
Reasoning about plan revision in BDI agent programs

Natasha Alechinaa, Mehdi Dastanib, Brian Logana, John-Jules Ch. Meyerb

aSchool of Computer Science
University of Nottingham

Nottingham NG8 1BB, UK
bDepartment of Information and Computing Sciences

Universiteit Utrecht
3584CH Utrecht, The Netherlands

Abstract

Facilities for handling plan execution failures are essential for agents which must cope
with the effects of nondeterministic actions, and some form of failure handling can
be found in most mature agent programming languages and platforms. While such
features simplify the development of more robust agents, they make it hard to reason
about the execution of agent programs, e.g., to verify their correctness. In this paper,
we present an approach to the verification of agent programs which admit exceptional
executions. We consider executions of the BDI-based agent programming language
3APL in which plans containing non-executable actions can be revised using plan revi-
sion rules, and present a logic for reasoning about normal and exceptional executions
of 3APL programs. We provide a complete axiomatisation for the logic and, using a
simple example, show how to express properties of 3APL programs as formulas of the
logic.

Keywords: Formalisms, logics

1. Introduction

3APL [1, 2] is a BDI-based agent-oriented programming language designed to fa-
cilitate the implementation of cognitive agents. In addition to programming constructs
such as beliefs, goals, and plans common to many BDI-based agent programming lan-
guages, 3APL provides support for plan revision rules which allow the agent’s plans
to be revised at run time. Plan revision rules are intended to deal with an important
problem in agent programming, namely the need to cope with the effects of nondeter-
ministic action execution. For example, if an action which is intended to establish a
precondition of a subsequent action in the same plan fails to do so, the agent needs to
detect this and initiate some recovery behaviour.

Some form of ‘failure handling’ facility can be found in most mature BDI-based
agent languages and platforms. For example, 2APL [3, 4] provides plan revision rules
which can be applied to revise plans whose executions have failed, Jason [5, 6] pro-
vides “clean up” plans triggered by the abandonment of a goal, JACK [7] and SPARK

Preprint submitted to Theoretical Computer Science May 13, 2011

[8] provide failure methods and/or meta-procedures which are triggered when plan ex-
ecution fails, and in [9, 10] features are proposed for aborting and suspending tasks in
the context of the CAN abstract agent programming language. However, while such
features simplify the development of more robust agents, they make it hard to reason
about the execution of agent programs, e.g., to verify their correctness. As a result, for-
mal accounts of program execution in the literature have typically been limited to the
specification of the operational semantics of a particular failure handling construct as in
[9] or to simplified versions of the language which do not admit exceptional executions.
For example, [11] considers SimpleAPL, a version of 3APL without nondeterministic
actions, plan revision rules, or any mechanism for dropping plans whose actions are
unexecutable or when the goal which led to the adoption of the plan has been achieved,
and [12] considers alternative execution strategies but again in the context of a simpli-
fied language and setting. Extending these accounts to model plan revision presents
significant challenges. In addition to reasoning about the agent’s beliefs, goals and
plans, we need to model the current state of plan execution, and the evolution of the
agent’s program at run time in response to interactions between the actual (as opposed
to intended) effects of the agent’s actions in its environment and its plan revision rules.

In this paper we present an approach to reasoning about 3APL programs which in-
clude plan revision rules. We consider external actions with nondeterministic outcomes
which may lead to unexpected achievement of a goal, or an inability to execute subse-
quent actions in the plan. We show how such exceptional executions can be formalised
in a logic incorporating modalities to represent the agent’s beliefs, goals and plans, and
how this logic can be used to state and verify properties of the agent program. The
main technical contribution of this work is in extending Propositional Dynamic Logic
(PDL) [13] with explicit operators for ‘having a plan’ and axiomatising the interaction
of belief, goal and plan modalities and standard PDL program modalities.

The remainder of the paper is organised as follows. In the next section we define
the syntax of 3APL and give its operational semantics under both ‘intended’ and ‘ex-
ceptional’ executions. We then introduce the syntax and semantics of a logic to reason
about safety and liveness properties of 3APL programs. We provide a sound and com-
plete axiomatisation of the logic, and prove a correspondence between the operational
semantics of 3APL and the models of the logic. Finally, we show how to translate agent
programs written in 3APL into expressions of the logic, and, using a simple example,
show how to verify a safety property for an agent program which allows plan revision.

2. 3APL

In this section we summarise the syntax and semantics of 3APL. 3APL is a BDI-
based agent-oriented programming language which allows the implementation of agents
with beliefs, (declarative) goals,1 actions, plans, and rules for adopting and revising
plans. We consider 3APL as defined in [2] with some minor modifications to sim-
plify the presentation. The main change is that we assume a propositional language

1In the BDI literature, the terms ‘goal’ and ‘desire’ are often used interchangeably to denote the motiva-
tional attitude of an agent.

2

for beliefs and goals in this paper whereas [2] uses a first order language for beliefs
and goals. However, 3APL assumes finite domains, and under this assumption all first
order formulas can be encoded as propositional formulas. Other differences from [2]
include restricting beliefs to atoms and goals to literals, and the omission of the send
communication action. We also adopt a more precise formalisation of external actions
which allows us to express when an external action can be executed and its possible
effects. Finally, we follow the 2APL [4, 3] approach to plan revision rules in only
applying plan revision rules to non-executable plans. These differences are discussed
in more detail in the relevant sections below. We illustrate our presentation of 3APL
with a simple running example loosely based on the example in [9]. In the example,
an agent has a goal to attend a conference. To achieve this goal, it can adopt a plan of
writing and submitting a paper (which may or may not be accepted). However before
it can submit the paper it must obtain clearance from its organisation. If the clearance
is not given, the agent can revise the paper and apply for clearance again. Writing a
paper, applying for clearance and revising a paper take indeterminate amounts of time,
with the result that they may not complete before the deadline for paper submission is
past.

In 3APL, an agent’s state is specified in terms of its beliefs, goals and plans, and
its program by its initial state and its rules for adopting and revising plans. The agent’s
beliefs represent information about its environment while its goals represent situations
the agent wants to bring about. Note that although the agent’s beliefs are assumed to be
consistent with each other, an agent’s goals may conflict with each other as they do not
all have to be achieved at the same time, i.e., goals that are inconsistent are assumed
to be achieved in sequence. For example, an agent may want to attend a conference,
and to write a proposal and not attend a conference. Although these two goals are
conflicting in the sense that they cannot be achieved at the same time, the agent can
achieve one after the other. For simplicity, we restrict the agent’s beliefs to be a set
of atoms2 and assume the closed-world assumption, i.e., an agent believes – p if p is
not in its beliefs. The agent’s goals are a set of (possibly inconsistent) literals. For
example, an agent might have a goal to attend a conference and believe that fly is an
option to travel:

BeliefBase: fly
GoalBase: attendConference

To achieve its goals, an agent adopts and executes plans. A plan consists of basic
actions and abstract plans composed by sequence, conditional choice and conditional
iteration operators. The sequence operator, ‘;’, takes two plans, π1, π2, as arguments
and states that π1 should be performed before π2. The conditional choice and condi-
tional iteration operators allow branching and looping and generate plans of the form
‘if φ then π1 else π2’ and ‘while φ do π’ respectively. The condition φ is evaluated
with respect to the agent’s current beliefs. For example, the plan:

2In [2] an agent’s beliefs can also include (definite) Horn clauses that can be used to infer new literals
from existing atoms. This complicates the axiomatisation of belief update actions, since there may be several
different ways of restoring consistency following a belief update. As belief update is not the main focus of
this paper, we consider only belief atoms here.

3

writePaper; requestClearance; submitPaper;
if accepted then travelToConference

causes the agent to write and submit a paper, and, if the paper is accepted, to travel to
the conference.

Basic actions define the capabilities an agent can use to achieve its goals. There
are two types of basic actions: belief test actions and belief update actions. We first
explain the intuitive idea of basic actions before giving their formal definitions.

A belief test action, denoted by φ?, tests whether the formula φ is derivable from an
agent’s beliefs. If φ is derivable from the agent’s beliefs, execution of the plan contin-
ues. If φ is not derivable from the agent’s beliefs, the belief test action is not executable
and execution of the plan containing the belief test action blocks. Belief test actions
play a role somewhat analogous to ‘assert’ statements in imperative programming lan-
guages. For example, they can be used to test if the execution of an external action had
the effect intended by the programmer (see below) and if not, block further execution
of the plan.

Belief update actions are the primitive operations an agent can use to change its
environment. In contrast to the version of 3APL described in [2], we extend the no-
tion of a belief update action to include both changing the agent’s environment and
updating the agent’s beliefs to reflect the effects of the action. In [2] a distinction
is made between (deterministic) mental actions which affect only the agent’s beliefs
and (nondeterministic) actions which affect the external environment and which are
implemented as Java methods. For simplicity, we consider these two types of action
together here, and use the term belief update action for both. We extend the notion of
a ‘capability’, used in [2] to define mental actions, to allow the specification of nonde-
terministic external actions. The effects of a belief update action are defined in terms
of pre- and postconditions. Each action has a set of preconditions specifying the sit-
uations in which the action is executable, and, for each precondition there is a set of
postconditions, one for each possible outcome of executing the action in an environ-
ment in which the precondition holds (pre- and postconditions are sets of literals).3

One or more postconditions correspond to the effect(s) of the action intended by the
programmer, while the others correspond to possible but unintended outcomes (in the
sense that they fail to achieve the agent’s goal or make it impossible to execute sub-
sequent actions in the plan). An action is executable if the belief literals in one of its
preconditions are in the agent’s current beliefs. When the action is executed, one of
the postconditions associated with the precondition is chosen to modify the agent’s be-
liefs. Execution of external actions is therefore nondeterministic, with the effects of the
action being ‘chosen’ by the agent’s environment. If the postcondition chosen by the
environment corresponds to an unintended outcome, we say the action fails. Executing
an action may take time, and agent execution resumes when the action terminates. For
example, the belief update action

{paper, clearance, -deadlinePast}

3The deterministic mental actions of [2] therefore correspond to belief update actions with a single post-
condition in our formulation.

4

submitPaper
{{accepted}, {rejected}}

can be read as “if the agent has a paper and has obtained clearance, and the submission
deadline has not passed, then the paper can be submitted, which results in one of two
possible outcomes—in the first the paper is accepted (the intended outcome) and in the
second it is rejected (an unintended outcome)”. If none of the preconditions of an action
is in the agent’s current beliefs, the action is not executable and execution of the plan
containing the action blocks. For example, if the agent does not have clearance, the
submitPaper action is not executable. If execution of a plan blocks because the first
step in the plan is a non-executable basic (belief test or belief update) action, we say
plan execution fails (see [4, 3] for more detailed discussion of plan execution failure).

Our model of belief update actions effectively combines the execution of an exter-
nal action with sensing to determine the effect of the action. For simplicity, we assume
that belief update actions always terminate in one of the possible postconditions of the
action, and that the agent’s beliefs about the resulting state of environment are always
correct. Execution of belief update actions maintains consistency of the agent’s beliefs,
i.e., if p is in an agent’s belief base before executing an action α and the postcondition
of α chosen by the environment contains – p, p is removed from the agent’s belief base.
Goals which are achieved by the postcondition of an action are dropped.4 If a goal for
which a plan was selected is achieved while the plan is still being executed, the plan is
also dropped.

Unlike basic actions, abstract plans cannot be directly executed by the agent. Ab-
stract plans provide an abstraction mechanism (similar to procedures in imperative pro-
gramming) which are expanded into basic actions using plan revision rules (see below).
If the first step of a plan π is an abstract plan ᾱ, execution of π blocks.

To adopt or revise plans, the agent uses rules. To adopt appropriate plans, the agent
uses planning goal rules. A planning goal rule is of the form γ ← β | π and consists
of three parts: an (optional) goal query γ specifying the goal the plan is intended to
achieve, a belief query β characterising situation(s) in which it could be a good idea
to adopt the plan, and π the plan to be adopted. A planning goal rule is applicable
if the goal and belief queries which form the head of the rule are derivable from the
agent’s goal and belief bases respectively, and the agent does not currently have a plan
for this goal in its plan base. Applying a planning goal rule causes the agent to adopt
the specified plan. The agent is committed to goals for which it has adopted a plan,
and these goals correspond to what are termed ‘intentions’ in the BDI literature. For
example, the planning goal rule:

attendConference <- -paper and -deadlinePast |
writePaper; requestClearance; submitPaper;
if accepted then travelToConference

states that “if the agent’s goal is to attend the conference, and the agent believes it has
no paper and the submission deadline is not past, then it may adopt the specified plan”.

4In [2] dropping plans is part of the agent’s deliberation strategy; for simplicity, we incorporate it into the
basic language.

5

Note that the goal query part of a planning goal rule is optional so that an agent can
generate a plan based only on its current beliefs. This allows the implementation of
reactive agents (agents whose behaviour is partly or wholly triggered by their beliefs).

Other agent programming languages, such as AgentSpeak(L) [14] and Jason [5, 6],
utilise a similar approach to adopting plans. However there are important differences
between such languages and 3APL. A planning goal rule in 3APL is applicable if the
goal query in the head of the rule is derivable from the agent’s goal base (and the belief
query evaluates to true). In contrast, in AgentSpeak(L) and Jason, a plan is applicable
when a belief or goal change event matches the triggering event of the plan. This means
that in 3APL a planning goal rule can be reapplied as long as the corresponding goal
has not been achieved (i.e., as long as its corresponding goal is not derivable from the
agent’s belief base), while in Jason and AgentSpeak(L) a plan is adopted at most once
in response to a triggering event.

Note that adopting a plan by applying a planning goal rule does not guarantee
that the plan can be successfully executed. The belief query that characterises the
situation(s) in which it could be a good idea to adopt the plan is only a heuristic, and in
general cannot capture the preconditions of all the actions in the plan. In many cases,
whether an action α in a plan can be successfully executed depends critically on one or
more preceding actions in the plan having their intended effects in order to establish the
appropriate precondition for α. However, as belief update actions are nondeterministic,
executing an action may not have the intended effect of establishing a precondition of
an action later in the plan. We say a plan is not executable if the first step in the plan
is either a belief test action which evaluates to false or a belief update action which
is not executable (i.e., none of its preconditions are derivable from the agent’s current
beliefs) or an abstract plan. (Non executable plans are called blocked in [15].)

Plan revision rules can be used by the agent to revise non-executable plans. A plan
revision rule is of the form π ← β | π′ and consists of three parts: a plan to be revised
π, a belief query β characterising the situation(s) in which it may be a good idea to
adopt this revision, and a new plan π′. Plan revision rules are applicable when the plan
to be revised is in the agent’s plan base, the belief query is derivable from the agent’s
belief base and the next step in the plan is not executable. Applying a plan revision rule
causes the agent to replace π in its plan base with π′. For example, assume that while
the requestClearance action may result in the agent obtaining clearance, on some
occasions it does not.

{paper, -clearance, -deadlinePast}
requestClearance

{{clearance}, { }}

If the agent does not obtain clearance, the agent is unable to execute the next step in
its plan (since obtaining clearance is a precondition of submitting a paper). To handle
such situations, the agent can utilise a plan revision rule such as:

submitPaper; π <- paper and -clearance and -deadlinePast |
revisePaper; requestClearance; submitPaper; π

where π = if accepted then travelToConference.

6

The revised plan resulting from the application of a plan revision rule may simply
replace the non executable action with a new action or sequence of actions followed
by the rest of the original plan, or it may replace the original plan in its entirety. In
particular, a plan may be replaced by the empty plan, allowing the agent to abandon a
failed plan and use its planning goal rules to select a new plan to achieve the goal which
is more appropriate to the current belief context. For example, if writing the paper takes
until after the submission deadline is past, the agent can utilise a plan revision rule such
as:

requestClearance; π <- deadlinePast | ε

where π = submitPaper; if accepted then travelToConference and ε is
the null plan, to drop the plan. Note that the agent still has the goal of attending the
conference, and, if it has other applicable planning goal rules, it can adopt an alternative
plan to attend the conference.

Plan revision rules give a 3APL developer considerable flexibility in determining
how plan execution failures are handled. For example, if a particular action α is likely
to fail but can be safely retried in the resulting environment, the developer can simply
test for the intended postcondition φ and, if it doesn’t hold, repeat the action: while –φ
do α. However if recovering from the failure of α depends on which of the unintended
outcomes of α actually results, we can include a belief test action after α which tests if
φ has been achieved, e.g., α1 ;φ? ;α2, and rely on the belief queries in the correspond-
ing plan revision rules to select the appropriate recovery action(s). Alternatively, if an
action α1 is unlikely to fail and establishes the precondition of a subsequent action αk,
and recovering from the failure is easy even if the intervening actions α2 ; . . . ;αk−1

have been executed, then the developer can simply rely on the non-executable action
αk triggering plan revision. Similar tradeoffs between how many and which kinds of
failures to anticipate are also found in conditional planning and conventional impera-
tive programming.

In addition to recovering from plan execution failures, in 3APL plan revision rules
are also used to implement abstract plans. An abstract plan ᾱ is expanded to a (more
concrete) plan π′ using a plan revision rule of the form ᾱ;π ← β | π′;π. The use of
plan revision rules allows the selection of subplans to be context sensitive, i.e., con-
ditional on the agent’s beliefs. For example, if travelToConference is an abstract
action, and the agent believes it should fly to the conference, it can use a plan revision
rule such as:

travelToConference <- fly |
buyPlaneTicket; flyToConference

to expand the abstract action.
We say the execution of a 3APL program is successful if it achieves the agent’s

goals. Conversely, we say that execution of a 3APL program fails if the agent is not able
to achieve its goals, either because it has no planning goal rule to adopt an appropriate
plan for a goal in the current belief context, or an adopted plan is not executable in the
current belief context and the agent has no appropriate plan revision rule to repair it.

7

2.1. 3APL Syntax

The syntax of 3APL programs is given below in EBNF notation. It is defined rela-
tive to a set of propositions (atoms), belief update actions, and abstract plans. Following
EBNF notation, we use [] brackets to indicate optional elements of the language.

Definition 1 (3APL Program). Let 〈uaction〉 denote the name of a belief update ac-
tion, 〈absplan〉 denote the name of an abstract plan, 〈literal〉 denote a (belief or goal)
literal, and 〈atom〉 denote a proposition. Then the syntax of 3APL is defined as fol-
lows:

〈3APL Prog〉 ::= "BeliefUpdates:" 〈updatespecs〉
| "BeliefBase:" 〈beliefs〉
| "GoalBase:" 〈goals〉
| "PG-rules:" 〈pgrules〉
| "PR-rules:" 〈prrules〉

〈updatespecs〉 ::= [〈updatespec〉 ("," 〈updatespec〉)*]
〈updatespec〉 ::= 〈preconditions〉 〈uaction〉 〈postconditions〉
〈beliefs〉 ::= [〈atom〉 ("," 〈atom〉)*]
〈goals〉 ::= [〈literals〉]
〈plan〉 ::= 〈baction〉 | 〈absplan〉 | 〈sequenceplan〉 | 〈ifplan〉 | 〈whileplan〉
〈baction〉 ::= 〈uaction〉 | 〈testbelief 〉
〈testbelief 〉 ::= 〈query〉 "?"
〈sequenceplan〉 ::= 〈plan〉 ";" 〈plan〉
〈ifplan〉 ::= "if" 〈query〉 "then {" 〈plan〉 "}" ["else {" 〈plan〉 "}"]
〈whileplan〉 ::= "while" 〈query〉 "do {" 〈plan〉 "}"
〈pgrules〉 ::= [〈pgrule〉 ("," 〈pgrule〉)*]
〈pgrule〉 ::= [〈literal〉] "<-" 〈query〉 "|" 〈plan〉
〈prrules〉 ::= [〈prrule〉 ("," 〈prrule〉)*]
〈prrule〉 ::= 〈plan〉 "<-" 〈query〉 "|" 〈plan〉
〈query〉 ::= 〈literal〉 | 〈query〉 "and" 〈query〉 | 〈query〉 "or" 〈query〉
〈preconditions〉 ::= 〈condition〉 [("," 〈condition〉)*]
〈postconditions〉 ::= 〈conditions〉 [("," 〈conditions〉)*]
〈conditions〉 ::= "{" 〈condition〉 [("," 〈condition〉)*] "}"
〈condition〉 ::= "{" 〈literals〉 "}"
〈literals〉 ::= [〈literal〉 ("," 〈literal〉)*]

2.2. Operational Semantics

In this section, we present a slightly modified version of the operational semantics
for 3APL given in [2], focusing on individual agents. We define the formal semantics
of 3APL in terms of a transition system [16]. Each transition corresponds to a single
execution step and takes the system from one configuration to another.

Definition 2 (3APL Configuration). The configuration of an agent is defined as 〈σ, γ,Π〉
where σ is a set of atoms representing the agent’s beliefs, γ is a set of literals repre-
senting the agent’s goals, and Π is a set of plans.

8

An agent’s initial beliefs and goals are specified by its program and Π is initially
empty. We assume that the agent adopts a non-interleaved execution strategy: “when
in a configuration with no plan, choose a planning goal rule nondeterministically, apply
it, execute the resulting plan to completion; repeat”. If there are no applicable planning
goal rules, the agent halts. Plan revision rules are only applied when the next step in the
agent’s plan cannot be executed: i.e., “when in a configuration with a non-executable
plan, choose a plan revision rule nondeterministically, apply it, and execute the revised
plan”. If there are no applicable plan revision rules for a non-executable plan, the agent
halts. With a non-interleaved execution strategy, at any point in the agent’s execution,
Π is either empty or contains a single plan. We annotate the plan base with the goal
query, κ, of the planning goal rule that resulted in the adoption of the current plan π,
denoted {π . κ}.

In formalizing the operational semantics, we use a notion of belief entailment based
on the closed-world assumption and a notion of goal entailment based on set inclusion.
The belief entailment relation is used to determine whether a formula is entailed by a
belief base (which is a set of atoms) and the goal entailment relation is used to deter-
mined whether a formula is entailed by a goal base (which is a set of literals).

Definition 3 (Belief and Goal Entailment). Let σ be a belief base, γ be a goal base, p
be an atom, l be a literal, and φ, φi, ψ be queries (see Definition 1). Then the belief and
goal entailment relations, denoted respectively by σ |=cwa φ and γ |=g l, are defined
as follows:

σ |=cwa p ⇔ p ∈ σ
σ |=cwa −p ⇔ p 6∈ σ
σ |=cwa φ and ψ ⇔ σ |=cwa φ and σ |=cwa ψ
σ |=cwa φ or ψ ⇔ σ |=cwa φ or σ |=cwa ψ
σ |=cwa {φ1, . . . , φn} ⇔ ∀1 ≤ i ≤ n σ |=cwa φi
γ |=g l ⇔ l ∈ γ

Executing an agent’s program modifies its initial configuration 〈σ, γ,Π〉 in accor-
dance with the following transition rules.
Basic Actions Each belief update action α has a set of preconditions prec1(α), . . . ,
preck(α). Each preci(α) is a finite set of belief literals, and any two preconditions
for an action α, preci(α) and precj(α) (i 6= j), are mutually exclusive (both sets
of propositional variables cannot be satisfied simultaneously). For each precondition
preci(α) there is a set of matching postconditions posti,1(α), . . . , posti,k(α), one
for each possible outcome of an action. Each postcondition is also a finite set of literals.
A belief update action α can be executed if σ |=cwa preci(α). Executing α adds the
positive literals in one of the postconditions posti,1(α), . . . , posti,k(α) corresponding
to preci(α) to the agent’s beliefs and removes any existing atoms from the agent’s
beliefs if their negations are in the postcondition.

Definition 4 (Belief Update). Let α be a belief update action, preci be a precondition
of α, posti,j be one of the corresponding postconditions of preci, and σ be a belief
base such that σ |=cwa preci. Then the outcome Ti,j(α, σ) of updating σ with α is

9

defined as follows:

Ti,j(α, σ) = (σ ∪ {p : p ∈ posti,j(α)}) \ {p : – p ∈ posti,j(α)}

Observe that Ti,j(α, σ) |=cwa posti,j(α) for all belief bases σ.
The successful execution of a belief update action α in a configuration where Π =

{α;π . κ} (where π may be null) is then:

(1a)
σ |=cwa preci(α) Ti,j(α, σ) = σ′ γ′ = γ \ {φ ∈ γ | σ′ |=cwa φ} σ′ 6|=cwa κ

〈σ, γ, {α;π . κ}〉 −→ 〈σ′, γ′, {π . κ}〉

Note that executing a belief update action causes the agent to drop any goals it believes
to be achieved as a result of the update. If the goal condition for the current plan, κ, is
dropped, the plan is also dropped:

(1b)
σ |=cwa preci(α) Ti,j(α, σ) = σ′ γ′ = γ \ {φ ∈ γ | σ′ |=cwa φ} σ′ |=cwa κ

〈σ, γ, {α;π . κ}〉 −→ 〈σ′, γ′, { }〉

A belief test action β? can be executed if β is entailed by the agent’s beliefs.

(2)
σ |=cwa β

〈σ, γ, {β?;π . κ}〉 −→ 〈σ, γ, {π . κ}〉

If a belief update action α is not executable or a belief test action β is not derivable
from the agents beliefs, execution of the plan containing the belief update or test action
blocks, and the plan must be revised by applying a plan revision rule as explained
below.
Conditional Plans The following transition rules specify the effect of executing the
conditional choice and conditional iteration operators, respectively. Note that the se-
quence operator, ‘;’, is specified implicitly by the other rules which specify how to
execute the first operation in the sequence.

(3a)
σ |=cwa φ

〈σ, γ, {if φ then π1 else π2;π . κ}〉 −→ 〈σ, γ, {π1;π . κ}〉

(3b)
σ 6|=cwa φ

〈σ, γ, {if φ then π1 else π2;π . κ}〉 −→ 〈σ, γ, {π2;π . κ}〉

(4a)
σ |=cwa φ

〈σ, γ, {while φ do π1;π . κ}〉 −→ 〈σ, γ, {π1; while φ do π1;π . κ}〉

(4b)
σ 6|=cwa φ

〈σ, γ, {while φ do π1;π . κ}〉 −→ 〈σ, γ, {π . κ}〉

Rules A planning goal rule ri = κi ← βi |πi can be applied if κi is entailed by the
agent’s goals, βi is entailed by the agent’s beliefs, and the agent’s plan base is empty.
Applying the rule ri adds πi to the agent’s plans.

(5)
γ |=g κi σ |=cwa βi

〈σ, γ, {}〉 −→ 〈σ, γ, {πi . κi}〉

10

A plan revision rule pj = πj ← βj |π′j can be applied if πj is in the plan base, βj
is entailed by the agent’s beliefs and πj is not executable, i.e., the first action of πj is
either a belief update or belief test action which is not executable in the current belief
state, or an abstract plan. (Note that this means that in order for a plan revision rule to
be applicable, the plan base must be non-empty.)

(6a)
∀i σ 6|=cwa preci(α) σ |=cwa βj

〈σ, γ, {πj = α;π . κ}〉 −→ 〈σ, γ, {π′j . κ}〉

(6b)
σ 6|=cwa β σ |=cwa βj

〈σ, γ, {πj = β?;π . κ}〉 −→ 〈σ, γ, {π′j . κ}〉

(6c)
σ |=cwa βj

〈σ, γ, {πj = ᾱ;π . κ}〉 −→ 〈σ, γ, {π′j ;π . κ}〉
where ᾱ is the name of an abstract plan.

Definition 5 (Transition Rules for the Operational Semantics of 3APL). The only tran-
sitions allowed by the operational semantics of 3APL are rules (1a)–(6c) listed above.

3. Logic

In this section, we show how to describe state transition systems corresponding to
the operational semantics of 3APL in an extension of Propositional Dynamic Logic
(PDL) [13] with belief, goal and plan operators, which we call PDL-3APL.

The models of the logic look quite similar to the transition systems generated by
the operational semantics of the agent. Each state has an assignment of beliefs, goals
and of at most a single plan. Transitions between states correspond to executing a basic
action, applying a planning goal rule, etc. For technical reasons, which will become
clear after the precise statement of correspondence between the operational semantics
and the PDL-3APL models, some states are marked by a special symbol x. Intuitively,
those are the states where the goal corresponding to the agent’s current plan has been
achieved or the current plan is not executable.

The models of the logic are defined relative to an agent program. Therefore, we
present the ingredients of an agent program which are used in defining the models
before presenting the PDL-3APL language. Note that the definition below generalises
the definition of a 3APL program (Definition 1). Namely, we abstract from the initial
belief and goal bases. We also explicitly include the set of all possible plans which may
occur in the execution of a program.

Definition 6 (Signature of an Agent Program). The signature of an agent program R
is defined as

R = 〈P , PG, PR, Ac, Āc, Act, Plan〉

where:

• P is a set of belief and goal atoms

11

• PG is a set of planning goal rules. We will denote elements of PG by ri, where
ri = κi ← βi |πi

• PR is a set of plan revision rules. We will denote elements of PR by pj , where
pj = πj ← βj |π′j

• Ac is a set of belief update actions occurring in the plans of PG and PR rules

• Āc is a set of abstract plans occurring in the plans of PG and PR rules

• Act is the set of specifications for belief update actionsAc. For each element α ∈
Ac, Act includes a set of mutually exclusive preconditions prec1(α), . . . , precm(α)
and for each precondition preci(α), a set of postconditions posti1(α), . . . , postik(α)

• Plan is the set of all possible π . κ pairs where κ is one of the agent’s goals
and π is a plan occurring in PG and PR rules or a suffix of such a plan (see
Definition 7). ε denotes the null plan.

The last clause in the above definition specifies the set of all plans that can occur
during the execution of an agent program. Since plans are inserted into a configuration
by PG and PR rules, and the execution of plan steps removes expressions from the
beginning of the plans, the set of all possible plans that can occur during the agent’s
execution is the set of all suffixes of plans in the PG and PR rules. The following
definition specifies a suffix of a plan.

Definition 7 (Plan Suffix). A suffix of a plan π, or otherwise a partial execution of π,
is defined as follows:

• If π = π1;π2 then π2 is a suffix of π;

• If π = if φ′ then π1 else π2;π′ then π1;π′ and π2;π′ are suffixes of π;

• If π = (while φ′ do π1);π′ then π1; (while φ′ do π1);π′ is a suffix of π;

• a suffix of a suffix of π is a suffix of π.

Note that if the sets of PG and PR rules are finite, then the set Plan is finite too.
This is due the fact that all plans in Plan are either occur in a rule or are a suffix of
such a plan and each plan has a finite number of suffixes.

3.1. Language

The language L of PDL-3APL is similar to that of PDL in that it contains modal
operators corresponding to program expressions, or labels of transitions in the state
transition system.

Definition 8 (PDL-3APL). Let R = 〈P , PG, PR, Ac, Āc, Act, Plan〉 be the signature
of an agent program. Let φ be either a formula of type 〈query〉 (see Definition 1) or
its negation, δri be the action of applying a planning goal rule ri from PG, δpj be
the action of applying a plan revision rule pj from PR, p ∈ P , π ∈ Plan , κ be κi in

12

ri ∈ PG, and x be a boolean flag. Then a program expression ρ of L is defined as
follows:

ρ ::= α ∈ Ac | t(φ) | ā ∈ Āc | δri | δpj | ρ1; ρ2 | ρ1 ∪ ρ2 | ρ∗

and a formula ψ of PDL-3APL relative to R is defined as follows:

ψ ::= Bp | Gp | G – p | x | Pκπ | Pε |¬ψ | ψ1 ∧ ψ2 | 〈ρ〉ψ

In the definition of program expressions, ρ1; ρ2 is a sequential composition of ρ1

and ρ2, ρ1 ∪ρ2 corresponds to executing either ρ1 or ρ2, and ρ∗ corresponds to execut-
ing ρ zero or finitely many times. The reason we use t(φ) rather than the PDL test oper-
ator φ? (for any PDL-3APL formula φ) is that unlike φ?, the execution of t(φ) changes
the state. Namely, the agent’s plan is part of the state, and evaluating a test changes the
agent’s plan (for example, if in the current state the plan is if φ then π1 else π2 and
the test formula φ evaluates to true, then as the result of the test transition, the plan in
the next state is π1). In the translation of conditional choice and conditional iteration
as PDL program expressions we need to use a test action t(¬φ), hence the extension of
the set of test formulas to ¬〈query〉.

In the definition of PDL-3APL, Bp stands for the agent believes that p, Gl for the
agent has the goal that l, x is a boolean flag indicating a state where the current plan
has to be dropped (the goal has been achieved) or revised (the plan is blocked), Pκπ
stands for the agent has a plan π for achieving goal κ, Pε stands for the plan base is
empty, ρ is a program expression denoting a transition, and 〈ρ〉ψ stands for ‘there exists
a state reachable by a transition denoted by ρ which satisfies ψ’. The dual modality is
defined as [ρ]ψ = ¬〈ρ〉¬ψ and means that all states reachable by a ρ transition satisfy
ψ. We will sometimes use an abbreviation 〈[ρ]〉ψ for 〈ρ〉ψ ∧ [ρ]ψ, and the usual ∨,→
definitions.

3.2. Models
The models of PDL-3APL are labelled state transition systems. To relate these

models to the operational semantics of 3APL, a number of conditions will be imposed
on the states and transitions. To simplify the presentation, the models are defined with
only references to the conditions. The conditions themselves will be specified directly
after the definition of PDL-3APL models.

Definition 9 (PDL-3APL Models). Let R = 〈P , PG, PR, Ac, Āc, Act, Plan〉 be the
signature of an agent program. A PDL-3APL model M relative to R is defined as

M = (W,V,Rα,Rt(φ),Rᾱ,Rδri
,Rδpj

)

where

• W is a non-empty set of states.

• V = (Vb, Vg, Vc, Vp) is an evaluation function consisting of belief and goal valu-
ation functions Vb and Vg satisfying condition C1 (see below), control valuation
function Vc and plan valuation function Vp such that for every s ∈W :

13

– Vb(s) = {p1, . . . , pm : pi ∈ P} is the set of the agent’s beliefs in s;

– Vg(s) = {(–)u1, . . . , (–)un : ui ∈ P} is the set of the agent’s goals in s
(note that Vg assigns literals rather than propositional variables);

– Vc(s) is either an empty set or {x}; if x is in Vc(s) this means that either
the goal corresponding to the agent’s plan has been achieved or the agent’s
plan is not executable in s;

– Vp(s) is either the empty set or a singleton set {π . κ}, where π is the
agent’s plan in s and κ is the goal(s) achieved by this plan.

• Rα,Rt(φ),Rᾱ,Rδri
,Rδpi

are sets of binary relations onW defined as follows:

– Rα = {Rα : α ∈ Ac}, where Rα is a set of pairs of states connected
by a transition corresponding to a belief update action. Rα is the largest
relation satisfying conditions C2, C4, and C8 below.

– Rt(φ) = {Rt(φ) : φ ∈ ¬ 〈query〉 }, where Rt(φ) is a set of pairs of states
connected by a transition corresponding to testing whether φ is true. Rt(φ)

is the largest relation satisfying conditions C3, C5, C7, and C8 below.

– Rᾱ = {Rᾱ : α ∈ Āc}, where Rᾱ is a set of pairs of states connected by
a transition corresponding to an abstract plan. Rᾱ is the largest relation
satisfying conditions C6 and C8 below.

– Rδri
= {Rδri

: ri ∈ PG}, where Rδri
is a set of pairs of states con-

nected by a PG rule firing transition. Rδri
is the largest relation satisfying

condition C9 below.

– Rδpi
= {Rδpj

: pj ∈ PR}, where Rδpj
is a set of pairs of states con-

nected by a PR rule firing transition. Rδpi
is the largest relation satisfying

condition C10 below.

The conditions C1–C10 enforce a correspondence between the operational seman-
tics of 3APL and the models of PDL-3APL. The first condition C1 restricts the states
to those where beliefs and goals are disjoint while C2–C10 restrict transitions between
states. Only transitions satisfying these conditions exist in a model. We define each
condition below. Note that, unless otherwise stated, Vy(s′) = Vy(s) where y is b, g, c
or p, and the plan π in the conditions below may be null.

C1 (Beliefs and goals) Beliefs and goals are disjoint:

1. Vg(s) ∩ Vb(s) = ∅ (p can never be both a belief and a goal)
2. {p : – p ∈ Vg(s)} ⊆ Vb(s) (if – p is a goal, then – p does not follow by

the closed world assumption from the agent’s beliefs)

The intuition behind conditions C2–C10 on relationsRα,Rt(φ),Rᾱ,Rδri
andRδpi

is that in non-x states, transition relations in M correspond to the transitions possible
in the operational semantics: for example, Rα is possible if α is the first step in the
current plan and a precondition of α holds. When a goal is achieved, or when the next
step in the plan is not executable, there is instead a transition to a x-state which in turn

14

may have a transition by a PG or PR rule to a non-x state again. So, while all tran-
sitions in non-x states correspond to the transitions in the operational semantics, only
some of the transitions in x states have a corresponding transition in the operational
semantics. We need x-states to ‘consume’ the rest of a PDL program expression when
its corresponding plan in a state s (denoted by Vp(s)) is being dropped, in the sense
which will become clear in the following section.

C2 (Execution of belief update actions)
If Vp(s) = {α;π . κ}, Vb(s) |=cwa preci(α) and x 6∈ Vc(s) then there is an Rα
transition to a state s′ where

1. Vb(s′) = Ti,j(α, Vb(s)) (Vb(s′) is the result of updating Vb(s) with some
postcondition of α)

2. Vg(s′) = Vg(s) \ ({p : p ∈ Vb(s′)} ∪ { – p : p 6∈ Vb(s′)}) (goals which
have been achieved by executing α are dropped)

3. if Vb(s′) 6|=cwa κ, Vp(s′) = {π . κ} (if the goal of the current plan has not
been achieved, α is removed from the current plan). This corresponds to
rule (1a) of the operational semantics.

4. if Vb(s′) |=cwa κ, x ∈ Vc(s′) and Vp(s′) = {} (if the goal of the current
plan has been achieved, the plan is dropped and we transit to an x state).
This corresponds to rule (1b) of the operational semantics.

C3 (Execution of tests)
If Vp(s) = {φ?;π . κ}, Vb(s) |=cwa φ, and x 6∈ Vc(s), then there is a Rt(φ)

transition to a state s′ where Vp(s′) = {π . κ}. This corresponds to rule (2) of
the operational semantics.

C4 (Non-executable belief update actions)
If Vp(s) = {α;π . κ}, Vb(s) 6|=cwa preci(α), and x 6∈ Vc(s), then there is an
Rα transition to a state s′ where x ∈ Vc(s′). This corresponds to the ‘first half’
of the operational semantics rule (6a); the ‘second half’, which transits back to a
non-x state, corresponds to condition C10 below.

C5 (Non-executable tests)
If Vp(s) = {φ?;π . κ}, Vb(s) 6|=cwa φ, and x 6∈ Vc(s), then there is a Rt(φ)

transition to a state s′ where x ∈ Vc(s′). This corresponds to the ‘first half’ of
the operational semantics rule (6b); the ‘second half’, which transits back to a
non-x state, corresponds to condition C10 below.

C6 (Expansion of abstract plans) If Vp(s) = {ᾱ;π.κ} where ᾱ is an abstract plan
and x 6∈ Vc(s), then there is an Rᾱ transition to a state s′ where x ∈ Vc(s′). This
corresponds to the ‘first half’ of the operational semantics rule (6c); the ‘second
half’, which transits back to a non-x state, corresponds to condition C10 below.

C7 (Execution of conditional plans)

1. If Vp(s) = {if φ then π1 else π2;π .κ}, Vb(s) |=cwa φ, and x 6∈ Vc(s),
then there is an Rt(φ) transition to a state s′ where Vp(s′) = {π1;π . κ}.
This corresponds to rule (3a) of the operational semantics.

15

2. If Vp(s) = {if φ then π1 else π2; π .κ}, Vb(s) 6|=cwa φ, and x 6∈ Vc(s),
then there is a Rt(¬φ): transition to a state s′ where Vp(s′) = {π2;π . κ}.
This corresponds to rule (3b) of the operational semantics.

3. If Vp(s) = {while φ do π1; π . κ}, Vb(s) |=cwa φ, and x 6∈ Vc(s), then
there is anRt(φ) transition to a state s′ where Vp(s′) = {π1; while φ do π1; π.
κ}. This corresponds to rule (4a) of the operational semantics.

4. If Vp(s) = {while φ do π1; π . κ}, Vb(s) 6|=cwa φ, and x 6∈ Vc(s), then
there is an Rt(¬φ) transition to a state s′ where Vp(s′) = {π . κ}. This
corresponds to rule (4b) of the operational semantics.

C8 (Execution in x-states) If x ∈ Vc(s) then there areRα,Rᾱ andRt(φ) transitions
from state s to itself. This condition ensures that there is a path from any x-
state to itself, labelled by the remaining actions of the PDL program expression,
so that the remainder of the PDL program expression is ‘consumed’ without
changing the state.

C9 (PG rules) If Vp(s) = {}, Vg(s) |=g κi, Vb(s) |=cwa βi, then there is a Rδri

transition to a state s′ where Vp(s′) = {πi . κi} and x 6∈ Vc(s′) (where ri =
κi ← βi |πi).
Note that PG rules are applicable only if the plan base is empty, and the states in
which they are applicable may be x-states. If a plan achieves its goal, even by
the last action of the plan, this results in transiting to an x-state with an empty
plan base. Firing a PG rule results in transition to a non-x state, with the same
beliefs and goals, and a new plan in the plan base. This corresponds to the rule
(5) of the operational semantics. As in the operational semantics, if no PG rule
is applicable, the program halts.

C10 (PR rules) If x ∈ Vc(s), Vp(s) = {πj . κ}, Vb(s) |=cwa βj , then there is a
Rδpj

transition to a state s′ where Vp(s′) = {π′j . κ} and x 6∈ Vc(s′) (where
pj = πj ← βj |π′j).
This means that PR rules are only applicable in x-states with a non-empty plan
base which matches the condition of the PR rule. Firing a PR rule results in
transiting to a non-x state with a modified plan base. This corresponds to the
‘second half’ of rules (6a)–(6c) of the operational semantics. As in the opera-
tional semantics, if current plan blocks and no PR rule is applicable, the program
halts.

The primitive transitions for belief update action, test action, abstract plan, and rule
applications can be composed by standard PDL operators, i.e., choice, sequence, and
iteration operators.

Definition 10 (Transition Relation Composition). Given the basic relationsRu (where
u is α, t(φ), ᾱ, δri or δpj) defined in the model, we can define relations Rρ corre-
sponding to complex program expressions ρ inductively as follows:

• Rρ1∪ρ2 = Rρ1 ∪Rρ2

• Rρ1;ρ2 = Rρ1 ◦Rρ2 where ◦ is composition of relations

16

• Rρ∗ = (Rρ)∗ (reflexive transitive closure of Rρ)

The satisfaction relation for PDL-3APL is a slight modification of the standard
definition of the satisfaction relation for PDL.

Definition 11 (Satisfaction Relation |=). The relation |= of a PDL-3APL formula φ
being true in a state s of a model M , denoted as M, s |= φ, is defined inductively as
follows:

• M, s |= Bp iff p ∈ Vb(s)

• M, s |= Gp iff p ∈ Vg(s)

• M, s |= G – p iff – p ∈ Vg(s)

• M, s |= x iff x ∈ Vc(s)

• M, s |= Pκπ iff Vp(s) = {π . κ}

• M, s |= Pε iff Vp(s) = {}

• M, s |= ¬ψ iff M, s 6|= ψ

• M, s |= ψ1 ∧ ψ2 iff M, s |= ψ1 and M, s |= ψ2

• M, s |= 〈ρ〉ψ iff there exists s′ such that Rρ(s, s′) and M, s′ |= ψ.

We denote the class of models satisfying the conditions C1–C10 for an agent pro-
gram with signature R as M3APL(R).

3.3. Axiomatisation

To axiomatise this class of models, we first need to explain how pre- and postcon-
ditions of transitions can be expressed in the language of PDL-3APL.

Definition 12 (Translation Functions fb, fg, fp). The beliefs, goals and plans of agent
programs can be translated into PDL-3APL expressions using translation functions fb,
fg and fp defined as follows:

• fb: Let p ∈ P and φ, ψ be belief query expressions (i.e., 〈query〉) of 3APL:
fb(p) = Bp; fb(φ and ψ) = fb(φ) ∧ fb(ψ); fb(φ or ψ) = fb(φ) ∨ fb(ψ). For
negations of formulas in 〈query〉, we also need the case fb(¬φ) = ¬fb(φ). For
translating pre- and postconditions of actions, we need to extend fb to sets of
literals; if X is a set of literals, fb(X) =

∧
p∈X Bp ∧

∧
– p∈X ¬Bp.

• fg(p) = Gp; fg(– p) = G – p.

• fp: Let α be a belief update action, φ and ψ be belief query expressions, ᾱ an
abstract plan, and π, π1, π2 be plan expressions (i.e., 〈plan〉) of 3APL:

– fp(α) = α

– fp(φ?) = t(φ)

17

– fp(ᾱ) = ᾱ

– fp(π1;π2) = fp(π1); fp(π2)

– fp(if φ then π1 else π2) = t(φ); fp(π1)) ∪ (t(¬φ); fp(π2))

– fp(while φ do π) = (t(φ); fp(π))∗; t(¬φ).

We can now axiomatise the class of models M3APL(R) relative to an agent pro-
gram with signature R. Note that PDL-3APL contains belief, goal and plan modalities
and several kinds of ‘atomic programs’ (belief update actions, belief test actions, ab-
stract plans, planning goal rules and plan revision rules). Each of those ingredients
requires one or two axioms, hence the length of the axiomatisation. In the following
definition, we use labels PDLi for standard PDL axioms, Ai for state axioms, BAi
for basic action axioms, CPi for composite plan axioms, PGi for planning goal rule
axioms, and PRi for plan revision rule axioms.

Definition 13 (PDL-3APL Axiomatic System). Let ψnp be any formula not containing
plan expressions, ψnpx be any formula not containing plan expressions or x, and ψnx
be any formula not containing x. Let π be a plan expression (if π is null, Pκπ is
Pε). Then the following axioms and inference rules constitute the axiomatic system of
PDL-3APL.

CL all tautologies of classical propositional logic

PDL1 [ρ](φ→ ψ)→ ([ρ]φ→ [ρ]ψ)

PDL2 〈ρ1; ρ2〉φ↔ 〈ρ1〉〈ρ2〉φ

PDL3 〈ρ1 ∪ ρ2〉φ↔ 〈ρ1〉φ ∨ 〈ρ2〉φ

PDL4 〈ρ∗〉φ↔ φ ∨ 〈ρ〉〈ρ∗〉φ

PDL5 [ρ∗](φ→ [ρ]φ)→ (φ→ [ρ∗]φ)

MP φ, φ→ψ
ψ

N φ
[ρ]φ

A1 Bp→ ¬Gp

A2 G – p→ Bp

A3a Pκπ → ¬Pκ′π′ where π′ 6= π or κ′ 6= κ

A3b Pε ∨
∨
π.κ∈Plan P

κπ

BA1 ¬x ∧ Pκ(α;π) ∧ fb(preci(α)) ∧ ψ ∧ ψ′ → 〈α〉(
(fb(postij(α))∧¬fb(κ)∧Pκπ∧ψ)∨ (fb(postij(α))∧ fb(κ)∧x∧Pε∧ψ′))

where ψ, ψ′ are any formulas not containing plan expressions or literals in
fb(postij(α)), and in addition ψ′ does not contain x

18

BA2a ¬x ∧ Pκπ → [u]⊥ where π 6= u;π′ and u ∈ Ac ∪ Āc

BA2b ¬x ∧ Pκπ → [t(φ)]⊥ if π does not start with a belief test action φ? or a
conditional plan test on ψ where φ = ψ or φ = ¬ψ

BA3 ¬x ∧ Pκ(α;π) ∧ fb(preci(α)) ∧
∧
j ψj ∧

∧
j ψ
′
j → [α](∨

j(fb(postij(α)) ∧ ¬fb(κ) ∧ Pκπ ∧ ψj) ∨∨
j(fb(postij(α)) ∧ fb(κ) ∧ x ∧ Pε ∧ ψ′j))

where ψj and ψ′j are any formulas not containing plan expressions or literals in
fb(postij(α)), and in addition ψ′j does not contain x

BA4 ¬x ∧ Pκ(φ?;π) ∧ fb(φ) ∧ ψnp → 〈[t(φ)]〉(Pκπ ∧ ψnp)

BA5 ¬x ∧ Pκ(α;π) ∧
∧
i ¬fb(preci(α)) ∧ ψnx → 〈[α]〉(x ∧ ψnx)

BA6 ¬x ∧ Pκ(φ?;π) ∧ ¬fb(φ) ∧ ψnx → 〈[t(φ)]〉(x ∧ ψnx)

BA7 ¬x ∧ Pκ(ᾱ;π) ∧ ψnx → 〈[ᾱ]〉(x ∧ ψnx)

BA8 x ∧ ψ → 〈[u]〉ψ where u is α, t(φ) or ᾱ

CP1 ¬x∧ Pκ(πif ;π)∧ fb(φ)∧ ψnp → 〈[t(φ)]〉(Pκπ1;π ∧ ψnp), where πif is of the
form if φ then π1 else π2

CP2 ¬x ∧ Pκ(πif ;π) ∧ ¬fb(φ) ∧ ψnp → 〈[t(¬φ)]〉(Pκπ2;π ∧ ψnp), where πif is as
in CP1

CP3 ¬x∧Pκ(πwh;π)∧ fb(φ)∧ψnp → 〈[t(φ)]〉(Pκπ1;πwh;π ∧ψnp), where πwh is
of the form while φ do π1

CP4 ¬x∧Pκ(πwh;π)∧¬fb(φ)∧ψnp → 〈[t(¬φ)]〉(Pκπ ∧ψnp), where πwh is as in
CP3

CP5 ¬x ∧ (Pκπif ∨ Pκπwh) ∧ ¬fb(φ)→ [t(φ)]⊥ where πif and πwh are as above

PG1 Pε ∧ fg(κi) ∧ fb(βi) ∧ ψnpx → 〈[δri]〉(¬x ∧ Pκiπi ∧ ψnpx)

PG2 ¬Pε ∨ ¬fg(κi) ∨ ¬fb(βi)→ [δri]⊥

PR1 x ∧ Pκπj ∧ fb(βj) ∧ ψnpx → 〈[δpj]〉(¬x ∧ P
κπ′j ∧ ψnpx)

PR2 ¬x ∨ ¬Pκπj ∨ ¬fb(βj)→ [δpj]⊥

Theorem 1. PDL-3APL is sound with respect to M3APL(R).

The proof of soundness is by straightforward induction on the length of a derivation.
It is obvious that the inference rules derive valid conclusions from valid premises. It
remains to show that the axioms are valid. In the following, we only show validity
of some of the axioms that are characteristic for our framework. The validity proofs
of other axioms are either the same as the corresponding axioms of PDL or they are
similar to those we prove here. We first formulate the following proposition which will
be used in the validity proofs of several axioms.

19

Proposition 1. LetM be a model, s be a state inM , Vb be the belief valuation function
of M , and X be a set of literals. Then,

M, s |= fb(X) iff Vb(s) |=cwa X

Proof. M, s |= fb(X)
def . 12⇔ M, s |=

∧
p∈X Bp ∧

∧
– p∈X ¬Bp

def . 11⇔ M, s |=∧
p∈X Bp and M, s |=

∧
−p∈X ¬Bp

def . 11⇔
∧
p∈X p ∈ Vb(s) and

∧
– p∈X p 6∈ Vb(s)

def . 3⇔

∀p ∈ X : Vb(s) |=cwa p and ∀ – p ∈ X : Vb(s) |=cwa −p
def . 3⇔ Vb(s) |=cwa X .

The following propositions establish the validity of axioms BA1, BA2a, BA3, CP1,
CP4, PG1, PG2, PR1, and PR2.

Proposition 2. Axiom BA1 is valid.

Proof. M, s |= ¬x∧Pκ(α;π)∧fb(preci(α))∧ψ∧ψ′ def . 11⇔ M, s |= ¬x and M, s |=
Pκ(α;π) and M, s |= fb(preci(α)) and M, s |= ψ and M, s |= ψ′. From Defini-
tion 11 and Proposition 1 we can conclude x 6∈ Vc(s) and Vp(s) = {α;π.κ} and Vb(s) |=cwa

preci(α). Then, condition C2 ensures that there exists a state s′ such that Rα(s, s′),
where either clauses 1, 2 and 3, or clauses 1, 2 and 4 below hold.

1 Vb(s′) = Ti,j(α, Vb(s)) for some postcondition j of α
2 Vg(s′) = Vg(s) \ ({p : p ∈ Vb(s′)} ∪ { – p : p 6∈ Vb(s′)})
3 Vb(s′) 6|=cwa κ and Vp(s′) = {π . κ}
4 Vb(s′) |=cwa κ, x ∈ Vc(s′) and Vp(s′) = {}

From Proposition 1, Definitions 11 and 12, and that Ti,j ensures Vb(s′) |=cwa postij(α)
(see Definition 4), and the clauses above, we have that:

1 M, s′ |= fb(postij(α)) for some postcondition j of α
2 Vg(s′) = Vg(s) \ ({p : p ∈ Vb(s′)} ∪ { – p : p 6∈ Vb(s′)})
3 M, s′ |= ¬fb(κ) and M, s′ |= Pκπ

4 M, s′ |= fb(κ), and M, s′ |= x, and M, s′ |= Pε

Moreover, from clauses 1 and 2 we can conclude that for all ψ not in the postcondi-
tion of action α and not a plan formula M, s |= ψ iff M, s′ |= ψ. Similarly for all
formulas ψ′ which do not contain the boolean flag x. Thus there exists a state s′ such
that Rα(s, s′) and either M, s′ |= fb(postij(α)) ∧ ¬fb(κ) ∧ Pκπ ∧ ψ or M, s′ |=
fb(postij(α)) ∧ fb(κ) ∧ x ∧ Pε ∧ ψ′. In other words, M, s |= 〈α〉(fb(postij(α)) ∧
¬fb(κ) ∧ Pκπ ∧ ψ) ∨ (fb(postij(α)) ∧ fb(κ) ∧ x ∧ Pε ∧ ψ′).

Proposition 3. Axiom BA2a is valid.

Proof. Suppose M, s |= ¬x ∧ Pκπ where π 6= u;π′, but M, s |= ¬[u]⊥ which is
equivalent to M, s |= 〈u〉>. Following Definition 11 there exists a state s′ such that
Ru(s, s′). We consider the two possible cases where u ∈ Ac and u ∈ Āc. Case 1
(u ∈ Ac): from Definition 9 only those pairs of states that satisfy conditions C2, C4,
and C8 are in Ru. However, the existence of an Ru edge is not implied by C2 and

20

C4 because these require M, s |= Pκu;π′ which is contrary to our assumption5 that
M, s |= Pκπ where π 6= u;π′. An Ru edge is also not implied by C8 because this
requires M, s |= x which is again contrary to our assumption that M, s |= ¬x. Case 2
follows a similar line of reasoning with respect to conditions C6 and C8.

Proposition 4. Axiom BA3 is valid.

Proof. Assume the antecedent holds in M, s, but not the consequent. From Defini-
tion 11 the negation of the consequent is M, s |= 〈α〉

∧
j ¬(fb(postij(α))∧¬fb(κ)∧

Pκπ∧ψj) ∧
∧
j ¬(fb(postij(α))∧fb(κ)∧x∧Pε∧ψ′j))

def .11⇔ ∃s′ : Rα(s, s′) and
M, s |=

∧
j ¬(fb(postij(α))∧¬fb(κ)∧Pκπ∧ψj) ∧

∧
j ¬(fb(postij(α))∧fb(κ)∧

x∧Pε∧ψ′j)). Definition 9 states that only thoseRα transitions exist that satisfy condi-
tions C2, C4 and C8. Only C2 can be satisfied since C2 requires Vb(s) |=cwa preci(α)
which is satisfied by the assumption M, s |= fb(preci(α)) using Proposition 1; other
conditions are clearly not satisfied. However, C2 requires Vb(s′) = Ti,j(α, Vb(s)) for
some postcondition j of α. Since Ti,j(α, Vb(s)) |= postij(α) (see Definition 4), we
have M, s′ |= fb(postij(α)) for some postcondition j of α. Moreover, C2 requires
either (Vb(s′) 6|=cwa κ and Vp(s′) = {π . κ}) or (Vb(s′) |=cwa κ, x ∈ Vc(s′) and
Vp(s′) = {}). Finally, clauses 1,2, and 3 of C2 require that only the valuation of for-
mulas containing plan expressions or those involved in postij(α) can be changed, and
clauses 1,2, and 4 require that the valuation of only formulas containing plan expres-
sions, x, and those involved in postij(α) can be changed; the valuation of all other for-
mulas remains unchanged. Altogether, C2 requires either M, s′ |= (fb(postij(α)) ∧
¬fb(κ)∧Pκπ∧ψ) or (M, s′ |= fb(postij(α))∧fb(κ)∧x∧Pκε∧ψ′), for some post-
condition j of α, ψ not containing plan expressions or propositions from postij(α),
and ψ′ not containing plan expressions, execution flags, or those from postij(α). This
is contrary to our assumption that the consequent does not hold.

Proposition 5. Axiom CP1 is valid.

Proof. Assume M, s |= ¬x ∧ Pκ(πif ;π) ∧ fb(φ) ∧ ψnp. From Definition 11 and
Proposition 1, we have x 6∈ Vc(s), Vp(s) = {πif ;π . κ}, Vb(s) |=cwa φ, and M, s |=
ψnp. Condition C7, clause 1, requires there is an Rt(φ) transition to state s′ where
Vp(s′) = {π1;π.κ}, and hence according to Definition 11 and Proposition 1, M, s′ |=
〈t(φ)〉Pκπ1;π. Moreover, as the only expressions for which the valuation are changed
as a result of this transition are plan expressions, we have for all other expressions ψnp
if M, s |= ψnp then M, s′ |= ψnp. Putting together M, s′ |= 〈t(φ)〉Pκπ1;π ∧ ψnp
for all non-plan expressions ψnp, Definition 10 states that only those Rt(φ) transitions
exist that satisfy conditions C3, C5, C7 and C8. However, since only C7 applies (note
that C3 and C5 requireM, s |= Pκφ?;π and C8 requiresM, s |= x which are contrary
to our assumption), we also have M, s′ |= [t(φ)]Pκπ1;π ∧ ψnp for all non-plan
expressions ψnp.

Proposition 6. Axiom CP4 is valid.

5Note there there exists only one plan and this plan does not start with u ∈ Ac

21

Proof. Assume M, s |= ¬x ∧ Pκ(πwh;π) ∧ ¬fb(φ) ∧ ψnp. From Definition 11 and
Proposition 1, we have x 6∈ Vc(s), Vp(s) = {πwh;π . κ}, Vb(s) 6|=cwa φ, and
M, s |= ψnp. Condition C7, clause 4, requires there is an Rt(¬φ) transition to state
s′ where Vp(s′) = {π . κ}, and hence according to Definition 11 and Proposition 1,
M, s′ |= 〈t(¬φ)〉Pκπ. Moreover, since the only expressions for which the valuation
is changed are plan expressions, we have for all other expressions ψnp if M, s |= ψnp
then M, s′ |= ψnp. Putting together M, s |= 〈t(¬φ)〉Pκπ ∧ ψnp for all non-plan
expressions ψnp. Definition 10 states that only those Rt(¬φ) transitions exist that are
implied by conditions C3, C5, C7 and C8. However, since only C7 applies (note that
C3 and C5 require M, s |= Pκφ?;π and C8 requires M, s |= x which are contrary to
our assumption), we also haveM, s′ |= [t(¬φ)]Pκπ ∧ ψnp for all non-plan expressions
ψnp.

Proposition 7. Axiom PG1 is valid.

Proof. Assume M, s |= Pε ∧ fg(κi) ∧ fb(βi) ∧ ψnpx. From Definition 11 and
Proposition 1, we have Vp(s) = {}, Vg(s) |= κi, Vb(s) |=cwa βi, and M, s |= ψnpx.
According to condition C9, there exists an Rδri

transition to a state s′ where Vp(s′) =

{πi .κi} and x 6∈ Vc(s′)
def . 11⇔ ∃s′ : Rδri

(s, s′) such thatM, s′ |= Pκiπi∧¬x
def . 11⇔

M, s′ |= 〈δri〉Pκiπi ∧ ¬x. Moreover, as only formulas containing plan expressions
and x change as a result of this transition, we have for all other formulas ψnpx, if
M, s |= ψnpx then M, s′ |= ψnpx. Putting together M, s′ |= 〈δri〉Pκiπi ∧ ¬x ∧ ψnpx
for all formulas ψnpx not containing plan expressions or x. Finally, since only C9
applies, we have also M, s′ |= [δri]Pκiπi ∧ ¬x ∧ ψnpx for all formula ψnpx not
containing plan expressions or execution flag.

Proposition 8. Axiom PG2 is valid.

Proof. Assume M, s |= ¬Pε∨¬fg(κi)∨¬fb(βi), but ¬[δri]⊥ ⇔ 〈δri〉>. Then there
exists anRδri

transition to a state s′. However, according to Definition 9, the onlyRδri

transitions are those implied by condition C9 which requires Vp(s) = {}, Vg(s) |=
κi, Vb(s) |=cwa βi, and hence according to Definition 11 and Proposition 1, M, s |=
Pε ∧ fg(κi) ∧ fb(βi). However, this contradicts our assumption.

Proposition 9. Axiom PR1 is valid.

Proof. Assume M, s |= x ∧ Pκπj ∧ fb(βj) ∧ ψnpx. From Definition 11 and propo-
sition 1, we have x ∈ Vc(s), Vp(s) = {πj . κ}, Vb(s) |=cwa βj , and M, s |= ψnpx.
According to condition C10, there exists anRδpj

transition to a state s′ where Vp(s′) =

{π′j . κ} and x 6∈ Vc(s′)
def . 11⇔ ∃s′ : Rδpj

(s, s′) such that M, s′ |= Pκπ′j ∧ ¬x
def . 11⇔

M, s′ |= 〈δpj〉P
κπ′j ∧ ¬x. Moreover, since only formulas containing plan expressions

and x change as a result of this transition, we have for all other formulas ψnpx, if
M, s |= ψnpx then M, s′ |= ψnpx. Putting together M, s′ |= 〈δpj〉P

κπ′j ∧ ¬x ∧ ψnpx
for all formulas ψnpx not containing plan expressions or boolean flag x. Finally, since
only C10 can imply Rδpj

transitions, we also have M, s′ |= [δpj]P
κπ′j ∧ ¬x ∧ ψnpx

for all formula ψnpx not containing plan expressions or x.

22

Proposition 10. Axiom PR2 is valid.

Proof. Assume M, s |= ¬x ∨ ¬Pκπj ∨ ¬fb(βj), but ¬[δpj]⊥ which is equivalent to
〈δpj〉>. Then there exists a Rδpj

transition to a state s′. However, according to Defi-
nition 9, the only Rδpj

transitions are those implied by condition C10 which requires
x 6∈ Vc(s), Vp(s) = {πj . κ}, Vb(s) |=cwa βj , and hence according to Definition 11
and Proposition 1, M, s |= ¬x∧Pκπj ∧fb(βi). However, this contradicts our assump-
tion.

This concludes our discussion of the soundness of the axiomatic system for PDL-
3APL. The rest of this section will be devoted to the proof of weak completeness of the
axiomatisation.

Since our logic includes PDL, we cannot prove strong completeness (for every set
of formulas Γ and formula φ, if Γ |= φ then Γ ` φ) because PDL is not compact.
Instead, we prove weak completeness: every valid formula φ is derivable (|= φ ⇒ `
φ).

The proof is based on the standard completeness proof for PDL, see for example
[17]. We show that any PDL-3APL consistent formula φ has a satisfying model Mφ.
The construction proceeds as follows. Given a formula φ, we define a set of formulas
Closure(φ) (defined below) which is similar to a set used in the standard PDL com-
pleteness proof, but has some extra conditions specific to PDL-3APL. The satisfying
model Mφ for φ is constructed using Closure(φ), namely the states of Mφ are maxi-
mal consistent subsets of Closure(φ). We define the assignments and binary relations
for Mφ similarly to the standard PDL proof. We omit the proofs of the standard PDL-
specific lemmas. Instead, we concentrate on the PDL-3APL specific part of the proof
which shows that Mφ satisfies conditions C1-C10 on M3APL(R) models.

The set Closure(φ) used in the construction of Mφ includes subformulas of φ
and a finite number of other formulas specified below. First of all, we define the set
Subf(φ) of subformulas of φ in the usual way, but considering subformulas of the
form Bp, Gp and G – p as atomic formulas (that is, p and – p are not included in the
set of subformulas). Conditions 1–4 below correspond to the Fischer-Ladner closure
conditions used in the standard completeness proof for PDL [18], condition 5 corre-
sponds to closure under single negations, and conditions 6–12 are specific to the proof
for PDL-3APL.

1. Subf(φ) ⊆ Closure(φ)
2. if 〈ρ1; ρ2〉ψ ∈ Closure(φ) then 〈ρ1〉〈ρ2〉ψ ∈ Closure(φ)
3. if 〈ρ1 ∪ ρ2〉ψ ∈ Closure(φ) then 〈ρ1〉ψ ∨ 〈ρ2〉ψ ∈ Closure(φ)
4. if 〈ρ∗〉ψ ∈ Closure(φ) then 〈ρ〉〈ρ∗〉ψ ∈ Closure(φ)
5. if ψ ∈ Closure(φ) and ψ is not of the form ¬χ, then ¬ψ ∈ Closure(φ)
6. if G – p ∈ Closure(φ), then Bp ∈ Closure(φ)
7. x ∈ Closure(φ)
8. if an action α occurs in φ, then Closure(φ) contains fb translations of all pre-

and postconditions forα, e.g., if one ofα’s preconditions is {p, – q} thenBp,¬Bq ∈
Closure(φ)

9. Pε ∈ Closure(φ)

23

10. Pπ ∈ Closure(φ) for all π ∈ Plan
11. if 〈t(φ′)〉ψ ∈ Closure(φ) then fb(φ′) ∈ Closure(φ)
12. if Pκπ ∈ Closure(φ) then for all formulas φ′ ∈ 〈query〉 which occur in a plan

expression in Closure(φ), fb(φ′) ∈ Closure(φ)

Given a consistent formula φ, we define Mφ as follows:

Definition 14 (Canonical PDL-3APL model for φ). A canonical PDL-3APL model for
φ, Mφ is defined as

Mφ = (Wφ, V φ,Rφα,R
φ
t(φ),R

φ
ᾱ,R

φ
δri
,Rφδpj

)

where:

Wφ is the set of all maximal consistent subsets of Closure(φ)

V φ is defined as follows:

• p ∈ V φb (A) iff Bp ∈ A, where Bp ∈ Closure(φ);

• (–)p ∈ V φg (A) iff G(–)p ∈ A, where G(–)p ∈ Closure(φ);

• V φp (A) = {π . κ} iff Pκπ ∈ A, where Pκπ ∈ Closure(φ); V φp (A) = ∅ iff
Pε ∈ A.

The transition relations Rφα,R
φ
t(φ),R

φ
ᾱ,R

φ
δri
,Rφδpj

are defined as follows. Let A,

B be maximal consistent subsets of Closure(φ), and ρ be a program expression. We
first define auxiliary relations Sρ(A,B) for each program expression ρ as follows. Let
us denote by ∧A the conjunction of all formulas in A. Then Sρ(A,B) holds if and only
if ∧A is consistent with 〈ρ〉 ∧B (the conjunction of formulas in B preceded by 〈ρ〉).

Now using the auxiliary relations, we define relations Rφρ :

• for every u= α, t(φ), ᾱ, δri, δpj: R
φ
u = Su;

• Rφρ1;ρ2 = Rφρ1 ◦R
φ
ρ2 where ◦ is relational composition;

• Rφρ1∪ρ2 = Rφρ1 ∪R
φ
ρ2 ;

• Rφρ∗ = (Rφρ)∗.

The following three lemmas have exactly the same proof as lemmas 4.88, 4.89 and
4.90 in [17]:

Lemma 1 (Inclusion Lemma). For every ρ, Sρ ⊆ Rφρ .

Lemma 2 (Existence lemma). Let A be a maximal consistent set and ρ a program ex-
pression. Then for all 〈ρ〉ψ ∈ Closure(φ), 〈ρ〉ψ ∈ A iff there is a maximal consistent
set A′ such that Rφρ (A,A′) and ψ ∈ A′.

Lemmas 1 and 2 are used in the proof of the following crucial lemma:

24

Lemma 3 (Truth lemma). Let ψ ∈ Closure(φ). Then for every maximal consistent
set A: Mφ, A |= ψ iff ψ ∈ A.

Since our formula φ is consistent, it belongs to at least one maximal consistent set
A, so it is satisfied in some state in Mφ.

The last component for the completeness proof is the following proposition:

Proposition 11. Mφ satisfies conditions C1–C10.

Proof. Since every A is consistent with respect to A1, A cannot contain Bp and Gp
so it is not possible that p ∈ V φb (A) and p ∈ V φg (A). Similarly, if G – p ∈ A, then
Bp ∈ A by A2, so condition C1 holds in Mφ. By A3a and A3b each state contains a
unique plan expression.

Let us prove that C2 holds in Mφ. Suppose V φp (A) = {α;π . κ}, V φb (A) entails
preci(α) and x 6∈ V φc (A). We need to show that for every postij(α) there exists a
maximal consistent set B in Mφ such that

1. Vb(B) = Ti,j(α, Vb(A))
2. Vg(B) = Vg(A) \ ({p : p ∈ Vb(B)} ∪ { – p : p 6∈ Vb(B)})
3. if Vb(B) 6|=cwa κ, then Vp(B) = {π . κ}
4. if Vb(B) |=cwa κ, then x ∈ Vc(B) and Vp(B) = {}

Given the construction of Mφ, the conditions on B above are equivalent to the follow-
ing:

1. fb(postij(α)) ∈ B and for every p which does not occur in fb(postij(α)),
Bp ∈ B iff Bp ∈ A

2. if p ∈ postij(α), Gp 6∈ B; if – p ∈ postij(α), G – p 6∈ B; for all other p,
G(–)p ∈ B iff G(–)p ∈ A

3. if ¬fb(κ) ∈ B, then Pκπ ∈ B
4. if fb(κ) ∈ B, then x ∈ B and Pε ∈ B

Recall that for any set B, Rφα(A,B) if ∧A ∧ 〈α〉∧B is consistent. We need to show
that there is a maximal consistent set of formulas B which satisfies this condition and
also either conditions 1, 2 and 3 or 1, 2 and 4 above.

From V φp (A) = {α;π .κ} and the model definition we conclude that Pκα;π ∈ A.
Since x, fb(preci(α)) ∈ Closure(φ), fb(preci(α)) ∈ A and ¬x ∈ A. So ∧A implies
Pκα;π ∧ fb(preci(α))∧¬x. Let Fj be the set of p which do not occur in postij(α).
Then ∧A also implies the following formula ψA, describing the set of beliefs and goals
true in A which are not going to be affected by executing α if the outcome is described
by the postcondition j:

ψA =
∧

p∈Fj ,Bp∈A
Bp ∧

∧
p∈Fj ,G(–)p∈A

G(–)p

Consider an instance of the axiom BA1 where for the formula ψ we use ψA ∧ ¬x and
for the formula ψ′ we use ψA. Clearly, A implies its antecedent:

¬x ∧ Pκα;π ∧ fb(preci(α)) ∧ (ψA ∧ ¬x) ∧ ψA

25

This means that ∧A implies the consequent of the axiom. Since A is consistent, this
means that ∧A is consistent either with

〈α〉(fb(postij(α)) ∧ ¬fb(κ) ∧ Pκπ ∧ ¬x ∧ ψA)

or with
〈α〉(fb(postij(α)) ∧ fb(κ) ∧ Pε ∧ x ∧ ψA)

Note that because of axioms A1 and A2 if ∧A is consistent with 〈α〉(Bp ∧ ¬Bq) it is
also consistent with 〈α〉(Bp∧¬Gp∧¬Bq ∧¬G – q), so all negative statements about
goals which are dropped because of executing α can also be added. Note that those
statements only involve variables which are not in Fj . In either case, we have that ∧A∧
〈α〉ψ is consistent, where ψ is a formula which describes the conditions on the desired
state B. The only problem is that ψ does not contain, for every single formula from
Closure(φ), this formula or its negation as a conjunct; in other words, it does not yet
describe a maximal consistent set. However, using a standard technique called ‘forcing
choices’ we can extend ψ to such a set. Namely, we enumerate all formulas from
Closure(φ): χ1, . . . , χn. Set ψ0 = ψ. For each formula χi either ∧A∧〈α〉(ψi−1∧χi)
or ∧A∧〈α〉(ψi−1∧¬χi) is consistent, provided ∧A∧〈α〉ψi−1 is consistent (from basic
modal logic). Construct a conjunction containing every formula from Closure(φ) or
its negation by extending ψ while maintaining consistency. Finally, ψn will give us a
conjunction of formulas in a maximal consistent set B which satisfies the conditions
of C2.

This argument shows that Rα transitions required by the model conditions exist in
Mφ. We also need to show that only those Rα transitions do exist from non-x states.
Axiom BA2a makes sure that there are no Rα transitions from the states where the
plan does not start with α (if the conjunction of formulas inA implies [α]⊥, this means
that this conjunction is not consistent with any formula of the form 〈α〉ψ). Axiom BA3
ensures that all states reachable by α are as described in C2.

Next consider condition C3. Axiom BA2b ensures that Rt(φ′) transitions do not
exist from the states where the plan expression does not start with a test whether φ′

holds, and BA4 ensures that if A contains Pκ(φ′?;π) and fb(φ′), then there exists a
Rt(φ′) transition to a state B which is identical to A except that the plan expression is
Pκ(π), and only to such a state B.

C4 and C5 require that if x is false and the next step in the current plan is not
executable (preconditions of a belief update action do not hold or the test formula in a
belief test action is false) then the transition by this step should lead to a state which is
identical to the current one except that x holds there. This is ensured by axioms BA5
and BA6.

The model satisfies condition C6 because by BA7 a state A can have an abstract
plan ᾱ link to another stateB ifB is exactly likeA apart from being an x-state. Axiom
BA2a makes sure that an ᾱ transition is only possible if the current plan has ᾱ as its
first step.

If A contains Pκπ;π′ where π is a conditional plan with a test on φ′, axioms CP1
— CP4 ensure that there exist Rt((¬)φ′) transitions required by condition C7, and the
only states reachable by them are as described in the condition. CP5 disables an Rt(φ′)

26

transition if π tests on φ′ and fb(φ′) is false, and vice versa, disables Rt(¬φ′) transition
if π tests on φ′ and fb(φ′) is true.

In x-states, all actions and tests should be executable without changing the state. In
other words every A such that x ∈ A should have an Ru transition to itself for every
u = α, t(φ), ᾱ. Clearly the conjunction of formulas in A is consistent with 〈u〉 ∧A,
otherwise it will be inconsistent with axiom BA8. So condition C8 holds.

To satisfy condition C9, we need to ensure that first, the required transitions by
Rδri

exist, and second, that only those transitions exist. Axiom PG1 ensures that any
A such that Pε ∈ A, where A satisifies the belief and goal conditions of the PG rule ri,
has a transition to a state which is identical to A apart from replacing Pε with the new
plan expression and possibly not containing x. If the conjunction of formulas in A is
not consistent with the description of the resulting state, then A is not consistent with
PG1. PG1 also makes sure that all Rδri

transitions lead to such a state. Finally, PG2
makes sure that other states (which do not have an empty plan base, or do not satisfy
the belief and goal conditions of ri) do not have any outgoing Rδri

transitions.
Similarly for condition C10: PR1 ensures that if x ∈ A and A contains formulas

which mean that the plan and belief condition of a PR rule pj match, then there is aRδpj

transition to a state which is identical toA apart from replacing the plan expression with
the new one, and not containing x, and only such Rδpj

exist. To make sure there are
no Rδpj

transitions from any other states, we have axiom PR2.

Lemma 3 and Proposition 11 give the proof of the weak completeness of PDL-
3APL:

Theorem 2. PDL-3APL is weakly complete with respect to M3APL(R).

Proof. We have shown that every formula φ consistent with respect to PDL-3APL
axioms has a model Mφ (since by Lemma 3, φ is satisfied in at least one state of Mφ).
By Proposition 11,Mφ satisfies conditions C1–C10, in other words, it is a M3APL(R)
model. We have shown that if 6` ¬φ, then φ’s negation is not true in all models: 6|= ¬φ.
By contraposition, if ¬φ is valid, namely if |= ¬φ, then its negation is provable: ` ¬φ.
Since every PDL-3APL formula is equivalent to its double negation, we have |= φ
implies |= ¬¬φ implies ` ¬¬φ implies ` φ.

The definitions of PDL-3APL models and the set of axioms are quite complex. The
models have transitions corresponding to the various components of 3APL programs
(belief update actions, tests, abstract plans, planning goal rules and plan revision rules)
and the states have the beliefs, goals and plans of the agent. Each of those components
requires a relatively small set of conditions (motivated by the operational semantics)
and a couple of axioms. However, due to the complexity of 3APL, the complete list of
axioms is rather long. On the positive side, this does provide us with a complete system
for reasoning about the whole language, rather than just a fragment of it as in [11]. In
the remainder of the paper, we explain how 3APL programs can be translated into
PDL-3APL and how to verify 3APL programs using theorem-proving in PDL-3APL.

27

4. Translating 3APL Programs into PDL-3APL

In this section, we give a translation of a complete 3APL agent program into a
PDL-3APL program expression. In this and in subsequent sections, we will use R as a
name both for a program (and the agent’s initial configuration) and its signature (when
we talk about the models of the logic corresponding to this signature).

Recall that in the initial configuration, the agent has an empty plan base, and, with
a non-interleaved execution strategy, execution of the agent’s program proceeds by
the adoption and execution of a single appropriate plan (as determined by the current
beliefs and goals of the agent). If the goal for the currently executing plan is achieved,
or the plan becomes non-executable, the plan may be dropped or revised by a plan
revision rule. The execution of an agent program R can therefore be translated into
PDL-3APL program expressions corresponding to the application of a PG rule and the
execution of the corresponding plan, possibly interleaved with the application of a PR
rule and the consequent revision of the plan base

(∪i(δri; fp(πi))
⋃
∪j(δpj ; fp(π

′
j)))

+

where i ranges over all PG rules and j ranges over all PR rules in the program. We will
refer to this expression as tr(R). tr(R) picks out exactly those paths in a model which
correspond to an execution of the program.

To show that our translation is faithful with respect to the operational semantics,
we prove a correspondence theorem relating transition systems generated by the opera-
tional semantics for program R and models in M3APL(R). First of all, note that there
is a clear correspondence relation between configurations in the operational semantics
and states in M3APL(R) models. Namely, given a configuration c = (σ, γ,Π), we say
that s ∼ c for a state s in a modelM if s has the same belief, goal and plan assignments
as c.

We will also talk about matching paths in the operational semantics and in M3APL(R)
models. By a path in an operational semantics transition system S, we mean a sequence
of configurations c1, label1, c2, label2, . . . , cm where cj+1 is obtained from cj by one
of the transition rules (1a)-(6c). For convenience, we label each transition by the cor-
responding operation; the labels are, (1a, α), (1b, α), (2, t(β)), (3a, t(φ)), (3b, t(¬φ)),
(4a, t(φ)), (4b, t(¬φ)), (5, δri), (6a, δpj(α)), (6b, δpj(t(β))), (6c, δpj(ᾱ)). We claim
that if there is a path c = c1, . . . , cn = c′ in S with a certain sequence of labels, then
there is a corresponding path s = s1, . . . , sk = s′ in M such that s ∼ c and s′ ∼ c′. It
remains to define what we mean by a ‘corresponding path’.

Definition 15. Let cj , labelj , cj+1 be a single step on a path in the 3APL operational
semantics transition system S. The corresponding path sj , . . . , sj+i in M depends on
labelj and is defined as follows.

• cj , (1a,α), cj+1: the corresponding path is sj , sj+1 where sj ∼ cj and sj+1 ∼
cj+1 and Rα(sj , sj+1).

• cj , (1b,α), cj+1: the corresponding path is sj , sj+1, . . . , sj+1 where sj ∼ cj
and sj+1 ∼ cj+1 and Rα(sj , sj+1), sj+1 satisfies x and has an empty plan

28

base, and is repeated as many times as there are steps remaining in the plan
when the goal has been achieved; the transitions from sj+1 to sj+1 on the path
correspond to the remaining steps in the plan.6

• cj , (2, t(β)), cj+1: the corresponding path is sj , sj+1 where sj ∼ cj and sj+1 ∼
cj+1 and Rt(β)(sj , sj+1).

• cj , (3a, t(φ)), cj+1: the corresponding path is sj , sj+1 where sj ∼ cj and
sj+1 ∼ cj+1 and Rt(φ)(sj , sj+1).

• cj , (3b, t(¬φ)), cj+1: the corresponding path is sj , sj+1 where sj ∼ cj and
sj+1 ∼ cj+1 and Rt(¬φ)(sj , sj+1).

• cj , (4a, t(φ)), cj+1: the corresponding path is sj , sj+1 where sj ∼ cj and
sj+1 ∼ cj+1 and Rt(φ)(sj , sj+1).

• cj , (4b, t(¬φ)), cj+1: the corresponding path is sj , sj+1 where sj ∼ cj and
sj+1 ∼ cj+1 and Rt(¬φ)(sj , sj+1).

• cj , (5, δri), cj+1: the corresponding path is sj , sj+1 where sj ∼ cj and sj+1 ∼
cj+1 and Rδri

(sj , sj+1).

• cj , (6a, δpk(α)), cj+1: the corresponding path is sj , t, . . . , t, sj+1 where sj ∼ cj
and sj+1 ∼ cj+1 and Rα(sj , t), Rδpk

(t, sj+1), t is an x-state, and the transi-
tions from t to t on the path correspond to the remaining steps in the original
plan.

• cj , (6b, δpk(t(β))), cj+1: the corresponding path is sj , t, . . . , t, sj+1 where
sj ∼ cj and sj+1 ∼ cj+1 and Rt(β)(sj , t), Rδpk

(t, sj+1), t is an x-state, and
the transitions from t to t on the path correspond to the remaining steps in the
original plan.

• cj , (6c, δpk(ᾱ)), cj+1: the corresponding path is sj , t, . . . , t, sj+1 where sj ∼ cj
and sj+1 ∼ cj+1 and Rᾱ(sj , t), Rδpk

(t, sj+1), t is an x-state, and the transi-
tions from t to t on the path correspond to the remaining steps in the original
plan.

The following theorem states that if a transition system S and a PDL-3APL model
M are generated by the same initial configuration, then the set of configurations with
an empty plan base reachable from the initial state in S is the same as the set of states

6We require this to ensure that states with empty plan bases are reachable by a path in tr(R), where paths
are the executions of PDL program expressions (which correspond to every plan in states that achieves its
goal) to completion. For example, if in configuration c with an empty belief base, a goal base containing p,
and a plan α1;α2 with its associated goal p, executing α1 achieves p, then in the resulting configuration
c′ the belief base contains p, the goal base and the plan base are empty. In the model, we go from a state
s matching c to an x-state s′ with the same belief, goal and plan assignment as in c′, but we make an extra
step to ‘consume’ the rest of the PDL program expression, namely α2, so the corresponding path in a model
is s, α1, s′, α2, s′. Note that this way s′ is reachable by a path α1;α2 which corresponds to a completely
executed PDL program expression.

29

reachable from the initial state byRtr(R). (By a model generated by a state s0 we mean
a model where all states are reachable from s0).

Theorem 3. Let R be a 3APL program, S a transition system generated by the oper-
ational semantics of R with initial configuration c0. Let M be a model generated by
state s0 ∼ c0. Then a configuration c with an empty plan base is reachable in S from
c0 iff a state s ∼ c is reachable in M from s0 by tr(R).

Proof. The theorem has two directions:

1. If s0 ∼ c0 and there is a path in S from c0 to c where c has an empty plan base,
then there is an s with s ∼ c such that Rtr(R)(s0, s).

2. If s0 ∼ c0 and Rtr(R)(s0, s), then there exists a path in S from c0 to c such that
s ∼ c.

1. Assume s0 ∼ c0 and there is a path in S from c0 to c where c has an empty plan
base. We need to show that there is an s with s ∼ c such that Rtr(R)(s0, s).

The proof is by induction on the number of labels in the path in S, using the precon-
ditions of the transitions of the operational semantics and conditions on M3APL(R).
We show that for every configuration c, the set of transitions possible in c is included
in the set of transitions possible in a state s ∼ c, and moreover the configurations
reachable from c are in the relation ∼ with the states reachable by the corresponding
transitions from s and the resulting path is in Rtr(R).

The initial configuration c0 has an empty plan base, and the only applicable transi-
tion is a step by (5, δri) to a configuration s1 with plan πi. It is easy to see that given
that s0 ∼ c0 and condition C9 on models, there is a corresponding step in M to a state
s1 such that s1 ∼ c1. Note that tr(R) is a union of δri; fp(πi) with δpj ; fp(πj). We
have now made a first step inM which matches an initial segment δri of δri; fp(πi). In
order for the matching path inM to be in tr(R), it has to contain all the steps in fp(πi).
If the next steps on a path in S correspond to a ‘normal’ execution of πi, that is, they
follow the operational semantics rules (1a), (2), (3a), (3b), (4a), (4b), then matching
steps exist in M by conditions C2, C3, C7. If the goal of the plan is achieved by α
before the plan finishes executing, the step in S is of the form (1b, α). By C2, a tran-
sition to an x-state exists, and from the x-state there is a path to itself corresponding
to the rest of fp(πi) steps by condition C8. The final state on this path is in the ∼
relation to a configuration with an empty plan base in S, so the inductive hypothesis
applies. Similarly, if one of the steps in plan πi in S blocks, we have one of the steps
(6a, δpk(α)), (6b, δpk(t(φ))), (6c, δpk(ᾱ)) to a configuration c′ with plan π′j . In all of
those cases, in M by one of C4, C5, C6, there is a transition to an x-state t, and from
t a path to itself by the rest of fp(πi) by C8, and there is also a transition from t to a
state s′ with s′ ∼ c′ by C10. In this case, we start ‘tracing’ a δpj ; fp(π

′
j) path in M , in

exactly the same way as for δri; fp(πi).
2. Assume s0 ∼ c0 and Rtr(R)(s0, s). We need to show that there exists a path in

S from c0 to c such that s ∼ c. Again observe that every path where the begin and end
states are inRtr(R)(s0, s) starts with an δri or δpj transition, and since c0 has an empty
plan base, so does s0, so there are no Rδpj

edges out of s0 and the only possibility is
an δri transition. Then since the belief and goal bases are the same in c0 and s0, there

30

is a matching transition possible from c0, to a configuration c1 where the plan is πi.
The next step in M is the first transition in fp(πi) to some state s′. If s′ is not an x
state, that is, the transition is enabled by one of C2 (clause 3), C3, or C7, then there is
a matching step in S to a matching c′ by one of (1a), (2), (3a)–(4b). If s′ is an x state
by C2 (clause 4), then there is a matching step in S to c′ by (1b), s′ ∼ c′. If s′ is an x
state by C4, C5, or C6, then there is a transition from s′ to s′′ by Rδpj

and a matching
step in S to c′ by (6a), (6b) or (6c), so that s′′ ∼ c′.

5. Verification of 3APL Programs

Given the above translation of 3APL programs into PDL-3APL, we can verify prop-
erties of agent programs, such as ‘all executions of a programR result in a state satisfy-
ing property ψ’, [tr(R)]ψ, or ‘there is an execution of R which achieves ψ’, 〈tr(R)〉ψ.
More precisely, we can show that, given the initial beliefs and goals of the agent, the
application of its planning goal rules and the execution of the resulting plans reach
states in which the agent has certain beliefs and goals. Since we are using PDL, we
cannot inspect every state along the path corresponding to an agent’s execution. Rather
we sample the states where either a PG or a PR rule are about to be applied. Note
that these states are uniquely determined both in the operational semantics and in the
M3APL(R) models: in case of PG rules, they have an empty plan base; in case of PR
rule, the plan base contains a plan the first action of which is not executable. In other
words, we sample states at the end of the agent’s ‘cycle’, which consists of firing a
PG or PR rule and executing the corresponding plan to completion or to the point of
exceptional termination when some plan action is not executable or the goal of the plan
has been achieved half-way through execution.

To verify properties of 3APL programs expressed in PDL-3APL we can use a the-
orem prover such as MSPASS or PDL-TABLEAU [19, 20].7 Note that while there are
currently no PDL theorem provers which can interpret belief, goal and plan modali-
ties, formulas starting with these modalities can always be encoded as propositional
variables with extra axioms.

As an illustration, we show how we can prove properties of the simple agent pro-
gram introduced above. We shall use the following abbreviations for propositions:
a for attendConference, p for paper, c for clearance, d for deadlinePast, s
for submitted, y for accepted, f for fly and t for ticket. In addition, we use
the following abbreviations for belief update actions: wP for writePaper, rC for
requestClearance, sP for submitPaper, rP for revisePaper, bT for buyPlaneTicket,
fC for flyToConference, and ttC for the abstract plan travelToConference. The

7The use of theorem proving rather than model checking is motivated by the current state of the art
regarding available verification frameworks and tools for PDL. In particular, to the best of our knowledge
there is no model checking framework for PDL, while theorem proving techniques for PDL are readily
available.

31

agent’s program consists of 6 belief update actions:

{ – p, – d} wP {{p}, {p, d}}
{p, – d, – c} rC {{ }, {d}, {c}, {d, c}}
{p, – d, c} sP {{ }, {y}}
{p, – d} rP {{ }, {d}}
{ – t} bT {{t}}
{t} fC {{a}}

a single PG rule r1:

r1 = a ← – p and – d | wP ; rC; sP ; if y then ttC

and four PR rules:

p1 = rC;π1 ← d | ε
p2 = sP ;π2 ← d | ε
p3 = sP ;π2 ← – d and – c | rP ; rC; sP ;π
p4 = ttC; ← f | bT ; fC

where π1 = sP ;π2 and π2 = if y then ttC. The translation of the agent’s program
is then

tr(R) =
((δr1;wP ; rC; sP ; ((t(y); ttC) ∪ t(¬y))) ∪
δp1 ∪ δp2 ∪
(δp3; rP ; rC; sP ; ((t(y); ttC) ∪ t(¬y)) ∪
(δp4; bT ; fC))+

To reason about the execution of the agent program we need instances of axioms for
the pre- and postconditions of the agent’s actions. For example the following instances
of BA1 defining pre- and postconditions of submitPaper:

¬x ∧ P a(sP ; ((t(y); ttC) ∪ t(¬y))) ∧ ¬Bp ∧ ¬Bd ∧Bc ∧ ¬By
→ 〈sP 〉(¬x ∧ P a((t(y); ttC) ∪ t(¬y)) ∧ ¬By)

¬x ∧ P a(sP ; ((t(y); t) ∪ t(¬y)) ∧ ¬Bp ∧ ¬Bd ∧Bc→
〈sP 〉(¬x ∧ P a((t(y); ttC) ∪ t(¬y)) ∧By)

and the following instance of BA3:

¬x ∧ P a(sP ; ((t(y); ttC) ∪ t(¬y))) ∧Bp ∧ ¬Bd ∧Bc→
[sP](¬x ∧ P a((t(y); ttC) ∪ t(¬y)) ∧ (¬By ∨By))

If we specify the initial state as ¬x ∧ Pε ∧ ¬Ba ∧ ¬Bp ∧ ¬Bd ∧ ¬Bc ∧ ¬By ∧
¬Bt∧Bf it is possible to prove (using pre- and postcondition axioms for other actions,

32

omitted for brevity), that, for example, the agent will only attend the conference if its
paper is accepted:

¬x ∧ Pε ∧ ¬Bp ∧ ¬Bd→ 〈[tr(R)]〉(Ba→ By)

We can also prove that the agent may achieve its goal (intuitively, provided it receives
clearance before the deadline, and has the paper accepted):

¬x ∧ Pε ∧ ¬Bp ∧B – d→ 〈tr(R)〉Ba

Clearly, to prove that the agent is guaranteed to achieve its goal, we need additional
assumptions which can be expressed as extra axioms: e.g., that agent always receives
clearance and that papers it submits are always accepted.

6. Discussion

Our approach builds on and extends previous research on proving correctness of
programs in APL-like and other BDI-based agent programming languages, e.g., [21,
11]. However much of this work has not considered plan revision. Levesque et al.
[21] have described GOLOG, a high level agent programming language in which basic
actions are defined by action precondition and successor state axioms. By reasoning
in situation calculus, it is possible to prove that a (non-exceptional) execution of a
GOLOG program will achieve the agent’s goal. Recent work on verification of Con-
Golog programs [22] expresses ConGolog programs in a logic which extends situation
calculus, dynamic logic and temporal logic, and proposes a model-checking algorithm
for verifying properties of ConGolog programs. In [11, 12] Alechina et al. gave a
complete axiomatisation of a logic for reasoning about a subset of 3APL, but without
nondeterministic actions or plan revision rules. In [23] a dynamic logic for reasoning
about programs written in Dribble was proposed. Dribble includes ‘practical reason-
ing’ rules which allow the revision of agent programs. However no axiomatisation of
the logic was given. In [24], an axiomatisation of a logic for reasoning about Dribble
programs is given, but based on a temporal logic CTL rather than on dynamic logic.

Recovery from plan execution failure has also been investigated in the agent pro-
gramming literature. For example, in Jason [5] a plan execution failure generates a
goal deletion event that may initiate “clean up” plans prior to attempting another plan
for the goal. In CANPLAN2 [15] if the plan for a goal is deemed to have failed or is
blocked (not executable), the plan is abandoned and any alternative plans for achieving
the goal are tried. In [9] Thangarajah et al. present an integrated approach to aborting
tasks and plan failure. Plans have an associated failure condition which triggers a fail-
ure method to clean up, before the plan is dropped and another plan tried. However
while an operational semantics is given for failure recovery in [5, 15, 9], there is no
corresponding logical analysis.

In contrast to these approaches, we have focused on a replanning mechanism that
allows a failed plan to be either revised to allow execution to continue, or dropped
(possibly after performing clean up actions) and another applicable plan tried. We have
presented a logic that can be used to specify and verify properties of agent programs

33

that employ this replanning mechanism. We have provided a complete axiomatisation
of the logic and, using simple examples, we have shown how it can be used to specify
properties of agent programs under both normal and exceptional executions.

In this paper, we assumed that an agent executes a single plan at a time. In future
work we intend to extend the framework to allow multiple plans whose executions can
be interleaved along the lines of [12].

Acknowledgments

Natasha Alechina and Brian Logan were supported by EPSRC grant no. EP/E031226.

[1] M. Dastani, M. B. van Riemsdijk, F. Dignum, J.-J. C. Meyer, A programming
language for cognitive agents: Goal directed 3APL, in: M. Dastani, J. Dix, A. E.
Fallah-Seghrouchni (Eds.), Programming Multi-Agent Systems, First Interna-
tional Workshop, ProMAS 2003, Melbourne, Australia, July 15, 2003, Selected
Revised and Invited papers, Vol. 3067 of LNCS, Springer, 2004, pp. 111–130.
doi:http://www.springerlink.com/content/l7dqkvqh5u941l4b.

[2] M. Dastani, M. B. van Riemsdijk, J.-J. C. Meyer, Programming multi-agent sys-
tems in 3APL, in: R. H. Bordini, M. Dastani, J. Dix, A. E. Fallah-Seghrouchni
(Eds.), Multi-Agent Programming: Languages, Platforms and Applications,
Vol. 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations,
Springer, 2005, pp. 39–67.

[3] M. Dastani, 2APL: a practical agent programming language, Autonomous Agents
and Multi-Agent Systems 16 (3) (2008) 214–248.

[4] M. Dastani, J.-J. C. Meyer, A practical agent programming language, in: M. Das-
tani, A. E. Fallah-Seghrouchni, A. Ricci, M. Winikoff (Eds.), Proceedings of
the Fifth International Workshop on Programming Multi-agent Systems (Pro-
MAS’07), Vol. 4908 of LNCS, Springer, 2008, pp. 107–123.

[5] R. H. Bordini, J. F. Hübner, R. Vieira, Jason and the Golden Fleece of agent-
oriented programming, in: R. H. Bordini, M. Dastani, J. Dix, A. El Fal-
lah Seghrouchni (Eds.), Multi-Agent Programming: Languages, Platforms and
Applications, Springer-Verlag, 2005, pp. 3–37.

[6] R. H. Bordini, J. F. Hübner, M. Wooldridge, Programming multi-agent systems
in AgentSpeak using Jason, Wiley, 2007.

[7] P. Busetta, R. Rönnquist, A. Hodgson, A. Lucas, JACK intelligent agents - com-
ponents for intelligent agents in Java, AgentLink Newsletter (2) (1992) 2–5.

[8] D. Morley, K. Myers, The SPARK agent framework, in: Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’04), IEEE Computer Society, Washington, DC, USA, 2004, pp. 714–
721. doi:http://dx.doi.org/10.1109/AAMAS.2004.267.

34

[9] J. Thangarajah, J. Harland, D. Morley, N. Yorke-Smith, Aborting tasks in BDI
agents, in: Proceedings of the Sixth International Joint Conference on Au-
tonomous Agents and Multi Agent Systems (AAMAS’07), Honolulu, HI, 2007,
pp. 8–15.

[10] J. Thangarajah, J. Harland, D. Morley, N. Yorke-Smith, Suspending and resuming
tasks in BDI agents, in: Proceedings of the Seventh International Conference on
Autonomous Agents and Multi Agent Systems (AAMAS’08), Estoril, Portugal,
2008, pp. 405–412.

[11] N. Alechina, M. Dastani, B. Logan, J.-J. C. Meyer, A logic of agent programs, in:
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence
(AAAI 2007), AAAI Press, 2007, pp. 795–800.

[12] N. Alechina, M. Dastani, B. Logan, J.-J. C. Meyer, Reasoning about agent delib-
eration, in: G. Brewka, J. Lang (Eds.), Proceedings of the Eleventh International
Conference on Principles of Knowledge Representation and Reasoning (KR’08),
AAAI, Sydney, Australia, 2008, pp. 16–26.

[13] D. Harel, D. Kozen, J. Tiuryn, Dynamic Logic, MIT Press, 2000.

[14] A. S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage, in: Proceedings of Modelling Autonomous Agents in a Multi-Agent
World, no. 1038 in LNAI, Springer Verlag, 1996, pp. 42–55.

[15] S. Sardiña, L. Padgham, Goals in the context of BDI plan failure and planning,
in: E. H. Durfee, M. Yokoo, M. N. Huhns, O. Shehory (Eds.), Proceedings of
the Sixth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2007), ACM, 2007, pp. 1–8.

[16] G. Plotkin, A structural approach to operational semantics, Technical Report
DAIMI-FN-19, Computer Science Department, Aarhus University, Denmark
(1981).

[17] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Vol. 53 of Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, 2001.

[18] M. J. Fischer, R. E. Ladner, Propositional dynamic logic of regular programs,
Journal of Computer and System Sciences 18 (2) (1979) 194–211.

[19] U. Hustadt, R. A. Schmidt, MSPASS: Modal reasoning by translation and first-
order resolution., in: Proc. TABLEAUX 2000, Vol. 1847 of LNCS, Springer,
2000, pp. 67–71.

[20] R. A. Schmidt, PDL-TABLEAU, http://www.cs.man.ac.uk/˜schmidt/
pdl-tableau (2003).

[21] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, R. B. Scherl, GOLOG: A logic
programming language for dynamic domains, Journal of Logic Programming
31 (1-3) (1997) 59–83.

35

[22] J. Claßen, G. Lakemeyer, A logic for non-terminating Golog programs, in:
G. Brewka, J. Lang (Eds.), Proceedings of the Eleventh International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’08), AAAI,
Sydney, Australia, 2008, pp. 589–599.

[23] B. van Riemsdijk, W. van der Hoek, J.-J. C. Meyer, Agent programming in
Dribble: from beliefs to goals using plans, in: Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS’03), ACM Press, New York, NY, USA, 2003, pp. 393–400.
doi:http://doi.acm.org/10.1145/860575.860639.

[24] D. T. Trang, B. Logan, N. Alechina, Verifying Dribble agents, in: M. Baldoni,
J. Bentahar, J. Lloyd, M. B. van Riemsdijk (Eds.), Seventh International Work-
shop on Declarative Agent Languages and Technologies (DALT 2009), Workshop
Notes, Budapest Hungary, 2009, pp. 162–177.

36

