL1 are defined as follows:

p | ¬ϕ | ϕ ∧ ψ | [Cb]ϕ

where p ∈ Prop, C ⊆ A, and b ∈ Nr. The intuitive meaning of [Cb]ϕ for
C 6= ∅ is that coalition C can enforce the outcome ψ under resource bound b, or,
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in other words, the agents in C have a strategy costing at most b which enables
them to achieve a ϕ-state no matter what the agents C̄ = A \ C do. The modality
corresponding to the empty coalition is a special case. [∅b]ϕmeans that if the grand
coalitionA executes any joint action which together costs at most b, then the system
will end up in a ϕ state; that is, ϕ is unavoidable if A acts within resource bound
b. We have chosen this ‘non-standard’ treatment of the empty coalition modality
because it is suggested by the duality of Coalition Logic, ¬[∅]ϕ↔ [A]¬ϕ (we have
¬[∅b]ϕ ↔ [Ab]¬ϕ). We do, however, lose other properties, such as, for example,
monotonicity involving ∅: [∅b]ϕ → [Cb]ϕ. An alternative would be to treat ∅ as a
normal coalition. However, in this case since the cost of an empty set of actions is
always 0, we would have [∅b]ϕ↔ [∅d]ϕ for any b and d, meaning simply that ϕ is
inevitable in the next state (and we would not have the duality property).

We define models of RBCL1 as transition systems, where in each state agents
execute actions in parallel to determine the next state. These are essentially the
same as the models for coalition logic with the addition of costs of actions. First
we define resource-bounded action frames which underlie the models:

Definition 1. A resource-bounded action (RBA) frame F is a tuple (A,R,Σ =
∪i∈AΣi, S, T, o, Res) where:

A is a non-empty set of agents,

R is a non-empty set of resources,

Σ is the set of actions agents can perform,

S is a non-empty set of states,

T : S × A → ℘(Σi) assigns to each state the set of actions available to agent i
in this state; this set is always non-empty as it contains an action noop with
Res(noop) = 0̄ = (0, . . . , 0),

o is the outcome function which takes a state s and a joint action aA and returns
the state resulting from the execution of aA by the agents in s1

Res : Σ→ Nr is the resource requirement function.

In the case of joint actions, we generalise the function T as follows: a joint
action aC ∈ T (s, C) iff ai ∈ T (s, i) for all i ∈ C. By Res(aC) we denote the
vector sum of Res(ai) for i ∈ C.

1In order not to impose too many restrictions on the models, we do not require that
o(s, (noop, . . . , noop)) = s. If this requirement is added, we need an extra axiom schema
φ↔ [A0̄]φ.
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Definition 2. A single-step resource-bounded action (RBA) model M is a pair
(F, V ) where F is an RBA frame and V : Prop→ ℘(S) is an assignment function.

The truth definition for single-step RBA models is as follows:

• M, s |= p iff s ∈ V (p)

• M, s |= ¬ϕ iff M, s 6|= ϕ

• M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

• M, s |= [Cb]ϕ for C 6= ∅ iff there is aC ∈ T (s, C) with Res(aC) ≤ b such
that for every joint action aC̄ ∈ T (s, C̄) by the agents not in C, the outcome
of the resulting tuple of actions executed in s satisfiesϕ: M, o(s, (aC , aC̄)) |=
ϕ

• M, s |= [∅b]ϕ iff the outcome of any joint action aA ∈ T (s,A) withRes(aA) ≤
b executed in s satisfies ϕ: M,o(s, aA) |= ϕ.

The notions of satisfiability and validity are standard. Let us call the set of all
formulas valid in single-step RBA models RBCL1 (where 1 refers to considering
only one-step strategies, as in Coalition Logic).

Theorem 1. RBCL1 is completely axiomatised by the following set of axiom
schemas and inference rules:

A0 All propositional tautologies

A1 [Cb]>

A2 ¬[Cb]⊥

A3 ¬[∅b]ϕ↔ [Ab]¬ϕ

A4 [Cb](ϕ ∧ ψ)→ [Cb]ϕ

A5 [Cb]ϕ→ [Cd]ϕ where d ≥ b if C 6= ∅ or d ≤ b if C = ∅

A6a [Cb]ϕ∧ [Dd]ψ → [(C ∪D)b+d](ϕ∧ψ) where C andD are both disjoint and
non-empty

A6b [∅b]ϕ ∧ [Cb]ψ → [Cb](ϕ ∧ ψ) where C is either ∅ or A

MP ` ϕ, ` ϕ→ ψ ⇒ ` ψ

Equivalence ` ϕ↔ ψ ⇒ ` [Cb]ϕ↔ [Cb]ψ

5



The notions of derivability and consistency are standard. Note that if we erase
the resource superscript in the axiomatisation above, we get the complete axioma-
tisation of Coalition Logic as given in [14], and a trivial formula resulting from
A5. The rule of monotonicity (RM) is derivable as in Coalition Logic, that is, if
` ϕ→ ψ, then ` [Cb]ϕ→ [Cb]ψ.

We omit the completeness proof here as it is a special case of the completeness
proof of RBCL given below.

2.1 Example

As an illustration, we show how to express some properties of coalitional resource
games from [18] in RBCL1.

A coalitional resource game (CRG) Γ is defined as a tuple (A, G, R, G1, . . .,
Gn, en, req) where

• A = {1, . . . , n} is a set of agents,

• G = {g1, . . . , gm} is a set of goals,

• R = {r1, . . . , rt} is a set of resources,

• Gi ⊆ G is the set of goals for agent i,

• en : A× R → N is the resource endowment function (how many units of a
given resource is allocated to an agent),

• req : G × R → N is the resource requirement function (how many units of
a particular resource is required to achieve a goal). It is assumed that each
goal requires a non-zero amount of at least one resource.

In CRGs, the endowment of a coalition is equal to the sum of the endowments of
its members: en(C, r) = Σi∈Cen(i, r).

As an example, we give a simple CRG from [18], where A = {1, 2, 3}; G =
{g1, g2}; R = {r1, r2}; G1 = {g1}, G2 = {g2}, G3 = {g1, g2}; en(1, r1) = 2,
en(1, r2) = 0, en(2, r1) = 0, en(2, r2) = 1, en(3, r1) = 1, en(3, r2) = 2;
req(g1, r1) = 3, req(g1, r2) = 2, req(g2, r1) = 2, and req(g2, r2) = 1. In
RBCL1, we can state properties such as the coalition of agents 1 and 3 can achieve
g1 under the resource bound corresponding to the sum of their endowments as
given in the example: [1, 3〈3,2〉]g1. More generally, a decision problem which is
called coalition C is successful under resource bound b in [18] can be expressed as

[Cb]
∧
i∈C

∨
g∈Gi

g.
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3 Formalising multi-step strategies and arbitrary resource
combinators

In this section, we generalise the logic described above in two ways. First, we con-
sider multi-step strategies, as in Extended Coalition Logic with the [C∗] operator
[13], or in ATL. The reason for this is that we are interested in the resource require-
ments of strategies which involve multiple steps. For example, suppose a coalition
C can enforce ϕ in three steps: [Cb1 ][Cb2 ][Cb3 ]ϕ. We can deduce from this that the
agents have a strategy to achieve ϕ which costs at most b1 + b2 + b3. However ex-
pressing the fact in this way is rather clumsy. Even worse, to say that ‘C has some
strategy which achieves ϕ in three steps which costs at most b’ in RBCL1, we have
to use a disjunction over all possible vectors of natural numbers b1, b2, b3 which
sum up to b: ∨b1+b2+b3=b[Cb1 ][Cb2 ][Cb3 ]ϕ. We therefore change the truth defini-
tion of [Cb] to allow us to directly express the existence of a multi-step strategy
with cost b.

The second generalisation involves the way in which we calculate the resource
requirements of complex actions. We argue that not all resource costs should be
combined using simple addition. For example, if one of the resources is time and
the agents execute their actions concurrently, then, if each individual action costs
one unit of time, the parallel combination of those actions also costs one unit of
time. If one of the resources is memory, one can argue that if action a1 requires n
units of memory and action a2 requires m units of memory, then executing actions
a1 and a2 sequentially requiresmax(n,m) units of memory. For generality, we in-
troduce two cost combinators to express how resource requirements are combined
in parallel and in sequence. If two actions a1 and a2 are performed in parallel,
then the cost of executing them is Res(a1) ⊕ Res(a2) and the cost of executing
them sequentially is Res(a1) ⊗ Res(a2), where ⊕ and ⊗ may be sum for some
resources, and max or some other combinator for others.

In the rest of the paper, we assume that the set of resources R always includes
time, that every action costs exactly one unit of time, and that the time cost is the
last component of every cost vector. The cost of the noop action is redefined as
(0, . . . , 0, 1). We denote by t(b) the time component of cost vector b. In particular,
t(Res(a)) = 1 for any a ∈ Σ. We realise that this is a significant restriction on the
logic, but we rely on it in an essential way in many of the proofs of the technical
results (intuitively, it enables us to do induction on resource bounds).

In accordance with the intuitions above, t(b1 ⊗ b2) = t(b1) + t(b2) and t(b1 ⊕
b2) = max(t(b1), t(b2)). In the language, only operators [Cb] with t(b) ≥ 1 are
allowed.
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3.1 Strategies and multi-step RBA models

Given an RBA frame F = (A,R,Σ, S, T, o, Res), a strategy for an agent i ∈ A
is a function fi : S+ → Σi from finite non-empty sequences of states to actions,
such that fi(λs) = a ∈ T (s, i), where λs is a sequence of states ending in state s.
Intuitively, fi says what action agent i should perform in state s given the previous
history of the system. A strategy for a coalition C is a set FC = {f1, . . . , fk} of
strategies for each agent.

For a sequence λ = s0s1 . . . ∈ Sω, we denote λ[i] = si and λ[i, j] = si . . . sj .
The set of possible computations generated by a strategy FC from a state s0,
out(s0, FC), is

{λ | λ[0] = s0 ∧ ∀j ≥ 0 : λ[j + 1] ∈ o∗(λ[j], (fi(λ[0, j]))i∈C)}

where o∗(s, aC) = {o(s, (aC , aC̄)) | aC̄ ∈ T (s, C̄)}. Now we define the cost of
a multi-step strategy. Let λ ∈ out(s0, FC). The cost of FC over a prefix λ[0,m]
where m > 0 is defined inductively as follows:

cost(λ[0, 1], FC) = ⊕i∈CRes(fi(λ[0])), where Res(fi(λ[0])) is the cost of the
action of agent i in λ[0], and ⊕i∈C is the operator for combining the costs of
actions executed in parallel by the agents in C;

cost(λ[0,m], FC) = cost(λ[0,m − 1], FC) ⊗ (⊕i∈CRes (fi(λ[0,m − 1]))) for
m > 1; this is the cost of the previous m− 1 steps in the strategy combined
sequentially with the cost of the mth step.

Definition 3. A multi-step resource-bounded action model M is a pair (F, V )
where F is an RBA frame, and V : Prop → ℘(S) is an assignment function, and
the truth definition for the [Cb] modality is

• M, s |= [Cb]ϕ for C 6= ∅ iff there is a strategy FC such that for all λ ∈
out(s, FC), there existsm > 0 such that cost(λ[0,m], FC) ≤ b andM,λ[m] |=
ϕ,

• M, s |= [∅b]ϕ iff for all strategies FA, computations λ ∈ out(s, FA), and
m > 0 such that cost(λ[0,m], FA) ≤ b, M,λ[m] |= ϕ.

Note that under this definition, the meaning of [Cb]ϕ (for non-empty C) be-
comes as follows: C has a multi-step strategy to bring about C, and the cost of this
strategy is less than b. The meaning of [∅b]ϕ is that the outcome of any strategy of
the grand coalition A which costs less than b, satisfies ϕ.

The set of all formulas valid in multi-step RBA models will be denoted by
RBCL.
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3.2 Example

As an illustration, we show how we can express properties of coalitions of resource-
bounded reasoners from [2].

In [2], a temporal epistemic logic for resource-bounded reasoners was pre-
sented. The states in the models of the logic correspond to tuples of local states
of the agents - intuitively the sets of formulas the agents believe or the contents of
their memories. Belief operators Bi for each agent i are interpreted syntactically,
that is Biφ if and only if the formula φ is in agent i’s memory. Transitions be-
tween states correspond to each agent performing, in parallel, one of the following
actions: applying a rule of inference (resolution) to two formulas in its memory,
‘reading’ a formula from the agent’s knowledge base into the agent’s memory, or
‘copying’ a formula from another agent’s memory (the latter is a very simple model
of communication). The resources of interest are: time (the number of steps the
system performed), memory (the maximal number of formulas that must be held
simultaneously in the agent’s local state) and communication (the number of ‘copy’
actions).

For example, the derivation below can be modelled as a transition system con-
sisting of two agents, 1 and 2, where the agents’ knowledge bases contains all
formulas of the form ∼ A1∨ ∼ A2 (where ∼ Ai is either ¬Ai or Ai), and in
the initial state the memory of both agents is empty. The first transition consists
of agent 1 executing the action Read(A1 ∨ A2) and agent 2 executing the action
Read(A1∨¬A2). This transition leads to a state where agent 1’s memory contains
(A1 ∨A2) and agent 2’s memory contains (A1 ∨ ¬A2), etc.:

Agent 1 Agent 2
# Configuration Op. Configuration Op.
1 {} {}
2 {A1 ∨A2} Read {A1 ∨ ¬A2} Read
3 {A1 ∨A2,¬A1 ∨A2} Read {¬A1 ∨ ¬A2, A1 ∨ ¬A2} Read
4 {A1 ∨A2, A2} Infer {¬A2, A1 ∨ ¬A2} Infer
5 {A1 ∨ ¬A2, A2} Read {¬A2, A2} Copy
6 {A1, A2} Infer {{}, A2} Infer

Figure 1: Example derivation using resolution with two agents

The logic defined in [2] did not have any way of expressing coalitional abilities
of agents. However in RBCL we can express that, for example, reasoners 1 and 2
can derive an empty clause within resource bounds 4 for memory, 1 for commu-
nication, and 5 for time: [{1, 2}(4,1,5)] B2⊥ (where B2⊥ means that ⊥ is in agent
2’s configuration.
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3.3 Effectivity structures

To prove completeness of RBCL it is easier to work with an alternative semantics,
given not in terms of multi-step RBA models, but in terms of effectivity structures.
These are closely related to RBA models, and we will show that effectivity struc-
tures satisfying some natural properties give rise to an alternative semantics for
RBCL.

Let ℘(A)B = {Cb | C ⊆ A, b ∈ Nr, t(b) ≥ 1}. Intuitively, this is the
set of all possible coalitions with all possible resource allocations. An effectivity
structure (for a set of states S and a set of agents A) is a function E : S →
(℘(A)B → ℘(℘(S))) which describes, for each state in S, which properties of the
world (corresponding to subsets of S) a coalition C can enforce under resource
bound b.

Given an RBA frame F, the effectivity structure corresponding to F is defined
as follows:

• for anyC 6= ∅ andX ⊆ S,X ∈ E(s)(Cb) iff there exists a strategy FC such
that for all λ ∈ out(s, FC), there existsm > 0 such that cost(λ[0,m], FC) ≤
b and λ[m] ∈ X;

• X ∈ E(s)(∅b) iff for all strategies FA, sequences of states λ ∈ out(s, FA),
and m > 0 such that cost(λ[0,m], FA) ≤ b, we have λ[m] ∈ X .

In other words, X ∈ E(s)(Cb), where C is not the empty coalition, means that
the coalition C has a strategy to bring about X within the bound b. X ∈ E(s)(∅b)
means that all strategies for the grand coalition which cost less b always result in a
state in X , i.e., X is inevitable.

3.4 Example

In this section, we illustrate how effectivity structures are connected to action
frames. The same example will be used in section 3.6 to show how an effectiv-
ity structure satisfying certain conditions gives rise to an action frame. Consider
the following RBA frame F = (A,R,Σ, S, T, o, Res), where the set of agents
A = {1, 2, 3}, R consists of two resources (the second of which is time), the set
of actions Σ = {a1, a2} where a1 is the noop action, S = {s1, s2}, T and o are
shown in Figure 2 and resource requirements of actions are Res(a1) = (0, 1) and
Res(a2) = (1, 1):

Intuitively, in s1, if agents 1 and 2 perform the same action, then the system
stays in s1, and if they perform different actions, the system will move to state s2.

The corresponding effectivity structureE is as follows (where b is any resource
bound which is at least equal to (2, 1), and C and d are any coalition and any
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(a2, a1, a1)

s2

(a1, a1, a1)

(a1, a2, a1)

s1

(a1, a1, a1)

(a2, a2, a1)

Figure 2: Example action frame F

resource bound):

E(s1)(∅(0,1)) = {{s1}, S}
E(s1)(∅(1,1)) = E(s1)(∅b) = {S}

E(s1)({1}(0,1)) = E(s1)({1}(1,1)) = E(s1)({1}b) = {S}
E(s1)({2}(0,1)) = E(s1)({2}(1,1)) = E(s1)({2}b) = {S}
E(s1)({3}(0,1)) = E(s1)({3}(1,1)) = E(s1)({3}b) = {S}

E(s1)({1, 2}(0,1)) = {{s1}, S}
E(s1)({1, 2}(1,1)) = E(s1)({1, 2}b) = {{s1}, {s2}, S}

E(s1)({1, 3}(0,1)) = E(s1)({1, 3}(1,1)) = E(s1)({1, 3}b) = {S}
E(s1)({2, 3}(0,1)) = E(s1)({2, 3}(1,1)) = E(s1)({2, 3}b) = {S}

E(s1)({1, 2, 3}(0,1)) = {{s1}, S}
E(s1)({1, 2, 3}(1,1)) = E(s1)({1, 2, 3}b) = {{s1}, {s2}, S}

E(s2)(Cd) = {{s2}, S}

3.5 Characterising effectivity in RBA frames

Every RBA frame gives rise to an effectivity structure, but the reverse does not
hold. In this section, we characterise properties which an effectivity structure
should satisfy to be an effectivity structure corresponding to an RBA frame. Fol-
lowing Pauly in [14], who introduced the term ‘playable’ for effectivity struc-
tures in Coalition Logic, we call such effectivity structures RB-playable, where
RB stands for resource-bounded.

Below we state some useful properties of RB-playable effectivity structures.
These are very similar - with the exception of the resource bound - to the properties
of playable effectivity structures listed in [14], and are given the same names:
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• An effectivity structure E is outcome monotonic iff

X ∈ E(s)(Cb)⇒ X ′ ∈ E(s)(Cb) for all X ′ ⊇ X

• An effectivity structure E is coalition monotonic iff

X ∈ E(s)(Cb)⇒ X ∈ E(s)(Db)

where C 6= ∅ and C ⊆ D; and

X ∈ E(s)(∅b)⇒ X ∈ E(s)(Ab)

• An effectivity structure E is A-maximal iff

X /∈ E(s)(∅b)⇒ X ∈ E(s)(Ab)

• An effectivity structure E is A-minimal iff

X ∈ E(s)(Ab) ∧ Y /∈ E(s)(Ab)⇒ X \ Y ∈ E(s)(Ab)

Note that A-minimality is not listed in [14], but its analogue is derivable.

• An effectivity structure E is regular iff for all coalitions C which are neither
empty nor equal to A

X ∈ E(s)(Cb)⇒ X /∈ E(s)(Cb
′
) for all t(b) = t(b′) = 1

In the case where the time component is greater than one, we also have a
similar property to regularity but only for A. An effectivity structure E is
A-regular iff X ∈ E(s)(Ab)⇒ X /∈ E(s)(∅b).

• An effectivity structure E is super-additive iff for all b and d with t(b) =
t(d) = 1, and C ∩D = ∅:

– If C 6= ∅ and D 6= ∅, X1 ∈ E(s)(Cb) and X2 ∈ E(s)(Dd)⇒

X1 ∩X2 ∈ E(s)((C ∪D)b⊕d)

– If C = ∅ and D = ∅ or A, X1 ∈ E(s)(∅d) and X2 ∈ E(s)(Dd) then
X1 ∩X2 ∈ E(s)(Dd)
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We have two different cases in the definition of super-additivity because in
∅b, b is not the resource bound for the coalition it annotates but for its com-
plement. Therefore, it should not be possible to sum up the bounds as in
the case when both coalitions C and D are non-empty. Notice that super-
additivity requires the time component of both resource bounds to be equal
to 1. If time components are not equal, this property might not be true. Con-
sider for example the case when agent 1 can bring about p by executing one
action, and agent 2 can bring about ¬p by executing a sequence of two ac-
tions: V (p) ∈ E(s)({1}b1), where t(b1) = 1, and V (p) ∈ E(s)({2}b2),
where t(b2) = 2. It should not be possible to conclude that together, agents
1 and 2 can bring about p ∧ ¬p by expending b1 ⊕ b2 resources, or that
∅ ∈ E(s)({1, 2}b1⊕b2). Intuitively, if agent 2 can enforce ¬p after two steps,
then it must be that agent 1 cannot keep enforcing p for longer than 1 step.
However, from the super-additivity property for t(b) = t(d) = 1, we can
derive the same property for t(b) = t(d) ≥ n.

We also have the following more general property for the case when one of
the coalitions is empty:

• An effectivity structure E is general super-additive iff it is super-additive
and

X1 ∈ E(s)(∅b) and X2 ∈ E(s)(Cb)⇒ X1 ∩X2 ∈ E(s)(Cb)

where C is either empty or the grand coalition.

We also have properties corresponding to sequential composition of strategies:

• An effectivity structure E is super-transitive iff for all C 6= ∅

{s′ ∈ S | X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)⇒ X ∈ E(s)(Cb1⊗b2)

(if a set of states where X is obtainable under b2 can be enforced under b1,
then X can be enforced by the combined strategy under b1 ⊗ b2).

• An effectivity structure E is transitive iff for any b with t(b) > 1 and C 6= ∅:
X ∈ E(s)(Cb) ⇒ ∃b′ < b : X ∈ E(s)(Cb

′
) (X can be achieved under a

tighter bound b′) or ∃b1⊗b2 = b : {s′ ∈ S | X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)
(X can be achieved by combining two strategies costing b1 and b2 such that
b1 ⊗ b2 = b).

Finally, the following property is specific to resource bounds:

13



• An effectivity structure E is bound-monotonic iff
X ∈ E(s)(Cb)⇒ X ∈ E(s)(Cd) for all d ≥ b if C 6= ∅ or d ≤ b if C = ∅.

Bound-monotonicity is a very natural property which states that if a non-empty
coalition can achieve something under bound b, then it can achieve it with more
resources. For C = ∅, this property means that if an outcome cannot be avoided
when the grand coalition is restricted to strategies which cost at most b, then it
cannot be avoided if A uses fewer resources (hence has fewer strategies available).

It is easy to prove that the properties above are true for any effectivity struc-
ture obtained from a RBA frame. Conversely, RB-playable effectivity structures
defined below are effectivity structures of an RBA frame.

Definition 4. An effectivity structure E : S → (℘(A)B → ℘(℘(S))) is RB-
playable iff, for every s ∈ S, E has the following properties:

1. For all Cb ∈ ℘(A)B, S ∈ E(s)(Cb)

2. For all Cb ∈ ℘(A)B, ∅ /∈ E(s)(Cb)

3. Outcome-monotonicity

4. A-maximality

5. A-regularity

6. Super-additivity

7. Super-transitivity

8. Transitivity

9. Bound-monotonicity

It can be shown that RB-playability implies the other properties listed above.

Lemma 1. Let E be a RB-playable effectivity structure, then E has the following
properties:

1. Coalition monotonicity

2. A-minimality

3. Regularity

4. General super-additivity

14



In the following, we provide the proof of the above lemma. First general super-
additivity is proved by induction on resource bounds using super-additivity. The
proofs of the other properties are based on general super-additivity.

Proof. By super-transitivity, we have that, for any b and b1 ⊗ b2 = b

{s′ | X ∈ E(s′)(Ab2)} ∈ E(s)(Ab1)⇒ X ∈ E(s)(Ab1⊗b2)

Hence,

X /∈ E(s)(Ab1⊗b2)⇒ {s′ | X ∈ E(s′)(Ab2)} /∈ E(s)(Ab1)

ByA-regularity andA-maximality, we haveX ∈ E(s)(∅b1⊗b2)⇒ X /∈ E(s)(Ab1⊗b2)
and {s′ | X ∈ E(s′)(Ab2)} /∈ E(s)(Ab1)⇒ {s′ | X ∈ E(s′)(∅b2)} ∈ E(s)(∅b1),
respectively. Therefore,

X ∈ E(s)(∅b1⊗b2)⇒ {s′ | X ∈ E(s′)(∅b2)} ∈ E(s)(∅b1) (1)

We now prove general super-additivity by induction on time component of b.
The base case follows directly from super-additivity. Let X ∈ E(s)(∅b) where
time component of b is greater than 1. Assume that Y ∈ E(s)(Cb) where C is
either ∅ or A. If Y ∈ E(s)(Cb

′
) for some b′ < b, then bound-monotonicity for

the empty coalition and the induction hypothesis imply that X ∩ Y ∈ E(s)(Cb
′
).

Hence, bound-monotonicity implies X ∩Y ∈ E(s)(Cb). If Y /∈ E(s)(Cb
′
) for all

such b′, we have that there exist b1 and b2 such that b1 ⊗ b2 = b and

{s′ | Y ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

which follows from transitivity when C = A or from (1) with arbitrary b1⊕ b2 = b
when C = ∅. Note that we also have {s′ | X ∈ E(s′)(∅b2)} ∈ E(s)(∅b1).
Applying the induction hypothesis twice together with outcome-monotonicity, we
have the following result:

{s′ | X ∩ Y ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

Therefore, super-transitivity implies that X ∩ Y ∈ E(s)(Cb).

1. Assume that X ∈ E(s)(∅b). By RB-playability, we have S ∈ E(s)(Ab).
Applying general super-additivity, we obtain X ∈ E(s)(Ab).

Let ∅ 6= C ⊂ A, we prove by induction on the time component of b that
X ∈ E(s)(Cb)⇒ X ∈ E(s)(Db) for any D ⊃ C.
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In the base case, when time component of b is equal to 1, letC ′ = D\C. We
have S ∈ E(s)(C ′(0,...,0,1)), thus super-additivity implies that X = X ∩S ∈
E(s)(Db).

Let us assume that time component of b is greater than 1. If X ∈ E(s)(Cb
′
)

for some b′ < b, then it is obvious by the induction hypothesis that X ∈
E(s)(Db′). Hence, bound-monotonicity implies that X ∈ E(s)(Db). If
X /∈ E(s)(Cb

′
) for any such b′, then we have by transitivity that there exists

b1 ⊗ b2 = b such that

{s′ | X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

By the induction hypothesis, we have

{s′ | X ∈ E(s′)(Cb2)} ∈ E(s)(Db1)

and
{s′ | X ∈ E(s′)(Cb2)} ⊆ {s′ | X ∈ E(s′)(Db2)}

Thus, outcome-monotonicity implies that

{s′ | X ∈ E(s′)(Db2)} ∈ E(s)(Db1)

Therefore, we have by super-transitivity that X ∈ E(s)(Db).

2. Assume that X ∈ E(s)(Ab) and Y /∈ E(s)(Ab). By A-maximality, we have
Y ∈ E(s)(∅b). Therefore, general super-additivity implies that X ∩ Y ∈
E(s)(Ab).

3. Assume that ∅ 6= C ⊂ A and X ∈ E(s)(Cb) where the time component of
b is equal to 1. Furthermore, assume by contradiction that X ∈ E(s)(Cb

′
),

where the time component of b′ is also equal to 1. Applying super-additivity,
we have X ∩ X ∈ E(s)(Ab⊕b

′
) which contradicts the fact that E is RB-

playable. Therefore, E is regular.

Theorem 2. An effectivity structure is RB-playable iff it is the effectivity structure
of some RBA frame.

Proof. It is easy to check that effectivity structures obtained from RBA frames
satisfy all properties of RB-playability. In order to prove the other direction for a
givenRB-playable effectivity structure E, we need to construct a RBA frame such
that its effectivity structure is identical to E.
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Let E be an RB-playable effectivity structure. The construction of the RBA
frame is similar to that in Coalition Logic extended with costs for actions. First,
we define the set of possible actions for each agent at each state s ∈ S with their
associated costs Res. Then the construction is completed by defining the outcome
function o.

In order to make the proof easier to follow, we first provide an informal sketch
of the argument, which follows closely the argument in [14]. The main task in
defining the RBA frame is to define the actions available to each agent at a particu-
lar state. We construct these actions in a way that makes it easier to define costs of
actions and the outcome function later. Each action for an agent is a triple (g, t, h)
where:

• g is a function which defines the preferred set of outcomes for each coalition
in which the agent participates and is willing to contribute a certain amount
of resources (then, the cost of this action is this amount of resources). Given
the actions of all agents, the component g of those actions will define the
coalitions in which the agents participate, hence also the preferred set of
outcomes for each agent.

• t is a natural number which is used to determine which agent has the power
to decide the outcome.

• when we know which agent has the power to decide the outcome and its
preferred set of outcomes, h is a function which picks a single outcome
among those in the preferred set.

In the following, we present in detail how actions and outcomes of actions are
defined. We present a worked example in section 3.6.

For every i ∈ A and bound b such that t(b) = 1, we define Cbi = {Cd | i ∈
C ∧ t(d) = 1 ∧ d ≥ b} which is the set of all coalitions in which i may participate
and contribute b amount of resources. Note that for all actions t(b) is always 1.

For every s ∈ S, we define

Γ(s, i) = {gb(s,i) : Cbi → ℘(S) | gb(s,i)(C
d) ∈ E(s)(Cd)}

Γ(s, i) is the set of option functions for an agent i at state s. Each option function in
Γ(s, i) is a mapping gb(s,i) in which b is a resource bound such that t(b) = 1. gb(s,i)
determines the outcome when agent i agrees to participate in a coalition. How an
agent agrees to participate in a coalition will be specified later when we define the
outcome function.

Let H = {h : ℘(S) → S | h(X) ∈ X} be the set of choice functions, that is,
if an agent has the power to decide the outcome, it will use some h function to do
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so. We then define the set of available actions for an agent i at a state s as follows:

T (s, i) = Γ(s, i)× N×H

Each action is a triple (gb(s,i), t, h) consisting of an option function gb(s,i), an in-
dex t (a natural number) and a choice function h. Informally, option functions de-
termine how the agents group together to form coalitions and then which outcome
options they will choose. The index determines which agent has the power to de-
cide the outcome based on its associated h function. We set Res((gb(s,i), t, h)) = b.
Note that for any action, we have t(Res((gb(s,i), t, h))) = 1.

Let Σi =
⋃
s∈S T (s, i). We now define the outcome of a joint action σ ∈ ΣA

at a state s. Assume that σ = {(gbi(s,i), ti, hi) | i = 1, . . . , n} where t(bi) = 1 for

all i ∈ A. For any coalition C ⊆ A, let bC = ⊕i∈Cbi and g = (gbi(s,i))i∈A. We
denote by P (g, C) the coarsest partition 〈C1, . . . , Cm〉 of C such that:

∀l ≤ m ∀i, j ∈ Cl : gbi(s,i)(C
bC ) = g

bj
(s,j)(C

bC )

We define how coalitions are formed based on g as follows:

P0(g) = 〈A〉
P1(g) = 〈P (g,A)〉 = 〈C1,1, . . . , C1,k1〉
P2(g) = 〈P (g, C1,1), . . . , P (g, C1,k1)〉

= 〈C2,1, . . . , C2,k2〉
...

Pη(g) = 〈Cη,1, . . . , Cη,kη〉

As A is finite, the above computation reaches some η such that Pη(g) =
Pη+1(g). Let P (g) = Pη(g) be the partition which shows how agents are grouped
into coalitions.

For technical convenience, let Eo(s)(Ab) denote the collection of minimal sets
inE(s)(Ab). ByA-minimality, it is easy to show thatEo(s)(Ab) contains only sin-
gletons. In other words, by outcome-monotonicity, we have X ∈ E(s)(Ab) if and
only if X ⊇ Xo for some Xo ∈ Eo(s)(Ab). By regularity, we have X ∈ E(s)(∅b)
if and only if X ⊇ ∪Eo(s)(Ab) where ∪Eo(s)(Ab) = ∪Xo∈Eo(s)(Ab)X

o.
Assume thatP (g) = 〈C1, . . . , Cm〉. For convenience, let g(Cl) = gbi(s,i)(Cl

bCl )
for some i ∈ Cl where l ≤ m.

We define G(g) =
⋂
l≤m

g(Cl) ∩ (∪Eo(s)(AbA)). By super-additivity and the

fact that ∅ /∈ E(s)(AbA) as E is RB-playable, it is straightforward to show that
G(g) 6= ∅.
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Let t0 = (
∑

i∈A ti mod n) + 1. The outcome function is defined as follows:
o(s, σ) = ht0(G(g)). Let EF be the effectivity structure of the frame constructed
above. We claim that E = EF .

Firstly, we show the left-to-right inclusion by induction on bounds. In the base
case, assume X ∈ E(s)(Cb) where t(b) = 1. Choose the actions for agents in
C = {1, . . . , k} as follows,

a1 = (gb1, t1, h1)
a2 = (g0

2, t2, h2)
...

ak = (g0
k, tk, hk)

where gb1(Dd) = g0
i (D

d) = X for all i = 2, . . . , k, D ⊇ C, d ≥ b. Notice
that the choices of gb1, g0

2 , . . ., g0
k must exist because of bound-monotonicity and

coalition-monotonicity. Moreover, the choices of ti and hi, where i = 1, . . . , k,
are arbitrary. Let σC = {(gb1, t1, h1), (g0

2, t2, h2), . . . , (g0
k, tk, hk)}.

Let σC be an arbitrary joint action for C. Let σ = (σC , σC) and let g be the
set of the option functions from σ. By the choice of σC , C must be a subset of a
partition Cl in P (g). Then, we have

o(s, σ) = ht0(G(g)) ∈ G(g) ⊆ g(Cl) = X

Hence, X ∈ EF (s)(Cb).
For the induction step, let X ∈ E(s)(Cb) where t(b) > 1. If X ∈ E(s)(Cb

′
)

for some b′ < b, by the induction hypothesis, we have X ∈ EF (s)(Cb
′
). There-

fore, bound-monotonicity implies that X ∈ EF (s)(Cb).
If X /∈ E(s)(Cb

′
) for any b′ < b, by transitivity there are b1⊗ b2 = b such that

{s′ | X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

By the induction hypothesis, we have

{s′ | X ∈ E(s′)(Cb2)} ∈ EF (s)(Cb1)

and
{s′ | X ∈ E(s′)(Cb2)} ⊆ {s′ | X ∈ EF (s′)(Cb2)}

By outcome-monotonicity, we have

{s′ | X ∈ EF (s′)(Cb2)} ∈ EF (s)(Cb1)

Hence, by super-transitivity X ∈ EF (s)(Cb).
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For the other direction, we consider two cases in which C = A and C ⊂
A. Assume that X /∈ E(s)(Ab). By A-maximality, we obtain X ∈ E(s)(∅b).
However, the previous proof implies that X ∈ EF (s)(∅b). As EF is RB-playable,
by regularity we have X /∈ EF (s)(Ab).

For the case of C ⊂ A, the proof is done by induction on bounds. Assume
that X /∈ E(s)(Cb) where t(b) = 1 and C ⊂ A, i.e. there is i0 ∈ A \ C. Let
σC = {(gbi(s,i), ti, hi) | i ∈ C} be a joint action for C such that Res(σC) ≤ b. We

choose a strategy σC = {(gbi(s,i), ti, hi) | i ∈ C} for C such that:

• bi = 0 for all i > k

• gbi(s,i)(D
d) = S for all i ∈ C, D ⊇ C, d ≥ bi

• (
∑

i∈A ti mod n) + 1 = i0

• hi for i 6= i0 is arbitrary, we will select hi0 shortly

As before, let σ = (σC , σC) and g be the collection of option functions in σ. We
use notation bD = ⊕i∈Dbi for any D ⊆ A.

By the choice of option functions in σC , it follows that C is the subset of some
partition Cl of P (g). For other partitions, super-additivity shows that G(g) ∈
E(s)(Cl

bCl ). By coalition-monotonicity and bound-monotonicity, we have that
G(g) ∈ E(s)(Cb). As X /∈ E(s)(Cb), it follows that G(g) 6⊆ X by outcome-
monotonicity, i.e. there is some s0 ∈ G(g) \X . Select hi0 such that hi0(G(g)) =
s0, then

o(s, σ) = hi0(G(g)) = s0 /∈ X

Hence, X /∈ EF (s)(Cb).
In the induction step, assume that X /∈ E(s)(Cb) where t(b) > 1. Bound-

monotonicity shows that for all b′ ≤ b, X /∈ E(s)(Cb
′
) and super-transitivity

implies that for all b1 ⊗ b2 = b,

{s′ | X ∈ E(s′)(Cb2)} /∈ E(s)(Cb1)

By the induction hypothesis, we have that for all b′ < b, X /∈ EF (s)(Cb
′
) and for

all b1 ⊗ b2 = b,
{s′ | X ∈ E(s′)(Cb2)} /∈ EF (s)(Cb1)

and {s′ | X ∈ E(s′)(Cb2)} = {s′ | X ∈ EF (s′)(Cb2)}. Then, {s′ | X ∈
EF (s′)(Cb2)} /∈ EF (s)(Cb1). Therefore, transitivity implies thatX /∈ EF (s)(Cb).
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3.6 Example

We illustrate the construction of an action frame given in the proof above on the
example of the effectivity structure from section 3.4.

Observe that the set Γ(s, i) for each s and i is infinite, if only because of the
infinitely many possible resource bounds. Below is an element g(1,1)

1 of Γ(s1, 1)
which will be used in our example:

• g(1,1)
1 ({1, 2, 3}d) = {s2} for any d ≥ (2, 1). This is a valid definition for an

element of Γ(s1, 1) because {s2} ∈ E(s1)({1, 2, 3}(2,1)).

• g(1,1)
1 ({1, 2}d) = {s2} for any d ≥ (2, 1).

• g(1,1)
1 (Cd) = S for any other C and d ≥ (1, 1).

Similarly, Γ(s1, 2) contains g(1,1)
2 such that

• g(1,1)
2 ({1, 2, 3}d) = {s2} for any d ≥ (2, 1).

• g(1,1)
2 ({1, 2}d) = {s1} for any d ≥ (2, 1).

• g(1,1)
2 (Cd) = S for any other C and d ≥ (1, 1).

and Γ(s1, 3) contains g(0,1)
3 such that

• g(0,1)
3 ({1, 2, 3}d) = {s1} for any d ≥ (2, 1).

• g(0,1)
3 (Cd) = S for any other C and d ≥ (1, 1).

The setH contains all possible functions h from subsets of S to elements of S, with
the condition that h(X) ∈ X . We will consider two elements of H , h({si}) =
h′({si}) = si, h(S) = s1 and h′(S) = s2. The set of actions for each agent i,
Γ(s, i)× N×H , is infinite, both because Γ(s, i) is infinite and because of N. We
will show how to determine outcomes of joint actions for just one example triple
of actions, (g(1,1)

1 , 1, h) for agent 1, (g(1,1)
2 , 5, h) for agent 2 and (g(0,1)

3 , 8, h′) for
agent 3.

Let g = (g(1,1)
1 , g

(1,1)
2 , g

(0,1)
3 ), we have the following coarsest partitionP (g, C):

• P (g, {1, 2, 3}) = 〈{1, 2}, {3}〉

• P (g, {1, 2}) = 〈{1}, {2}〉

• P (g, {1, 3}) = 〈{1, 3}〉
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• P (g, {2, 3}) = 〈{2, 3}〉

• P (g, {1}) = 〈{1}〉

• P (g, {2}) = 〈{2}〉

• P (g, {3}) = 〈{3}〉

We apply P repeatedly as follows.

P0(g) = {1, 2, 3}
P1(g) = P (g, {1, 2, 3}) = 〈{1, 2}, {3}〉
P2(g) = 〈P (g, {1, 2}), P (g, {3})〉 = 〈{1}, {2}, {3}〉
P3(g) = 〈P (g, {1}), P (g, {2}), P (g, {3})〉 = 〈{1}, {2}, {3}〉

Then, we have,

• g({1}) = g
(1,1)
1 ({1}(1,1)) = S

• g({2}) = g
(1,1)
2 ({2}(0,1)) = S

• g({3}) = g
(0,1)
3 ({3}(0,1)) = S

Note that given our E, ∪Eo(s1)({1, 2, 3}(2,1)) = {s1}∪{s2} = S. Then, G(g) =
g({1})∩g({2})∩g({3})∩∪Eo(s1)({1, 2, 3}(1,1)) = S. We have t0 = (1+5+8)
mod 3 + 1 = 3. Then, we choose the choice function from the action of agent 3
which is h′. Therefore, the outcome of the joint action which we consider in this
example is h′(G(g)) = s2.

4 Axiomatisation of RBCL

In this section we define models based on RB-playable effectivity structures, and
give a complete axiomatisation for the set of validities in those models.

Definition 5. A resource-bounded effectivity model M = (S,E, V ) is a triple
consisting of a non-empty set of states, a RB-playable effectivity structure and a
valuation function V : Prop → ℘(S). The truth definition for [Cb] modalities is
as follows:

• M, s |= [Cb]ϕ iff ϕM ∈ E(s)(Cb) where ϕM = {s′ |M, s′ |= ϕ}
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Notice that in the above definition, we do not define the truth for [Cb] modal-
ities in two separate cases, one for non-empty coalitions C and one for empty
coalitions. This is because the two cases are covered by the RB-playable effectiv-
ity structure E, - see the correspondence of effectivity structures to RBA frames in
Section 3.3 for more details.

For convenience, we also extend the definition of the function V for a given
model M = (S,E, V ) as follows, V (ϕ) = {s ∈ S |M, s |= ϕ}.

Theorem 3. The sets of formulas valid in multi-step RBA models and in resource-
bounded effectivity models are equal.

This follows from the correspondence between RBA frames and RB-playable
effectivity structures, and the correspondence between the two truth definitions.
Therefore the next result also provides an axiomatisation for RBCL.

Theorem 4. The following set of axiom schemas and inference rules provides
a sound and complete axiomatisation of the set of validities over all resource-
bounded effectivity models:

A0 All propositional tautologies

A1 [Cb]>

A2 ¬[Cb]⊥

A3 ¬[∅b]ϕ↔ [Ab]¬ϕ

A4 [Cb](ϕ ∧ ψ)→ [Cb]ϕ

A5 [Cb]ϕ→ [Cd]ϕ where d ≥ b if C 6= ∅ or d ≤ b if C = ∅

A6a [Cb]ϕ∧ [Dd]ψ → [(C ∪D)b⊕d](ϕ∧ψ) where C and D are both non-empty
and disjoint, and t(b) = t(d) = 1

A6b [∅b]ϕ ∧ [Cb]ψ → [Cb](ϕ ∧ ψ) where C is either ∅ or A

A7 [Cb1 ][Cb2 ]ϕ→ [Cb1⊗b2 ]ϕ for C 6= ∅

A8 [Cb]ϕ→
∨
b′<b[C

b′ ]ϕ ∨
∨
b1⊗b2=b[C

b1 ][Cb2 ]ϕ for all C 6= ∅

MP ` ϕ, ` ϕ→ ψ ⇒ ` ψ

Equivalence ` ϕ↔ ψ ⇒ ` [Cb]ϕ↔ [Cb]ψ
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Proof. Notice that for axiom A8, when b = (0, . . . , 0, 1), it simply has the form
[Cb]ϕ→ > which is a propositional tautology.

The proof of soundness is straightforward. We prove completeness by con-
structing a canonical model. Let us denote by `Λ derivability in the axiom system
above. Let SΛ be the set of all Λ-maximally consistent sets. For any formula ϕ, we
denote ϕ̃ = {s ∈ SΛ | ϕ ∈ s}. Then, we define the canonical valuation function
V Λ(p) = p̃.

We define the canonical effectivity structure EΛ by induction on b as follows:

• For all b such that t(b) = 1 and C 6= A, X ∈ EΛ(s)(Cb) iff ∃ϕ̃ ⊆ X :
[Cb]ϕ ∈ s. X ∈ EΛ(s)(Ab) iff X /∈ EΛ(s)(∅b).

• For all b such that t(b) > 1 andC 6= ∅,X ∈ EΛ(s)(Cb) iffX ∈ EΛ(s)(Cb
′
)

for some b′ < b or there are b1⊗b2 = b such that {s′ | X ∈ EΛ(s′)(Cb2)} ∈
EΛ(s)(Cb1). X ∈ EΛ(s)(∅b) iff X /∈ EΛ(s)(Ab).

The following property (∗) is crucial for the proof:

(∗) ϕ̃ ∈ EΛ(s)(Cb) iff [Cb]ϕ ∈ s

We prove it by induction on the bounds. In the base case, assume that ϕ̃ ∈
EΛ(s)(Cb) for some t(b) = 1. For C 6= A, ϕ̃ ∈ EΛ(s)(Cb) iff ∃ψ̃ ⊆ ϕ̃ :
[Cb]ψ ∈ s. By `Λ ψ → ϕ and RM, it is implied that [Cb]ϕ ∈ s. In the inverse
direction, [Cb]ϕ ∈ s implies directly that ϕ̃ ∈ EΛ(s)(Cb) by the definition of EΛ.

If C = A, we have ϕ̃ ∈ EΛ(s)(Ab) iff ¬̃ϕ /∈ EΛ(s)(∅b) iff ¬[∅b]¬ϕ ∈ s (as
just proved) iff [Ab]ϕ ∈ s (by axiom A3).

For the induction step, assume that ϕ̃ ∈ EΛ(s)(Cb) where t(b) > 1. For
C 6= ∅, there are two cases to consider. (1) ϕ̃ ∈ EΛ(s)(Cb

′
) for some b′ < b.

By the induction hypothesis, we have [Cb
′
]ϕ ∈ s. Then, axiom A5 implies that

[Cb]ϕ ∈ s. (2) There are b1 ⊗ b2 = b such that

{s′ | ϕ̃ ∈ EΛ(s′)(Cb2)} ∈ EΛ(s)(Cb1).

Letψ = [Cb2 ]ϕ, by the induction hypothesis, we have ψ̃ = {s′ | ϕ̃ ∈ EΛ(s′)(Cb2)},
thus, ψ̃ ∈ EΛ(s)(Cb1). Again, the induction hypothesis gives us [Cb1 ][Cb2 ]ϕ ∈ s.
Therefore, by axiom A7, we have [Cb]ϕ ∈ s.

For the inverse direction, assume that [Cb]ϕ ∈ s for some t(b) > 1. By ax-
iom A8, there are two cases to consider. If [Cb

′
]ϕ ∈ s for some b′ < b, then the

induction hypothesis implies that ϕ̃ ∈ EΛ(s)(Cb
′
). Hence, by the definition of

EΛ, we have ϕ̃ ∈ EΛ(s)(Cb). In the second case, there are b1 ⊗ b2 = b such that
[Cb1 ][Cb2 ]ϕ ∈ s. Similar to the proof above, let ψ = [Cb2 ]ϕ, the induction hypoth-
esis implies that ψ̃ ∈ EΛ(s)(Cb1). As we have that ψ̃ = {s′ | ϕ̃ ∈ EΛ(s′)(Cb2)},
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this shows
{s′ | ϕ̃ ∈ EΛ(s′)(Cb2)} ∈ EΛ(s)(Cb1).

By the definition of EΛ, we obtain ϕ̃ ∈ EΛ(s)(Cb).
If C = ∅, we have ϕ̃ ∈ EΛ(s)(∅b) iff ¬̃ϕ /∈ EΛ(s)(Ab) iff ¬[Ab]¬ϕ ∈ s (as

just proved) iff [∅b]ϕ ∈ s (by axiom A3).
The proof thatEΛ is RB-playable is straightforward given the property (∗), the

definition of EΛ and the axioms of Λ.

1. As [Cb]> ∈ s for all s ∈ SΛ, we have by (*) that SΛ = >̃ ∈ EΛ(s)(Cb).

2. Similarly, [Cb]⊥ /∈ s for all s ∈ SΛ implies by (*) that that ∅ = ⊥̃ /∈
EΛ(s)(Cb).

3. We prove outcome-monotonicity by induction on bounds. Assume that X ∈
EΛ(s)(Cb).

• If t(b) = 1 and C 6= A, X ∈ EΛ(s)(Cb) iff there exists ϕ such that
ϕ̃ ⊆ X and [Cb]ϕ ∈ s. Hence, for all X ′ ⊇ X , we have that ϕ̃ ⊆ X ′.
This implies by the definition of EΛ that X ′ ∈ EΛ(s)(Cb)

• If t(b) = 1, X ∈ EΛ(s)(Ab) iff X /∈ EΛ(s)(∅b). Let X ′ ⊇ X ,
then X ′ ⊆ X . Assume by contradiction that X ′ /∈ EΛ(s)(Ab). Then,
X ′ ∈ EΛ(s)(∅b). As X ′ ⊆ X , this implies that X ∈ EΛ(s)(∅b) which
is a contradiction.

• If t(b) > 1 and C 6= ∅. If X ∈ EΛ(s)(Cb
′
) for some b′ < b, the

induction hypothesis shows that X ′ ∈ EΛ(s)(Cb
′
) for all X ′ ⊇ X .

Then, by the definition of EΛ we have X ′ ∈ EΛ(Cb)(s). Assume
X /∈ EΛ(s)(Cb

′
) for all b′ < b. By the definition of EΛ, there are b1,

b2 such that b1 ⊗ b2 = b and

{s′ | X ∈ EΛ(s′)(Cb2)} ∈ EΛ(s)(Cb1)

Let X ′ ⊇ X , by the induction hypothesis we have

{s′ | X ∈ EΛ(s′)(Cb2)} ⊆ {s′ | X ′ ∈ EΛ(s′)(Cb2)}
⇒ {s′ | X ′ ∈ EΛ(s′)(Cb2)} ∈ EΛ(s)(Cb1)

By the definition of EΛ, we have X ′ ∈ EΛ(s)(Cb).

• If t(b) > 1, X ∈ EΛ(s)(∅b) iff X /∈ EΛ(s)(Ab). Let X ′ ⊇ X
and assume by contradiction that X ′ /∈ EΛ(s)(∅b). This implies that
X ′ ∈ EΛ(s)(Ab). By the previous proof, we have X ∈ EΛ(s)(Ab) as
X ′ ⊆ X , which is a contradiction.
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4. A-maximality follows directly from the definition of EΛ for A when t(b) =
1 and for ∅ when t(b) > 1.

5. Similarly, A-regularity also follows directly from the definition of EΛ for A
when t(b) = 1 and for ∅ when t(b) > 1.

6. In order to show super-additivity, we consider the following three cases. Let
t(b) = t(d) = 1, C ∩D = ∅, X ∈ EΛ(s)(Cb) and Y ∈ EΛ(s)(Dd).

• If both C and D are not empty by the definition of EΛ, we have that
there are ϕ and ψ such that ϕ̃ ⊆ X , ψ̃ ⊆ Y , [Cb]ϕ and [Dd]ψ ∈ s.
According to axiom A6a, we have [(C∪D)b⊕d](ϕ∧ψ) ∈ s. Obviously,
ϕ̃ ∩ ψ̃ ⊆ X ∩ Y , hence X ∩ Y ∈ EΛ(s)((C ∪D)b⊕d).

• IfC = ∅, b = d andD = ∅, the proof is similar to the one above except
that axiom A6b gives us [Dd](ϕ∧ψ) ∈ s. Hence,X∩Y ∈ EΛ(s)(Dd).

• IfC = ∅, b = d andD = A, we need to show thatX∩Y ∈ EΛ(Ab)(s).
Assume to the contrary that X ∩ Y /∈ EΛ(Ab)(s), then A-maximality,
which has been proved above, implies thatX ∩ Y ∈ EΛ(∅b)(s). Then,
by the previous case of super-additivity, we have X ∩ Y ∈ EΛ(∅b)(s).
As we already showed outcome-monotonicity, Y ∈ EΛ(∅b)(s). How-
ever, by A-regularity, we have Y /∈ EΛ(Ab)(s) which is a contradic-
tion.

7. Super-transitivity follows directly from the definition of EΛ when t(b) > 1.

8. Similarly, transitivity follows directly from the definition ofEΛ when t(b) >
1.

9. Finally, we show that EΛ is indeed bound-monotonic. Let us assume that
X ∈ EΛ(s)(Cb).

• If t(b) = 1 and C 6= A, X ∈ EΛ(s)(Cb) iff there exists ϕ such that
ϕ̃ ⊆ X and [Cb]ϕ ∈ s. By axiom A5, we have that if C 6= ∅, then for
any d ≥ b, [Cd]ϕ ∈ s. For C = ∅, [∅d]ϕ ∈ s for any d ≤ b. Then, by
the definition of EΛ, X ∈ EΛ(s)(Cd).

• If t(b) = 1 and C = A, X ∈ EΛ(s)(Ab) iff X /∈ EΛ(s)(∅b). Then,
axiom A5 implies that X /∈ EΛ(s)(∅d) for any d ≥ b. Once again, by
the definition of EΛ, we have X ∈ EΛ(s)(Ad).

• If t(b) > 1 and C 6= ∅, it is straightforward from the definition of EΛ

that X ∈ EΛ(s)(Cd) for any d ≥ b.
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• If t(b) > 1 and C = ∅, X ∈ EΛ(s)(∅b) iff X /∈ EΛ(s)(Ab). By the
proof of the previous case, we have X /∈ EΛ(s)(Ad) for any d ≤ b.
Hence, X ∈ EΛ(s)(∅d).

Since we have already shown (*), the following truth lemma is straightforward:

(∗∗) MΛ, s |= ϕ iff ϕ ∈ s

As usual, we show (**) by induction on the structure of ϕ. The cases for
propositional variables and usual Boolean connectives are trivial and are omitted.

• If ϕ = [Cb]ψ, then,

MΛ, s |= [Cb]ψ ⇔ ψM
Λ ∈ EΛ(s)(Cb)

⇔ ψ̃ ∈ EΛ(s)(Cb) by the induction hypothesis
⇔ [Cb]ψ ∈ s by (*)

From (**), it is obvious that for any consistent formula ϕ, there is a state s ∈
SΛ such that ϕ ∈ s, hence MΛ, s |= ϕ. In other words, ϕ is satisfiable. We
complete the proof of completeness as follows. Let 6`Λ ϕ, i.e. ¬ϕ is consistent.
Hence, ¬ϕ is satisfiable. Therefore, ϕ is not valid.

5 Satisfiability

In this section we show that the satisfiability problem for RBCL is decidable by
providing an algorithm which determines the satisfiability of a given formula ϕ.
Similar to Coalition Logic, our algorithm is developed by adopting the approach
presented in [16]. In outline, the algorithm tries to guess a valuation satisfying
certain conditions for an extended set of subformulas of ϕ. Such a valuation is
used to construct a model for ϕ, or in other words, assure the satisfiability of ϕ.

Given a formula ϕ, we define a set sub(ϕ) inductively as follows.

• sub(p) = {p} for any propositional variable p

• sub(¬ψ) = {¬ψ} ∪ sub(ψ)

• sub(ψ1 ∨ ψ2) = {ψ1 ∨ ψ2} ∪ sub(ψ1) ∪ sub(ψ2)

• sub([Cb]ψ) = {[Cb]ψ} ∪ sub(ψ) for t(b) = 1 and C 6= A

• sub([Ab]ψ) = {[Ab]ψ} ∪ sub(¬[∅b]¬ψ) for t(b) = 1
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• sub([Cb]ψ) = {[Cb]ψ} ∪
⋃
b′<b sub([C

b′ ]ψ) ∪
⋃
b1⊗b2=b sub([C

b1 ][Cb2 ]ψ)
for t(b) > 1 and C 6= ∅

• sub([∅b]ψ) = {[∅b]ψ} ∪ sub(¬[Ab]¬ψ) for t(b) > 1

It is easy to show that sub(ϕ) is finite. Then, we define the closure cl(ϕ) of a
given formula ϕ as follows.

cl(ϕ) = {ψ,¬ψ | ψ ∈ sub(ϕ)}∪
{[∅b]¬ψ,¬[∅b]¬ψ | [Ab]ψ ∈ sub(ϕ)}∪
{[Ab]¬ψ,¬[Ab]¬ψ | [∅b]ψ ∈ sub(ϕ)}

Notice that we identify ¬¬ψ with ψ. Moreover, we denote by 0̄ the smallest bound
of which all components are 0 except for the time component which is 1. We have
the following definition of valuations.

Definition 6. A valuation for a given formula ϕ is a mapping v : cl(ϕ) → {0, 1}
which satisfies the following conditions:

1. v(ϕ) = 1

2. v(>) = 1

3. v(¬ψ) = 1− v(ψ)

4. v(ψ1 ∨ ψ2) = max(v(ψ1), v(ψ2))

5. v([∅b]ψ) = v(¬[Ab]¬ψ)

6. v([Cb]ψ) ≤ v([Cd]ψ) where b ≤ d if C 6= ∅ or b ≥ d otherwise

7. v([Cb]ψ) = max{
⋃
b′<b{v([Cb

′
]ψ)} ∪

⋃
b1⊗b2=b{v([Cb1 ][Cb2 ]ψ)}} where

t(b) > 1 and C 6= ∅

In the following lemma, we determine when such a valuation qualifies as a
starting point to build a model for ϕ. The idea of the proof is similar to [14] which
in turn builds on [16] but is made somewhat more complicated by the presence
of resource bounds and the need to treat resource bounds for the empty coalition
differently (for example, with respect to monotonicity).

Lemma 2. A formula ϕ is satisfiable if and only if there exists a valuation v for ϕ
such that

1. If there are [Cb11 ]ψ1, . . . , [C
bk
k ]ψk ∈ cl(ϕ) for some k > 0 such that:

• t(bj) = 1 for all j ≤ k
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• C1, . . . , Ck are pairwise disjoint

• for any [Cbjj ]ψj such that Cj = ∅, bj ≥ ⊕Cj′ 6=∅bj′

• v([Cbjj ]ψj) = 1 for all j ≤ k

then ∧j≤kψj is satisfiable.

2. If there are [Cb11 ]ψ1, . . . , [C
bk
k ]ψk ∈ cl(ϕ) for some k > 0 such that:

• t(bj) = 1 for all j ≤ k
• C1, . . . , Ck−1 are pairwise disjoint and all non-empty

•
⋃
j<k Cj ⊆ Ck

• ⊕j<kbj = bk

• v([Cbjj ]ψj) = 1 for all j < k

• v([Cbkk ]ψk) = 0

then ∧j<kψj ∧ ¬ψk is satisfiable.

Proof. Firstly, we prove the left-to-right direction by defining a valuation based on
a model satisfying the formula ϕ. In particular, let us assume that ϕ is satisfiable
by a model M = (S,E, V ) at some state s ∈ S. As before, for convenience, we
extend the function V to arbitrary formulas so that V (φ) = {s ∈ S |M, s |= φ}.

We define a valuation v for cl(ϕ) as follows:

v(ψ) =
{

1 if M, s |= ψ
0 otherwise

Based on the definition of the semantics for RBCL, it is straightforward to show
that v satisfies all the conditions listed in Definition 6. What remains is to prove
that it also has the two properties listed in the lemma.

1. Assume that there are [Cb11 ]ψ1, . . . , [C
bk
k ]ψk ∈ cl(ϕ) for some k > 0 such

that:

• t(bj) = 1 for all j ≤ k
• C1, . . . , Ck are pairwise disjoint

• for any [Cbjj ]ψj such that Cj = ∅, bj ≥ ⊕Cj′ 6=∅bj′

• v([Cbjj ]ψj) = 1 for all j ≤ k
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That is M, s |= [Cbjj ]ψj for all j ≤ k.

If there is some non-emptyCj then, by super-additivity, we have thatM, s |=
[Cb](∧j≤k,Cj 6=∅ψj) where C =

⋃
j≤k Cj and b = ⊕j≤k,Cj 6=∅bj . By coali-

tion monotonicity, we have that M, s |= [Ab](∧j≤k,Cj 6=∅ψj). Furthermore,
super-additivity implies that, for all Cj = ∅, M, s |= [Ab](∧j≤kψj). Be-
cause of playability, ∅ /∈ E(s)(Ab), thus V (∧j≤kψj) 6= ∅. Therefore, there
exists s′ ∈ V (∧j≤kψj) and it is straightforward that M, s′ |= ∧j≤kψj .
If there is no non-emptyCj then super-additivity gives us directly thatM, s |=
[∅b](∧j≤kψj) in which b = min{bj | j ≤ k}. Applying the same argument
for playability, we have that there exists s′ ∈ V (∧j≤kψj) and it is straight-
forward that M, s′ |= ∧j≤kψj .

2. Assume that there are [Cb11 ]ψ1, . . . , [C
bk
k ]ψk ∈ cl(ϕ) for some k > 1 such

that:

• t(bj) = 1 for all j ≤ k
• C1, . . . , Ck−1 are pairwise disjoint and all non-empty

•
⋃
j<k Cj ⊆ Ck

• ⊕j<kbj ≤ bk
• v([Cbjj ]ψj) = 1 for all j < k

• v([Cbkk ]ψk) = 0

That is, M, s |= [Cbjj ]ψj for all j < k and M, s 6|= [Cbkk ]ψk. By super-
additivity, we have that M, s |= [Cb](∧j<kψj) where C =

⋃
j<k Cj and

b = ⊕j<kbj . That is, V (∧j<kψj) ∈ E(s)(Cb). By coalition monotonicity
and bound monotonicity, we have V (∧j<kψj) ∈ E(s)(Cbkk ). Moreover, we
already have M, s 6|= [Cbkk ]ψk, thus, V (ψk) /∈ E(s)(Cbkk ). Then outcome
monotonicity implies that V (ψk) 6⊇ V (∧j<kψj). Since V (∧j<kψj) 6= ∅,
there must exist s′ ∈ V (∧j<kψj) \ V (ψk) and it is straightforward that
M, s′ |= ∧j<kψj ∧ ¬ψk.

In the case where k = 1, the proof is slightly different from above, as we do
not have the set V (∧j<kψj). However, we make the use of the first require-
ment of playability which states that S ∈ E(s)(Cbkk ), therefore, V (ψk) 6= S.
Hence, there also exists s′ ∈ S \ V (ψk) and it is obvious that M, s′ |= ¬ψk.

Let us now prove the right-to-left direction of the lemma. The idea is that we
construct a model satisfying the formula ϕ by collecting models which witness the
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satisfaction of the formulas in the two conditions of the lemma. That is, for any
tuple ([Cbjj ]ψj)j≤k of cl(ϕ) which corresponds to one of the two conditions of the
lemma, as ∧i≤kψj (or ∧i<kψj ∧ ¬ψk) is satisfiable, there is a model M ′ which
satisfies ∧i≤kψj (or ∧i<kψj ∧ ¬ψk) at some state s′ of M ′. The model M we
construct to satisfy ϕ will be the union of all such witnessing models M ′ together
with a new state s0 at which ϕ will be satisfied. We define the assignment function
and the effectivity structure at a state of M by using the valuation function if the
state is s0 or the assignment function and the effectivity structures of the witness
models otherwise. After constructing the model M , we also have to show that the
effectivity structure of M is RB-playable so that M then is a model for ϕ. In the
following, we detail the construction of M .

For each tuple of formulas ([Cbjj ]ψj)j≤k of cl(ϕ) which corresponds to one of
two cases in the lemma, there is a model which satisfies its corresponding formula
in which is either ∧i≤kψj or ∧i<kψj ∧ ¬ψk. Let M1, . . . ,Mn be the enumeration
of the above witnessing models in which Mi = (Si, Ei, Vi) such that, without loss
of generality, all Si’s are assumed to be pairwise disjoint.

We construct a model M = (S,E, V ) as follows. The set of states S is the set⋃
i≤n Si ∪ {s0} where s0 is a new state. In order to define V , we firstly introduce

a mapping V0 : cl(ϕ)→ ℘({s0}) in which

V0(ψ) =
{
{s0} if v(ψ) = 1
∅ otherwise

Then, we define an assignment U : cl(ϕ) → ℘(S) by U(ψ) =
⋃
i=0,...,n Vi(ψ).

Note that by construction, we have U(¬ψ) = S \ U(ψ), U(ψ1 ∨ ψ2) = U(ψ1) ∪
U(ψ2). Now we define the mapping V for M by the projection of U on the set of
propositional variables p, that is, V (p) = U(p) (without loss of generality, we can
assume that all propositional variables are contained in cl(ϕ)).

Finally, we define the effectivity structure E in a way which is similar to that
in the completeness proof.

For C 6= A and b such that t(b) = 1, we put X ⊆ S in E(s)(Cb) if and only if
X = S or there are [Cb11 ]ψ1, . . . , [C

bk
k ]ψk ∈ cl(ϕ) for some k > 0 such that:

• t(bj) = 1 for all j ≤ k

• C1, . . . , Ck are pairwise disjoint, and all non-empty if C is non-empty

•
⋃
j≤k Cj ⊆ C

• ⊕j≤kbj ≤ b if C 6= ∅ or b ≤ bj for all j ≤ k otherwise

•
⋂
j≤k U(ψj) ⊆ X for all j ≤ k
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• v([Cbjj ]ψj) = 1 for all j ≤ k if s = s0

• Mi, s |= [Cbjj ]ψj for all j ≤ k if s ∈ Si for some i ≤ n

For t(b) = 1, X ∈ E(s)(Ab) if and only if X /∈ E(s)(∅b). For the case when
t(b) > 1 and C 6= ∅, we define E(s)(Cb) inductively as follows: X ∈ E(s)(Cb)
iff one of the following conditions hold:

1. There is b′ < b such that X ∈ E(s)(Cb)

2. There are b1 ⊕ b2 = b such that {s′ | X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

Then, we define for t(b) > 1, X ∈ E(s)(∅b) iff X /∈ E(s)(Ab).
Before proving that the model M which we have just constructed is indeed a

model for ϕ, we must show that E is an RB-playable effectivity structure.

Claim 1. The effectivity structure E is RB-playable.

Proof. • We show the first two properties of RB-playability by induction on
bounds.

Let t(b) = 1 and C 6= A. The definition of E implies directly that S ∈
E(s)(Cb).

Moreover, S ∈ E(s)(∅b) implies that ∅ /∈ E(s)(Ab) also by the definition
of E.

Let t(b) = 1 and C 6= A. Assume to the contrary that ∅ ∈ E(s0)(Cb).
Hence, there are [Cb11 ]ψ1, . . . , [C

bk
k ]ψk ∈ cl(ϕ) for some k > 0 such that:

– t(bj) = 1 for all j ≤ k
– C1, . . . , Ck are pairwise disjoint, and all non-empty if C is not empty

–
⋃
j≤k Cj ⊆ C

– ⊕j≤kbj ≤ b if C 6= ∅ or b ≤ bj for all j ≤ k otherwise

–
⋂
j≤k U(ψj) ⊆ X for all j ≤ k

– v([Cbjj ]ψj) = 1 for all j ≤ k if s = s0

– Mi, s |= [Cbjj ]ψj for all j ≤ k if s ∈ Si for some i ≤ n

Then ∧j≤kψj ≡ ⊥, which contradicts the first condition of the lemma where
⊥ is required to be satisfiable.

Similarly to the case when s 6= s0, we can show that ∅ /∈ E(s)(Cb) for
C 6= A.
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Then ∅ /∈ E(s)(∅b) implies that S ∈ E(s)(Ab), again by the definition of E.

In the induction step, let t(b) > 1 and C 6= ∅, we directly have that S ∈
E(s)(Cb) as S ∈ E(s)(Cb

′
) for any b′ < b and t(b′) = 1. S ∈ E(s)(Ab)

also implies that ∅ /∈ E(s)(∅b). Moreover, by the induction hypothesis, we
have that ∅ /∈ E(s)(Cb

′
) for any b′ < b. Furthermore, for any b1⊗b2 = b, we

have that {s′ | ∅ ∈ E(s′)(Cb2)} = ∅ and ∅ /∈ E(s)(Cb1) also because of the
induction hypothesis. By the definition of E, it follows that ∅ /∈ E(s)(Cb).
Once agent, ∅ /∈ E(s)(Ab) implies that S ∈ E(s)(∅b).

• Let us now show outcome monotonicity.

Let t(b) = 1 and C 6= A. Assume that X ∈ E(s)(Cb) in which X ⊂ S. By
the definition of E, there are [Cb11 ]ψ1, . . . , [C

bk
k ]ψk ∈ cl(ϕ) for some k > 0

such that:

– t(bj) = 1 for all j ≤ k
– C1, . . . , Ck are pairwise disjoint, and all non-empty if C is not empty

–
⋃
j≤k Cj ⊆ C

– ⊕j≤kbj ≤ b if C 6= ∅ or b ≤ bj for all j ≤ k otherwise

–
⋂
j≤k U(ψj) ⊆ X for all j ≤ k

– v([Cbjj ]ψj) = 1 for all j ≤ k if s = s0

– Mi, s |= [Cbjj ]ψj for all j ≤ k if s ∈ Si for some i ≤ n

It is straightforward that for any X ′ ⊇ X , we have
⋂
j≤k U(ψj) ⊆ X ⊆ X ′.

Hence, X ′ ∈ E(s)(Cb).

In the case of the grand coalition, assume that X ∈ E(s)(Ab). By the
definition of E, we have X̄ /∈ E(s)(∅b). Assume to the contrary that X ′ /∈
E(s)(Ab) for some X ′ ⊇ X . It follows that X̄ ′ ⊆ X̄ . X ′ /∈ E(s)(Ab)
implies that X̄ ′ ∈ E(s)(∅b), hence X̄ ∈ E(s)(∅b), which is a contradiction.

Now we provide a proof of outcome monotonicity for the case when t(b) >
1. It is easy to notice that it is similar to the proof of completeness of RBCL.

Let t(b) > 1 and C 6= ∅. If X ∈ E(s)(Cb
′
) for some b′ < b, the induction

hypothesis shows that X ′ ∈ E(s)(Cb
′
) for all X ′ ⊇ X . Then by the defini-

tion of E, we have X ′ ∈ E(Cb)(s). Assume X /∈ E(s)(Cb
′
) for all b′ < b.

By the definition of E, there are b1, b2 such that b1 ⊗ b2 = b and

{s′ | X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)
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Let X ′ ⊇ X . By the induction hypothesis we have

{s′ | X ∈ E(s′)(Cb2)} ⊆ {s′ | X ′ ∈ E(s′)(Cb2)}
⇒ {s′ | X ′ ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

By the definition of E, we have X ′ ∈ E(s)(Cb).
If t(b) > 1, X ∈ E(s)(∅b) iff X /∈ E(s)(Ab). Let X ′ ⊇ X , assume
by contradiction that X ′ /∈ E(s)(∅b). This implies that X ′ ∈ E(s)(Ab).
By the previous proof, we have X ∈ E(s)(Ab) as X ′ ⊆ X , which is a
contradiction.

• A-maximality and regularity follow directly from the definition of E for ∅
when t(b) = 1 and also t(b) > 1. Therefore, we omit the proof here.

• Let us now prove super-additivity. Let t(b) = t(d) = 1, C ∩ D = ∅ with
X ∈ E(s)(Cb) and Y ∈ E(s)(Dd).

– If both C and D are non-empty. Assume that both X and Y are not
equal to S. By the definition ofE, we have that there are [Cb11 ]ψ1, . . . , [C

bkC
kC

]ψkC ∈
cl(ϕ) and [Dd1

1 ]ψ′1, . . . , [D
dkD
kD

]ψ′kD ∈ cl(ϕ) for some kC > 0 and
kD > 0 such that:
∗ t(bj) = 1 for all j ≤ kC
∗ t(dj) = 1 for all j ≤ kD
∗ C1, . . . , CkC are pairwise disjoint, and all non-empty
∗ D1, . . . , DkD are pairwise disjoint, and all non-empty
∗
⋃
j≤kC Cj ⊆ C

∗
⋃
j≤kD Dj ⊆ D

∗ ⊕j≤kC bj ≤ b
∗ ⊕j≤kDdj ≤ d
∗
⋂
j≤kC U(ψj) ⊆ X for all j ≤ kC

∗
⋂
j≤kD U(ψ′j) ⊆ Y for all j ≤ kD

∗ v([Cbjj ]ψj) = 1 for all j ≤ kC if s = s0

∗ v([Ddj
j ]ψ′j) = 1 for all j ≤ kD if s = s0

∗ Mi, s |= [Cbjj ]ψj for all j ≤ kC if s ∈ Si for some i ≤ n

∗ Mi, s |= [Ddj
j ]ψ′j for all j ≤ kD if s ∈ Si for some i ≤ n

Then, it is straightforward thatX∩Y ⊇
⋂
j≤kC U(ψj)∩

⋂
j≤kD U(ψ′j).

It follows that X ∩ Y ∈ E((C ∪D)b⊕d).
In the case when Y is S, the proof is similar to above, usingC ⊆ C∪D
and b ≤ b⊕ d.
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– If C = D = ∅ and b = d, we apply the same argument as the case
above.

– If C = ∅, b = d andD = A, we need to show thatX ∩Y ∈ E(Ab)(s).
Assume to the contrary that X ∩ Y /∈ E(Ab)(s), then A-maximality,
which has been proved above, implies that X ∩ Y ∈ E(∅b)(s). Then,
by the previous case of super-additivity, we haveX∩Y ∈ E(∅b)(s). As
we already showed outcome-monotonicity, Y ∈ E(∅b)(s). However,
by A-regularity, we have Y /∈ E(Ab)(s) which is a contradiction.

• Super-transitivity follows directly from the definition of E when t(b) > 1.

• Similarly, transitivity follows directly from the definition of E when t(b) >
1.

Therefore, E is RB-playable. In order to show that M satisfies ϕ, we prove the
following two claims.

Claim 2. For any [Cb]ψ ∈ cl(ϕ), U(ψ) ∈ E(s)(Cb) iff v([Cb]ψ) = 1 if s = s0 or
Mi, s |= [Cb]ψ if s ∈ Si for some i ≤ n.

Proof. The direction from right to left is straightforward according to the definition
of E. Hence, we provide here only a proof for the other direction.

The case where U(ψ) = S is trivial and we ignore it here.
We prove the claim by induction on the resource bounds.
Let t(b) = 1 andC 6= A. AsU(ψ) ∈ E(s)(Cb), there are [Cb11 ]ψ1, . . . , [C

bk
k ]ψk ∈

cl(ϕ) for some k > 0 such that:

• t(bj) = 1 for all j ≤ k

• C1, . . . , Ck are pairwise disjoint, and all non-empty if C is not empty

•
⋃
j≤k Cj ⊆ C

• ⊕j≤kbj ≤ b if C 6= ∅ or b ≤ bj for all j ≤ k otherwise

•
⋂
j≤k U(ψj) ⊆ U(ψ) for all j ≤ k

• v([Cbjj ]ψj) = 1 for all j ≤ k if s = s0

• Mi, s |= [Cbjj ]ψj for all j ≤ k if s ∈ Si for some i ≤ n
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Suppose s ∈ Si for some i ≤ n. As Mi, s |= [Cbjj ]ψj for all j ≤ k, super-

additivity implies that Mi, s |= [
⋃
j≤k C

⊕j≤kbj
j ](∧j≤kψj) if C 6= ∅ or directly,

Mi, s |= [Cb](∧j≤kψj) otherwise. In the former case, coalition monotonicity gives
us Mi, s |= [Cb](∧j≤kψj). Then, in both cases, we can conclude by outcome-
monotonicity that Mi, s |= [Cb](ψ).

When s = s0, assume by contradiction that v([Cb]ψ) = 0. Then there is
a witnessing model Mi and s′ ∈ Si such that Mi, s

′ |= ∧j≤kψi ∧ ¬ψ, which
contradicts the fact that

⋂
j≤k U(ψj) ⊆ U(ψ).

Let t(b) = 1 and C = A. By the definition of E, U(ψ) ∈ E(s)(Ab) iff
U(¬ψ) /∈ E(s)(∅b). By the proof above, U(¬ψ) /∈ E(s)(∅b) iff v([∅b]¬ψ) = 0 if
s = s0 or Mi, s 6|= [∅b]¬ψ if s ∈ Si for some i ≤ n. By the definition of v, we
have that v([∅b]¬ψ) = 0 implies v([Ab]ψ) = 1. Moreover, by A-maximality, we
also have Mi, s 6|= [∅b]¬ψ implies that Mi, s |= [Ab]ψ.

Let t(b) > 1 and C 6= ∅. We have that U(ψ) ∈ E(s)(Cb) iff U(ψ) ∈
E(s)(Cb

′
) for some b′ < b or there are b1 ⊗ b2 = b such that {s′ | U(ψ) ∈

E(s)(Cb2)} ∈ E(s)(Cb1). If U(ψ) ∈ E(s)(Cb
′
), by the induction hypothesis,

v([Cb
′
]ψ) = 1 if s = s0 or Mi, s |= [Cb

′
]ψ if s ∈ Si for some i ≤ n. By the

definition of v, v([Cb
′
]ψ) = 1 implies that v([Cb]ψ) = 1. By RB-playability,

Mi, s |= [Cb
′
]ψ implies Mi, s |= [Cb]ψ.

If there are b1 ⊗ b2 = b such that U([Cb2 ]ψ) = {s′ | U(ψ) ∈ E(s)(Cb2)} ∈
E(s)(Cb1), by the induction hypothesis, v([Cb1 ][Cb2 ]ψ) = 1 if s = s0 or Mi, s |=
[Cb1 ][Cb2 ]ψ if s ∈ Si for some i ≤ n. By the definition of v, v([Cb1 ][Cb2 ]ψ) = 1
implies that v([Cb]ψ) = 1. By RB-playability, Mi, s |= [Cb1 ][Cb2 ]ψ implies
Mi, s |= [Cb]ψ.

Let t(b) > 1 andC = ∅. By the definition ofE,U(ψ) ∈ E(s)(∅b) iffU(¬ψ) /∈
E(s)(Ab). By the proof above, U(¬ψ) /∈ E(s)(Ab) iff v([Ab]¬ψ) = 0 if s = s0

or Mi, s 6|= [Ab]¬ψ if s ∈ Si for some i ≤ n. By the definition of v, we have that
v([Ab]¬ψ) = 0 implies v([∅b]ψ) = 1. Moreover, by A-maximality, we also have
Mi, s 6|= [Ab]¬ψ implies that Mi, s |= [∅b]ψ.

Claim 3. V and U agree on cl(ϕ).

Proof. In the base case, the proof is trivial as according to the definition of V ,
they already agree on the set of propositions in cl(ϕ). The proof for propositional
connectives is also straightforward as we know thatU(¬ψ) = S\U(ψ) andU(ψ1∨
ψ2) = U(ψ1) ∪ U(ψ2), and similarly for V . For the case of [Cb]ψ, the proof is by
induction on the resource bounds.

Assume that s ∈ U([Cb]ψ), then by the definition of U , v([Cb]ψ) = 1 if
s = s0 or Mi, s |= [Cb]ψ if s ∈ Si for some i ≤ n.
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If t(b) = 1 and C 6= A, then in both above cases, by the definition of E, we
have that U(ψ) ∈ E(s)(Cb). By the induction hypothesis, U(ψ) = V (ψ), hence
V (ψ) ∈ E(s)(Cb) and therefore M, s |= [Cb]ψ.

If t(b) = 1 and C = A, then we have v([∅b]¬ψ) = 0 if s = s0 or Mi, s 6|=
[∅b]¬ψ if s ∈ Si for some i ≤ n. In both cases, by the definition of E, we have
that U(¬ψ) /∈ E(s)(∅b), otherwise, U(¬ψ) ∈ E(s)(∅b) will contradict Claim 2.
Hence, U(ψ) = V (ψ) ∈ E(s)(Ab) because E is RB-playable. Then M, s |=
[Ab]ψ and s ∈ V ([Ab]ψ).

Assume t(b) > 1 and C 6= ∅. If s = s0 and v([Cb]ψ) = 1, then either
v([Cb

′
]ψ) = 1 for some b′ < b, or there are b1⊗b2 = b such that v([Cb1 ][Cb2 ]ψ) =

1. In both cases, by the induction hypothesis together with the definition of E,
we have that s ∈ V ([Cb]ψ). Similarly, if s ∈ Si and Mi, s |= [Cb]ψ, either
Mi, s |= [Cb

′
]ψ or Mi, s |= [Cb1 ][Cb2 ]ψ. Again, in both cases, by the induction

hypothesis together with the definition of E, we imply that s ∈ V ([Cb]ψ).
If t(b) > 1 and C = ∅, then we have v([Ab]¬ψ) = 0 if s = s0 or Mi, s 6|=

[Ab]¬ψ if s ∈ Si for some i ≤ n. In both cases, by the definition of E, we have
that U(¬ψ) /∈ E(s)(Ab), otherwise, U(¬ψ) ∈ E(s)(Ab) will contradict Claim 2.
Hence U(ψ) = V (ψ) ∈ E(s)(∅b) becauseE is RB-playable. Then,M, s |= [∅b]ψ.
Therefore s ∈ V ([∅b]ψ).

Assume that s ∈ V ([Cb]ψ), that isM, s |= [Cb]ψ. Therefore, V (ψ) = U(ψ) ∈
E(s)(Cb). By the above claim, we have v([Cb]ψ) = 1 if s = s0 or Mi, s |=
[Cb]ψ if s ∈ Si for some i ≤ n. In both cases, the definition of U gives us
s ∈ U([Cb]ψ).

Finally, we complete the proof for Lemma 2. Since v(ϕ) = 1, s0 ∈ U(ϕ).
Therefore, by Claim 3, we have s0 ∈ V (ϕ), hence, M, s0 |= ϕ. In other words, ϕ
is satisfiable.

We conclude this section by stating a complexity result for RBCL.

Theorem 5. The problem whether a formula φ of RBCL is satisfiable is in PSPACE(|cl(φ)|).

Proof. The satisfiability problem of RBCL is PSPACE-hard; this can be easily
shown by reducting the satisfiability problem of the modal logic K (which is PSPACE-
complete [12]) to that of RBCL. Consider the following reduction function tr
from the language of K to the language of RBCL with a single agent and a sin-
gle resource (time). We set tr(p) = p, tr commutes with the booleans, and
tr(3φ) = [{1}1]tr(φ). It is easy to see that a modal formula φ is K-satisfiable
if, and only if, tr(φ) is RBCL-satisfiable (accessibility relation between states s
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and s′ in the K-model for φ corresponds to s′ being an outcome of some action by
agent 1 in state s in the RBCL action model).

Next we are going to show that the satisfiability problem is in PSPACE(|cl(φ)|)
by giving an algorithm which decides whether φ is satisfiable while using space
polynomial in |cl(φ)|. Before giving the algorithm for deciding RBCL-satisfiability,
we need to introduce some notation. As defined above, given a closure cl(ϕ), let
CON(ϕ) be the set of all finite nonempty subsets {[Cb11 ]ψ1, . . . , [C

bk
k ]ψk} ⊆ cl(ϕ)

which match either the first or the second condition of Lemma 2. Moreover, each
set Γ = {[Cb11 ]ψ1, . . . , [C

bk
k ]ψk} ∈ CON(ϕ) is associated with a formula, de-

noted as ϕΓ, which is in the form of either ∧i≤kψi or ∧i<kψi ∧¬ψk, depending on
whether Γ is for the first or the second condition of Lemma 2, respectively. Then,
the algorithm for the satisfiability problem, given a formula ϕ, is as follows.

1. Non-deterministically select a valuation v for cl(ϕ).

2. For every set Γ ∈ CON(ϕ), recursively check that ϕΓ is satisfiable.

Note that the algorithm requires space polynomial in cl(ϕ) to record the valuation
and check that it satisfies the conditions of Lemma 2. Therefore its complexity is
NPSPACE (hence PSPACE, since PSPACE=NPSPACE) in |cl(ϕ)|.

If we measure the size of the input to the algorithm (the formula ϕ) assuming
that the resource bounds are written in unary, then the algorithm is PSPACE in
|ϕ| (since in this case the size of cl(ϕ) is polynomial in |ϕ|). However, if the
resource bounds are written in binary, then |cl(ϕ)| is exponential in |ϕ| and hence
the algorithm requires space exponential in |ϕ| to record the valuation.

5.1 Example

Let us consider a formula ϕ0 = [11]p ∧ [22](¬p). Note that, for convenience,
we write [11]ϕ instead of [{1}1]ϕ. We now follow Lemma 2 to show that ϕ0 is
satisfiable and how the model is constructed. For simplicity, we assume that the set
of agents contains 2 agents and the set of resources contains only time.

Firstly, we compute the set cl(ϕ0),

cl(ϕ0) = {ϕ0, [11]p, [22](¬p), [21](¬p), [21][21](¬p), p,
¬ϕ0,¬[11]p,¬[22](¬p),¬[21](¬p),¬[21][21](¬p),¬p}

Then, to show that ϕ0 is satisfiable, we introduce a valuation v which assigns
1 for formulas ϕ0, [11]p, [22](¬p), ¬[21](¬p), [21][21](¬p) and ¬p and assigns
0 to all other formulas in cl(ϕ0). We need to show for the following tuples of
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formulas from cl(ϕ0), that the corresponding formulas determined by Lemma 2,
are satisfiable.

• For the tuple ([11]p) with v([11]p) = 1, which matches case 1 of Lemma 2,
the satisfaction of the sub-formula p is immediate by the following model
M1 = ({s1}, E1, V1) in which E1(s1)(Cb) = {s1} for all C ⊆ {1, 2} and
b ≥ 1 and V1(p) = {s1}.

• For the tuple ([21][21](¬p)), the satisfaction of the sub-formulaϕ1 = [21](¬p)
is shown by applying Lemma 2 again. We have

cl(ϕ1) = {ϕ1, p,¬ϕ1,¬p}

Consider the valuation v1 which assigns 1 to only ϕ1 and p; we just need
to show that for the tuple ([21](¬p)), the sub-formula ¬p is satisfiable. This
is immediate by the existence of a model M2 = ({s2}, E2, V2) in which
E2(s2)(Cb) = {s2} for all C ⊆ {1, 2} and b ≥ 1 and V2(p) = ∅. We
construct a model which satisfies ϕ1 according to Lemma 2, by using M2

and a new state s3. Let us call this model M3 = ({s2, s3}, E3, V3), in which
E3 and V3 are as follows (notice that we only provide the description of
E3 for the case when the bound is 1, the cases of the greater bounds are
defined inductively on the cases of the smaller ones as shown in the proof of
Lemma 2).

E3(s3)(∅1) = {S} since no formula [∅1]ψ is in cl(ϕ1)
E3(s3)(11) = {S}
E3(s3)(21) = {{s2}, S} since [21](¬p) is in cl(ϕ1)

E3(s3)({1, 2}1) = {X | X 6= ∅}
E3(s2)(∅1) = {S}
E3(s2)(11) = {S}
E3(s2)(21) = {{s2}, S}

E3(s2)({1, 2}1) = {X | X 6= ∅}
V3(p) = {s3}

• For the tuple ([11]p, [21][21](¬p)), we will show that ϕ2 = p ∧ [21](¬p) is
satisfiable by applying Lemma 2 again as follows.

We have

cl(ϕ2) = {ϕ2, p, [21](¬p),¬ϕ2,¬p,¬[21](¬p)}
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Then we consider a valuation v2 which assigns 1 to ϕ2, p and [21](¬p),
and 0 to the other formulas in cl(ϕ2). Again, according to the condition of
Lemma 2, we need to show that, for the tuple ([21](¬p)) with v2([21](¬p)) =
1 we have¬p is satisifiable, which is immediate by the modelM4 = ({s4}, E4, V4)
in which E4(s4)(Cb) = {s4} for all C ⊆ {1, 2} and b ≥ 1 and V4(p) = ∅.
We construct a model which satisfies ϕ2 according to Lemma 2, by using
M4 and a new state s5. Let us call this model M5 = ({s4, s5}, E5, V5), in
which E5 and V5 are as follows:

E5(s5)(∅1) = {S} since no formula [∅p]ψ is in cl(ϕ2)
E5(s5)(11) = {S}
E5(s5)(21) = {{s4}, S}

E5(s5)({1, 2}1) = {X | X 6= ∅}
E5(s4)(∅1) = {S}
E5(s4)(11) = {S}
E5(s4)(21) = {{s4}, S}

E5(s4)({1, 2}1) = {X | X 6= ∅}
V5(p) = {s5}

• For the tuple ([21](¬p)) with v([21](¬p)) = 0 which matches case 2 of
Lemma 2, the satisfaction of the sub-formula ¬(¬p) = p is immediate by
the model M6 = ({s6}, E6, V6), in which E6(s6)(Cb) = {s6} for all C ⊆
{1, 2} and b ≥ 1 and V6(p) = {s6}.

Therefore by Lemma 2 ϕ0 is satisfiable. We construct the model satisfying ϕ0,
according to Lemma 2, by aggregating models M1, . . . ,M6 into M = (S,E, V )
where S = {s0, s1, . . . , s6}, V (p) = {s1, s3, s5, s6} and E at s0 and s1 is as
follows (E at other states is defined in a similar way):

E(s0)(∅1) = {S}
E(s0)(11) = {X | {s1, s3, s5, s6} ⊆ X}
E(s0)(21) = {X | {s2, s3, s4, s5} ⊆ X}

E(s0)({1, 2}1) = {X | X 6= ∅}
E(s1)(∅1) = {S}
E(s1)(11) = {X | {s1, s3, s5, s6} ⊆ X}
E(s1)(21) = {S} since M1, s1 6|= [21][21](¬p)

E(s1)({1, 2}1) = {X | X 6= ∅}
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6 Model-checking RBCL

In this section we describe a model-checking algorithm for RBCL. Our is similar
to the model-checking algorithm for ATL in [7] and runs in time polynomial in
the size of the formula and the structure (if we treat the number of resources as a
constant, and measure the size of the input formula assuming that resource bounds
are written in unary). The main differences between the ATL model-checking
algorithm given by Alur et al. and that presented here are that we take the costs
of strategies into account, and, instead of working with a straightforward set of
subformulas Sub(φ) of a given formula φ, we work with an extended set of sub-
formulas Sub+(φ). Sub+(φ) includes Sub(φ), and in addition:

• if [Cb]ψ ∈ Sub(φ), then [Cb
′
]ψ ∈ Sub+(φ) for all b′ < b

Note that |{b′ | b′ ≤ b}| = br where r = |Res|. Therefore |Sub+(φ)| is poly-
nomial in |φ| if resource bounds are written in unary, and exponential if resource
bounds are written in binary.

Theorem 6. Given a multi-step resource-bounded action modelM = (A,R, Σ, S,
T , o, Res, V ) and a formula φ, there is an algorithm which returns the set of states
[φ]M satisfying φ: [φ]M = {s |M, s |= φ}, which runs in time O(|Sub+(φ)|2 ×
|M |). In other words, the algorithm is polynomial in the size of the model, and is
polynomial in the size of the formula if the resource bounds are written in unary. If
the resource bounds are written in binary, the algorithm is exponential in |φ|.

Proof. Consider the following model-checking algorithm:

for every φ′ in Sub+(φ):

case φ′ == p: [φ′]M = {s | s ∈ V (s)}

case φ′ == ¬ψ: [φ′]M = S \ [ψ]M

case φ′ == ψ1 ∧ ψ2: [φ′]M = [ψ1]M ∩ [ψ2]M

case φ′ == [Cb]ψ with t(b) = 1: [φ′]M = Pre(C, [ψ]M , b)

case φ′ == [Cb]ψ with t(b) > 1:
ρ := [false];
foreach b′ < b do
ρ = ρ ∪ [[Cb

′
]ψ]M ∪ Pre(C, [[Cb

′
]ψ]M , b	 b′)

od;
[φ′]S := ρ
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where Pre is a function which, given a coalition C, a set ρ ⊆ S and a bound b,
returns all states s in which C has a joint action σC with cost Res(σC) ≤ b such
that o(s, σC) ⊆ ρ. 	 is the inverse of ⊗, in particular if c ≤ b	 b′ then b′ ⊗ c ≤ b.

The first three cases are straightforward. For the [Cb] cases, consider any state
s1 from which ψ can be enforced byC within the bound b. Either there exists a one
step strategy σ in s1to do this (and s1 is in [[Cb]ψ]M , t(b) = 1), or σ is multi-step.
In the latter case, where t(b) > 1, the resource bounds b′ < b are enumerated in
increasing order of t(b), and in an order consistent with < on vectors: if b1 < b2,
then b1 is before b2 in the enumeration. Note that on each iteration we only need
to include in [[Cb]ψ]M those states from which there is a single step strategy with
cost c ≤ b 	 b′ to enforce [Cb

′
]ψ, b′ < b. Consider the cost c of the first step of

a multi-step strategy σ. By executing the first step of σ, C enforces a set of states
in which they have a strategy of cost b′ ≤ b 	 c to enforce ψ, in other words a set
of states satisfying [Cb

′
]ψ. So s1 is in Pre(C, [[Cb

′
]ψ]M , b	 b′) for some [Cb

′
]ψ,

b′ ≤ b	 c, and all such sets of states are eventually enumerated by the algorithm.
In the the φ′ == [Cb]ψ case, the loop is executed |Sub+(φ)| times. The

function Pre can be computed in time linear in M . This gives us complexity
O(|Sub+(φ)|2 × |M |). If r is treated as a constant factor and resource bounds are
written in unary, we get complexity polynomial in |φ| and |M |.2

Pre(C, ρ, b) can be implemented symbolically, in a way similar to the compu-
tation of Pre(C, ρ) in ATL (see, for example, [8]). One way to encode the costs
of actions would be to add to each agent i’s state a set of boolean variables Bi rep-
resenting the agent’s ‘endowment’ of resources. This endowment is decremented
in the successor state by the cost of the action the agent performs in order to reach
that state. The fact that the action executed by the agent costs at most b can then be
expressed as a boolean expression δb(Bi, B′i), where B′i are the values of the vari-
ables Bi in the successor state, and δb is a suitable boolean arithmetic expression.

7 Conclusions and further work

Alternating-Time Temporal Logic and Coalition Logic [13, 10, 14, 7, 17] allow the
expression of many interesting properties of coalitions and strategies. However,
there is no natural way of expressing resource requirements in these logics. Logics
such as RTL∗ [9] which introduce resource bounds into temporal logic, allow only
the analysis of single agent systems. In this paper, we have proposed a complete

2We also treat the number of agents as a constant factor: the complexity of ATL model-checking
without this assumption was shown to be exponential in [11]. Other assumptions implicit in the
formulation of the problem, e.g., that the set of states is given explicitly, are discussed in [15].
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and sound logic RBCL in which we can express the costs of (multi-step) strategies,
and hence coalitional ability under resource bounds in multi-shot games. RBCL
is related to both Coalition Logic and ATL. The [Cb] operators in RBCL (without
resource bounds) correspond to the [C∗] operator in Extended Coalition Logic [13]
(which stands for a finite iteration of [C] modalities), and to the 〈〈C〉〉F operator of
ATL [7]. RBCL is sufficiently expressive to formalise, e.g., the decision problems
for Coalitional Resource Games discussed in [18], and the properties of resource-
bounded communicating reasoners investigated in [2]. We showed how to verify
properties expressed in RBCL and give a decision procedure for the satisfiability
problem of RBCL and a model-checking algorithm.

However there are some properties which cannot be expressed in RBCL. For
example, we cannot express properties such as ‘coalition C has a strategy to main-
tain the property φ with resources b’, or ‘C can maintain φ until ψ becomes true
provided C has resources b’. Such properties (without resource bounds) can be ex-
pressed in Alternating-Time Temporal Logic (ATL), and in future work we plan to
investigate extending ATL with costs of actions and hence of strategies. Other pos-
sible directions for future work include optimising the model-checking algorithm
for RBCL by exploiting resource bounds or by using bounded model-checking for
some properties.
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