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1 Introduction

We propose a novel approach to preference change. We treat a set of preferences as a
special kind of theory, and define minimal change contraction operation in the spirit of
minimal change as advocated by the Alchourrón, Gärdenfors, and Makinson (AGM)
theory of belief revision [1]. To be precise, a contraction of a set of preferences S by
a preference p is minimal if the cardinality of a set of preferences removed from S in
order to make p underivable is minimal. We characterise minimal preference contraction
by a set of postulates and prove a representation theorem. We also give a linear time
algorithm which implements minimal contraction. This extended abstract is based on
the paper published in [2] but considers a simpler preference language (with only the≤
preference relation).

2 Minimal contraction of preferences

We assume that an agent’s preferences are given by a binary relation≤ over some finite
set of alternatives A. For A,B ∈ A, we will write A ≤ B to mean that B is preferred
to A. We call A ≤ B a preference sentence. An agent’s preference state is represented
by a preference set consisting of preference sentences (or simply preferences).

We assume that the agents are rational, i.e., they can complete their preference sets
using reflexivity and transitivity of ≤:

Refl A ≤ A
Trans A ≤ B, B ≤ C ⇒ A ≤ C

We denote by Cn≤(S) the closure of a set S under the rules above. Formally,
Cn≤(S) is the set of preferences which contains S, A ≤ A for every A ∈ A, and
in addition A ≤ B,B ≤ C ∈ Cn≤(S), then A ≤ C ∈ Cn≤(S). A set of preferences
S is deductively closed iff S = Cn≤(S). In what follows, we assume that preference
sets are always deductively closed.

Sometimes we will use the notation S `≤ p to say that p can be derived from S and
the reasoning rules Refl and Trans. Clearly, `≤ A ≤ A (since A ≤ A is derivable from
an empty S). We will refer to sentences derivable from an empty set as tautological.
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Note that we do not assume that the agent can also reason about its preferences in
propositional logic using a language that has negation, disjunction etc. The problem of
preference revision in this simple setting appears, at first sight, trivial. Since there is
no way to derive a contradiction, revision of S by p is always the same as expansion
of S by p and can be defined as Cn≤(S ∪ {p}). However, we would like to argue
that the problem of contracting by a preference still does make sense. An agent may
want to give up a preference A ≤ B because, for example, it no longer believes in the
reason which led it to prefer B to A. For example, if the agent is choosing between
alternatives A and B on the grounds of cost, and looked up the prices in a catalogue
where B appeared to be significantly cheaper than A, it may have decided that A ≤ B.
However, if it turns out later that the catalogue was out of date, or did not even refer
to the A and B the agent is concerned with, but to some similarly named but different
alternatives, then the agent has no reason to prefer B to A or to consider them equally
preferred. It just needs to change its preference set so that this set no longer contains
(and entails) A ≤ B. This is the problem of contraction of S by A ≤ B, and we would
like to consider the notion of a minimal contraction which removes the minimal number
of preferences from S. In what follows, we give a formal definition, a set of postulates
for the minimal contraction by a preference, and an efficient (linear time) algorithm for
performing the minimal contraction.

The definition of minimal contraction of S by a non-tautological p is given below
and requires that p should be removed from S and made underivable from S and that
the resulting subset of S has the maximal possible cardinality (is obtained by removing
as few sentences as possible from S):

Definition 1. (Minimal contraction by a ≤-preference) Given a preference set S and a
preference p, such that 6`≤ p, a minimal contraction of S by p is any operation − that
returns a set S − p such that:

(1) S − p ⊆ S
(2) S − p 6`≤ p
(3) for any other set S′ satisfying (1) and (2), |S′| ≤ |S − p|.

Note that it follows from the definition that if S 6`≤ p (which given that S is deductively
closed, is equivalent to p 6∈ S), then S − p = S.

3 Postulates

Before we can state the postulates characterising minimal contraction, we need to in-
troduce the following abbreviations. By A≤S we will denote {C | A ≤ C ∈ S}. By A≥S
we will denote {C | C ≤ A ∈ S}. The cost cS(A ≤ B) for A ≤ B ∈ S (intuitively,
the number of preferences a contraction by A ≤ B has to remove from S) is defined as
follows:

cS(A ≤ B) = |A≤S ∩B
≥
S |+ 1

(The reason why the cost is like this is because in order to make A ≤ B underivable
by transitivity, for every pair A ≤ C and C ≤ B we need to remove at least one of the
premises, plus we need to remove A ≤ B itself.)
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The following postulates characterise minimal contraction. For readability, we will
omit subscript S when it is unambiguous.

C-Closure S − p = Cn(S − p)
C-Inclusion S − p ⊆ S
C-Vacuity If p 6∈ S, S − p = S
C-Success If p is not of the form A ≤ A, then p 6∈ S − p
C-Equivalence If Cn≤(p1) = Cn≤(p2), then S − p1 = S − p2

C-Minimality If p ∈ S, then |S − p| = |S| − cS(p)

The postulates of C-Closure, C-Inclusion, C-Vacuity, C-Success and C-Equivalence
are standard postulates for contraction of beliefs. Recovery (S ⊆ Cn((S − p) ∪ p))
does not hold, but this postulate has always been considered controversial [5]. The
C-Minimality postulates characterise specifically minimal contraction of preferences,
because for preferences it is possible to predict the cardinality of the resulting set.

Theorem 1. The result of any minimal contraction satisfies the minimal preference
contraction postulates above, and every contraction satisfying these postulates is a min-
imal preference contraction.

Proof. For the case when p 6∈ S, clearly the minimal contraction is S itself, and all the
postulates hold for S − p = S trivially.

Let us consider the case when p ∈ S. We show first that every minimal contraction
satisfies the postulates. C-Inclusion holds by Definition 1, and C-Vacuity trivially since
p ∈ S. To show that C-Closure holds, assume by contradiction that S − p is a minimal
contraction and it is not deductively closed. Since S − p 6` p (by Definition 1 (2)) and
S − p is not deductively closed, then there must be a consequence q of S − p such that
q 6∈ S−p. Since S−p 6` p and S ` q, it follows that (S−p)∪{q} 6` p. Since S−p ⊆ S
(by Definition 1 (1)), S ` q, and since S is deductively closed, q ∈ S. Hence there is a
set S′ = (S − p)∪ {q} such that conditions (1) and (2) of Definition 1 hold for S′, and
its cardinality is greater than that of S − p. Hence S − p is not a minimal contraction
because it violates condition (3): a contradiction. C-Success holds for all p which are
not derivable from an empty preference set because there is always a subset of S which
does not derive p (in the worst case, ∅). C-Equivalence holds rather trivially because
for all atomic non-tautological p1, p2, Cn≤(p1) 6= Cn≤(p2) if p1 6= p2 (because
Cn≤(p) = {p} ∪ {A ≤ A | A ∈ A}. For tautological p1, p2 contraction is not defined
since it is impossible to construct a deductively closed preference set which does not
contain them. (Alternatively, we could have defined S − A ≤ A = S, in which case
again C-Equivalence would hold.)

Now let us consider the minimality postulates. We need to prove that any minimal
contraction by A ≤ B removes exactly |A≤ ∩B≥|+ 1 preferences.

In order to contract by A ≤ B, we need to remove A ≤ B itself from S. However
A ≤ B may still be derivable, namely using the transitivity rule. The number of possible
derivations of A ≤ B using the rule A ≤ C,C ≤ B ⇒ A ≤ B is exactly |A≤ ∩ B≥|.
We need to ‘destroy’ each such derivation, and in order to do this we need to remove
at least one of the premises in each derivation, namely either all premises of the form
A ≤ C or all premises of the form C ≤ B. So any contraction satisfying (1) and (2)
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needs to remove at least |A≤∩B≥|+1 preferences (1 is for A ≤ B itself). Conversely,
if one of the preferences for each possible derivation is removed, then A ≤ B is no
longer derivable, so the operation already satisfies (1) and (2). (Note that if A ≤ C for
C ∈ A≤ ∩ B≥ is itself derivable, one premise in the derivation of A ≤ C is A ≤ D
whereD ≤ C since C ≤ B,D ≤ C, soD ∈ A≤∩B≥, soA ≤ D will be removed and
henceA ≤ C is not re-derivable.) Hence, in order to satisfy (3), the operation should not
remove anything else. Hence any minimal contraction removes exactly |A≤ ∩B≥|+ 1
preferences.

The other direction: if an operation satisfies the postulates, it is a minimal con-
traction. Clearly, since the operation satisfies C-Closure, C-Inclusion and C-Success,
it satisfies conditions (1)-(2) of Definition 1. To show that it satisfies (3), we need to
prove that there is no set of strictly larger cardinality than S − p which still satisfies
(1)-(2), in other words that every successful contraction has to remove at least as many
preferences as is stated in C-Minimality postulates. The argument is exactly as above.
2

4 Algorithm for computing a minimal preference contraction

The algorithm for computing S − p is given below. It assumes that p is not tautological
(in that case contraction is not defined). Note that if p 6∈ S, the set {C | C ∈ A≤ ∩ B≥}

Algorithm 1 Minimal preference contraction algorithm for ≤
procedure MINIMAL-CONTRACTION-≤(S, p)

A≤ := {C | A ≤ C}
B≥ := {C | C ≤ B}
for each C ∈ A≤ ∩ B≥ do

S := S \ {A ≤ C}
end for
S := S \ {A ≤ B}

is empty so S \ {A ≤ C | C ∈ A≤ ∩ B≥} = S.

Theorem 2. Algorithm 1 computes a minimal preference contraction.

Proof. We show that the result of applying the algorithm to a preference set S and
p which is not of the form A ≤ A, always satisfies the conditions in Definition 1.
Condition (1) holds because the algorithm only removes sentences from S. Condition
(2) holds because the algorithm removes a premise from every possible derivation of
p. Condition (3) holds because the algorithm result satisfies the minimal contraction
postulates hence it is a minimal contraction by Theorem 1. 2

Theorem 3. The time complexity of Algorithm 1 is in O(|A|).

Proof. We assume that we can order the alternatives in some order (e.g., lexicographic
order) and we can recover the ordered set of alternatives to which an alternative A
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is related by ≤ in constant time (e.g., a hash table mapping from alternatives to sets
(lists) of alternatives A≤ and A≥). The maximum size of A≤ and B≥ is bounded by
|A|, since A and B can be related to at most |A| alternatives by ≤. Computing the set
of alternatives C ∈ A≤ ∩ B≥ is also linear in |A| (to be precise it requires at most
2|A|) and the number of such alternatives C is again bounded by |A|. Removing the
preferences A ≤ C for C ∈ A≤ ∩ B≥ requires at most |A| operations (if the set of
preferences is implemented as, e.g., a linked list) and replacing the new set in the map
is constant time. 2

5 Related work

In [4], Hansson describes four types of preference change: contraction and revision of
preference relations, and addition and subtraction of alternatives. We do not consider
changes in alternatives in our framework, thus we compare with the first two kinds.
Hansson defines contraction in terms of revision with the intuition that “to contract
your state of preference by α means to open it up for the possibility that ¬α” and
gives postulates for this operation. To define a minimal preference revision operator,
Hansson introduces a measure of similarity between preference relations. This involves
a calculation of the symmetric difference between two sets X and Y (X∆Y ), which is
equal to (X\Y ) ∪ (Y \X). The result of the preference change is a preference relation
that has as small a distance from the original relation as possible. This idea inspired
our notion of minimal contraction. Since Hansson considers a full logical language
with negations, disjunctions etc. of preferences, the complexity of his operations is
clearly much higher than ours. [3] discuss logical constraints on preference — formal
requirements that a preference state has to satisfy. These are called reasoning rules in
our framework. A further distinction between logical constraints, input constraints that
come with a specific input, and priorities has been made in the same discussion, and
various ways of formalizing those aspects in logical models are proposed. In our work,
we consider reasoning involving merely logical constraints. It would be interesting to
study how to modify our algorithms to incorporate other kinds of constraints.
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