
Fair allocation of group tasks according to social norms

Natasha Alechina1, Wiebe van der Hoek2, and Brian Logan1

1 University of Nottingham, UK,
2 University of Liverpool, UK

nza@cs.nott.ac.uk, Wiebe.Van-Der-Hoek@liverpool.ac.uk,
bsl@cs.nott.ac.uk

Abstract. We consider the problem of decomposing a group norm into a set
of individual obligations for the agents comprising the group, such that if the
individual obligations are fulfilled, the group obligation is fulfilled. Such an as-
signment of tasks to agents is often subject to additional social or organisational
norms that specify permissible ways in which tasks can be assigned. An important
type of social norms are ‘fairness constraints’, that seek to distribute individual
responsibility for discharging the group norm in a ‘fair’ or ‘equitable’ way. We
propose a simple language for this kind of fairness constraints and analyse the
problem of computing a fair decomposition of a group obligation, both for non-
repeating and for repeating group obligations.

1 Introduction

Norms have been widely proposed as a means of achieving coordination and guaran-
teeing desirable system-level properties in multi-agent systems (MAS). Much of the
literature on normative MAS has focussed on obligations and prohibitions associated
with roles in an organisational structure or directed to individual agents (see for ex-
ample [12]). However, many norms apply to groups of agents rather than to an agent
enacting a role, or a particular agent in a MAS. For example, the members of the pro-
gramme committee for a workshop may have a collective obligation to review the papers
submitted to the workshop, or the occupants of a shared apartment may have an obli-
gation to keep the apartment clean (e.g., as part of the rental agreement). Such group
norms specify a sequence of actions that should be performed by members of the group,
leaving the details of how the norm is to be implemented to the members of the group
themselves. In general, there will be many possible implementations of a group norm,
i.e., assignments of agents to particular tasks. Each assignment gives rise to a set of
individual obligations that specify what each agent should do in order to discharge the
group obligation.

The assignment of agents to tasks specified by a group norm is often subject to addi-
tional social or organisational norms that specify permissible ways in which tasks can be
assigned. An important type of social norms are ‘fairness constraints’, that seek to dis-
tribute individual responsibility for discharging the group norm in a ‘fair’ or ‘equitable’
way. For example, there may be a constraint that no single agent should be required to
do all the work necessary to discharge the group norm, or that no agent should have to
do a particular task more than once a week, etc. The social norms codifying what counts

2

as ‘fair’ vary from organisation to organisation. For example, in some computer science
departments, all members of academic staff may be assigned teaching duties, while in
other departments, more senior academics are not obliged to teach. A key problem in
normative MAS with group norms is determining whether a particular task allocation is
both effective (i.e., it discharges the group norm) and fair, in the sense of respecting the
social norms or fairness constraints in force within the organisation of which the group
is a part.

In this paper we make a first step towards defining the notion of a fair decomposition
of a group obligation into individual obligations for agents in the group. We consider
a group obligation to be a sequential or parallel composition of actions that have to be
performed by the agents in the group, either once or repeated indefinitely (for exam-
ple, the obligation to keep the household running involves repeated execution of the
same sequence of cleaning, cooking etc. actions). We show how to specify agents’ in-
dividual offers to contribute to a group norm, and analyse the problem of producing a
set of individual obligations for the agents in the group, such that if those individual
obligations are fulfilled, the group obligation is fulfilled. We propose a simple language
for fairness constraints and analyse the problem of computing a fair implementation
of a group obligation, for both non-repeating and repeating group obligations. We also
address the notion of minimality: an implementation should not unnecessarily demand
contributions from agents.

The structure of the paper is as follows. In section 2 we introduce the formal pre-
liminaries, such as the formal language we use to talk about group obligations and the
structures used to interpret the language. In section 3 we introduce the basic setting of
non-repeating group obligations and prove that the problem of whether an implemen-
tation exists is NP-complete. We also analyse the problem of the existence of minimal
and fair implementations. In section 4 we analyse similar problems for repeating group
obligations. We place our work in the context of existing research in section 5 and
discuss future work in section 6.

2 Formal setting

Several approaches to norms have been proposed in the literature, including state-based
norms (where norms are defined in terms of states that should or should not occur), e.g.,
[18], and event or action-based norms (where norms are defined in terms of what agents
should or should not do), e.g., [14, 10]. In this paper we take an action-based view of
norms, in which norms are interpreted as specifying a sequence of actions (possibly
containing gaps) that should occur, either once or repeatedly.3

We work in a propositional language of linear-time temporal logic. We assume that
we have a set of propositional variables Prop that in addition to ‘normal’ propositional
variables such as c for ‘the room is clean’ contain a special kind of variables of the form

3 State-based norms require a state of affairs to be achieved rather than particular actions to be
executed. Grossi et al [15] argue that a complex action or plan may be seen as equivalent to
an action of the form achieve(τ) where τ is a state of affairs. This means that action- and
state-based norms can be considered equivalent on the assumption that there is a single agreed
action or sequence of actions that achieves the desired state.

3

done(a, i) where a is a type of action from a set of actions Ac (where Ac includes the
no-op action skip) and i is the name of an agent coming from the set of agent names
Ag = {1, . . . n}. Intuitively, done(a, i) is true in a state if immediately before that
state, agent i has performed action a.

The syntax of Linear Time Temporal Logic (LTL), see, e.g., [21], is defined as
follows:

φ, ψ := p | ¬φ | φ ∧ ψ | © φ | φUψ

where p ∈ Prop,© means next state, and U means until.

Definition 1. A transition system for a set Ag of n agents and a set Ac of actions is a
tuple 〈S,R, V, sI〉, where

– S is a non-empty set of states;
– R ⊆ Acn×S×S (for a = 〈a1, . . . , an〉 ∈ Acn, we will write (s, s′) ∈ Ra instead

of (a, s, s′) ∈ R);
– V : S × Prop → {true, false} assigns a truth value to each proposition in each

state;
– sI ∈ S is the initial state.

In addition, the following conditions are satisfied:

1. existence of successor: for each state there exists tuple of actions a such that
∃s′((s, s′) ∈ Ra)

2. individual determinacy: if (s′, s) ∈ Ra and (s′′, s) ∈ Rb then for all i, ai = bi
3. meaning of action propositions: V (s,done(ai, i)) = true iff ∃s′((s′, s) ∈
R〈a1,...,ai,...,an〉).

The first condition is a standard simplifying condition for temporal logics [21]. A tran-
sition system that does not satisfy it can easily be transformed into one where all states
with no outgoing transitions have a self-loop that can be interpreted as a no-op skip
action performed by each agent. (To be precise, to satisfy Condition (2), from the termi-
nal state we add a skip link to a new state which has a skip link to itself.) Conditions
(2) and (3) are related, and are imposed in order to be able to correctly interpret propo-
sitions of the form done(ai, i) which mean that agent i has just executed action ai. For
each state there should therefore be a unique tuple of actions by all agents that produces
it (note this is not the same as requiring that each state has a unique predecessor state).
This is also a standard condition in agent logics, for example [11], that need to be able
to express which action or event causes the current state. Again, it is easy to transform
any transition system into a system that satisfies conditions (2) and (3), by unravelling
it [5].

For example, consider the transition system on the left in Figure 1 (with a single
agent 1). This system violates all of the conditions (1)–(3). We can transform it to a
system on the right in Figure 1 that encodes the same information but has a successor
for every state and allows us to make an assignment to action propositions done(a, 1)
and done(b, 1). In this system, t1 and t2 have the same propositional assignment as s
apart from the action propositions, and t3 and t4 have the same assignment again apart

4

sI s
a, b

tI

t2 t4

t1 t3

a

b

skip

skip

skip

skip

Fig. 1. A transition system that does not satisfy (1)-(3) (left) and the corresponding system that
satisfies (1)-(3) (right).

from satisfying the action proposition done(skip, 1) where skip stands for the no-op
action.

Given a transition system M = (S,R, V, sI), a path through M is a sequence
s0, s1, s2, . . . of states such that (si, si+1) ∈ Ra for i = 0, 1, 2, A fullpath is a
maximal path (where every element in the sequence has a successor) and a run of M is
a fullpath which starts from a state sI ∈ S. We denote runs by ρ, ρ′, . . . , and the state
at position i on ρ by ρ[i].

The truth definition for formulas is given relative to a model, a run ρ and the state
at position i on ρ:

M,ρ, i |= p iff V (ρ[i], p) = true
M, ρ, i |= ¬φ iff M,ρ, i 6|= φ
M, ρ, i |= φ ∧ ψ iff M,ρ, i |= φ and M,ρ, i |= ψ
M, ρ, i |=©φ iff M,ρ, i+ 1 |= φ
M, ρ, i |= φUψ iff ∃j ≥ i such that M,ρ, j |= ψ and ∀k : i ≤ k < j, M,ρ, k |= φ

Other boolean connectives are defined as usual, for example φ → ψ := ¬(φ ∧ ¬ψ).
3φ (some time in the future) is defined as >Uφ, 2φ (always in the future) is defined
as ¬3¬φ. We use©m, m ∈ N, to denote a sequence of© modalities of length m.

We say that a run ρ in a transition system M = (S,R, V, sI) satisfies φ (M,ρ |= φ)
if M,ρ, 0 |= φ. We say that M satisfies φ (M |= φ) if for all runs ρ in M , M,ρ |= φ.
A formula φ is valid if for all transition systems M , M |= φ. A set of formulas Γ
logically entails φ (Γ |= φ) if for every M and ρ, if M and ρ satisfy all formulas in Γ ,
then M,ρ |= φ.

3 Non-repeating norms

In this setting, a group obligation specifies a sequence of actions that should be per-
formed collectively by a group of agents. Each step in the sequence specifies some
actions that must be performed in parallel by the agents in the group. We allow actions
that must be performed by more than one agent simultaneously, e.g., if two agents are
necessary to move a table. The obligation specifies what must be done, and in which

5

order; however it does not specify which actions should be performed by each agent
in the group. For example a group of agents may be required to clean a room, where
‘cleaning the room’ is interpreted as “some agent has to vacuum the room and some
agent has to do the dusting”.

We assume that each agent in the group proposes one or more individual contri-
butions to implementing the group norm. Each contribution specifies a set of actions
the agent is prepared to perform in order to discharge the group norm. For example,
an agent may specify that it is prepared to vacuum but not to dust. Where the group
obligation specifies that the same action must be performed several times, we allow an
agent’s individual contribution to specify the maximum number of times the agent is
prepared to perform the action. For example, if a group obligation when spending a
week in a shared house involves cooking dinner each evening, an agent may specify
that it is prepared to cook dinner at most twice during the week.

Before giving formal definitions of group norms and individual contribution schemes,
we need some abbreviations. Let hapd(a1‖ . . . ‖am) (where {a1, . . . , am} is a multi-
set of actions) stand for actions ‘a1, . . . , am were executed in parallel’. This is definable
as

hapd(a1‖ . . . ‖am) =
∨

i1 6=···6=im

(done(a1, i1) ∧ . . . ∧ done(am, im))

If A = {a}, we write hapd(a) for hapd(A). Moreover, hapd(∅) is defined as true.
Let haps(A1; . . . ;AN) where each Aj is a multiset of actions connected by ‖,

stand for a sequence of parallel executions of actions in multisets Aj . This is definable
as

haps(A1; . . . ;AN) = g(hapd(A1) ∧©(hapd(A2) ∧©(. . .© hapd(AN)) . . .))

where each Ai is in the scope of i nested© operators. In particular,

haps(A1;A2) = g(hapd(A1) ∧©hapd(A2))

Note that in this definition, the actions start ‘tomorrow’ rather than ‘now’, which is
more or less an arbitrary decision, made for convenience.

Definition 2 (Non-repeating group norms). GivenN ∈ N, a group norm η is defined
as follows:

η := haps(A1; . . . ;AN)

Again, the obligation starts being executed ‘tomorrow’ rather than ‘at some point in
the future’. All formal results in the paper would hold if we used 3haps(A1; . . . ;AN)
instead.

Example 1. Two flatmates need to decide who contributes in which way to the duties
of dusting (d), doing groceries (g), vacuum cleaning (v) and watering the plants (w) for
the next week:

η = haps(w‖g; d‖v; ∅;w; ∅; d; ∅)
That is, on Monday groceries and watering need to be done, on Tuesday, dusting and
vacuuming, on Thursday the plants need to be watered again, and on Saturday dusting
needs to be done. There are no constraints for Wednesday, Friday, and Sunday.

6

Note that ∅ means that no actions are requireded to be performed, so the agents can
perform any action at this point in the sequence and still comply with the norm. In this
paper, we are only concerned with obligations, and not with prohibitions on executing
actions. We can extend the framework to prohibitions by using ¬done(a, i) expres-
sions. It is also straightforward to extend the syntax of group norms to express ‘twice a
week’ rather than ‘on Monday and on Thursday’ using disjunctions, but this increases
the complexity of the norm decomposition problem, so we only consider the current
(fixed order) setting. For the same reason, we do not consider conditional norms with
deadlines. These can be easily expressed, but again at the cost of increased complexity.

We will use do(a, i)m to indicate that i is prepared to perform a at most m times:

do(a, i)0 := 2(¬done(a, i))

and
do(a, i)m+1 := 2(done(a, i)→ gdo(a, i)m)

Definition 3 (Individual contribution schemes). Given an agent i, an individual con-
tribution scheme Di is defined as

∨
Cji (with j ranging over disjuncts) where

Cji :=
∧

ak∈Ac
do(ak, i)n

j
k

We will refer to Cji as individual contribution offers or simply offers.

Sometimes we will treat Di as a set and write Cji ∈ Di to mean that Cji is a disjunct in
Di.

Each Ci specifies a possible combination of actions i is prepared to contribute and
does not refer to actions by other agents. For example, do(a, i)2 ∧ do(b, i)1 is an offer
by agent i to execute action a at most twice and action b at most once.

Example 2 (Example 1 ctd). Consider the following offers by the agents:

D1 = do(d, 1)1 ∧ do(g, 1)7 ∧ do(v, 1)1 ∧ do(w, 1)7

D2 = do(d, 2)0 ∧ do(g, 2)1 ∧ do(v, 2)0 ∧ do(w, 2)0 ∨
do(d, 2)1 ∧ do(g, 2)0 ∧ do(v, 2)0 ∧ do(w, 2)1

The constraint C1
1 = D1 expresses that agent 1 does not mind doing the groceries

and the watering, but is prepared to do the chores of dusting and vacuuming at most
once. Agent 2 (let us call his constraints C1

2 ∨C2
2) is either (C1

2) willing to do groceries
once, or (C2

2) he is willing to do dusting once and watering once.

Note that there is a gap between a group norm and the offers of the agents, in the
sense that although the agents may offer to perform all the actions needed for the group
norm, in order for the group norm to be discharged, the agents need to synchronise and
commit to performing actions at particular times. An implementation of a group obli-
gation is a set of individual obligations that particular agents should perform a subset
of the actions specified in one of their individual contribution schemes (this is called
a complete decomposition of the group obligation in [15]). Clearly an implementation
should be effective, that is, if the agents discharge their individual obligations, the group

7

norm is also discharged, and minimal, i.e., it should not create individual obligations
unecessarily.

We introduce two types of individual obligation Oi. The first kind of obligation
makes sense when an action that needs to be performed by an agent has to be performed
in any case, regardless of whether the preceding actions have been performed.

Definition 4 (Unconditional individual obligation). An unconditional obligation for
i is a formula of the form©jdone(a, i).

©jdone(a, i) is an obligation to perform a at step j (assuming steps are counted from
0).

The second kind of individual obligation is similar to those considered in [15]. They
make sense for actions whose preconditions are created by the preceding actions. For
example, where an agent is required to decorate a house and the action of decorating
can only be carried out if other agents build the house first. In this case, it does not make
sense to require the agent assigned to the decorating task to execute it unconditionally.

Definition 5 (Conditional individual obligation). A conditional obligation for i is a
formula of the form

haps(A1; . . . ;Am)→ gm+1done(a, i)

That is, i has an individual obligation to do a if the group obligation haps(A1; . . . ;Am)
is discharged.

An individual obligation Oi for agent i is a conjunction of unconditional and con-
ditional individual obligations for i.

Given a tuple of individual obligations by agents in a group G (consisting of k
agents), OG = 〈O1, . . . , Ok〉, we will identify OG with the conjunction of those Oi’s.
We say thatOG respects the individual offer Cji of agent i ifOG∧Cji 6|= ⊥. Essentially
this means that OG does not require i to perform each action a more than the maximal
number of times specified by Cji .

Definition 6 (Implementation of a norm). Given a group norm η, a set of agents
G ⊆ Ag and their individual contributions {Di | i ∈ G}, an implementation of η by
G is a conjunction OG of obligations Oi (i ∈ G)) such that

∀i ∈ G ∃Cji ∈ Di : OG respects Cji & |= OG → η

Note that the first actionA1 in any implementation of a group obligation haps(A1; . . . ;
AN) can only have unconditional obligations corresponding to it. Note also that if OG
is an implementation of η, then OG is logically equivalent to a conjunction of uncondi-
tional obligations.

Example 3 (Examples 1 and 2 ctd.). There is no implementation that implements η
using the contributions C1

1 and C1
2 , because on Tuesday both the dusting and the vac-

uuming would have to be performed by the same agent 1, which is impossible given
Definition 1 (condition 2): done(d, 1) and done(v, 1) cannot hold in the same state

8

since d and v are different actions. On the other hand, we can assign all individual ac-
tions to agents consistently using C1

1 and C2
2 : agent 1 is assigned g on Monday, v on

Tuesday, w on Thursday, and d on Saturday. This is consistent with its offer C1
1 . Agent

2 is assigned w on Monday and d on Tuesday; this is consistent with its offer C2
2 . The

individual obligation for agent 1 isgdone(g, 1) ∧ g2done(v, 1) ∧ g4done(w, 1) ∧ g6done(d, 1)

and for agent 2 gdone(w, 2) ∧ g2done(d, 2). Together both obligations entail η.

In order to compute individual obligations and hence an implementation of a group
norm η, we also need an auxiliary notion of an assignment of agents to actions in η.

Definition 7 (Assignment). An assignment of agents in G ⊆ Ac to actions in η =
haps(A1; . . . ;AN) is a function f that for every Aj in η assigns an agent i ∈ G and a
contribution Ci to every element a of Aj subject to the following constraints:

C1 if f(Aj , a) = (i, Ci) for k different j (in other words, the agent is assigned to k
different occurrences of a in η) then do(a, i)m for m ≥ k is a conjunct in Ci;

C2 if f(Aj , a) = (i, Ci) and f(Aj , b) = (k,Ck) and a 6= b, then i 6= k (only one
action can be executed by the agent i in a single transition); and

C3 if f(Aj , a) = (i, Ci) and f(Ak, b) = (i, C ′i), then Ci = C ′i (only one offer by i is
used by the assignment throughout).

The following theorem will be useful for analysing the implementation of a norm
as a computational problem.

Theorem 1. Every assignment of agents to actions in η satisfying the conditions of
Definition 7 gives rise to an implementation of η, and every implementation gives rise
to such an assignment.

Proof. Assume that we have an assignment f for a group norm η = haps(A1; . . . ;AN).
By C3, for each agent i involved in the assignment, there is a single contribution Ci.
Given the assignment, generate Oi as

∧
f(Aj ,a)=(i,Ci)

©jdone(a, i). Clearly
∧
Oi re-

spects Ci by C1.
∧
i∈GOi is satisfiable by C2. Finally since f is an assignment, any

run that satisfies
∧
i∈GOi also satisfies η. Hence,

∧
iOi is an implementation.

Now assume that we have an implementation
∧
i∈GOi for η = haps(A1; . . . ;AN).

We will show how to extract an assignment f for η from it. First of all, to satisfy C3,
we assign only one contribution Ci with which Oi is consistent to every i ∈ G. Now
we construct f for each of A1, . . . , AN in turn. Since

∧
Oi |= η and η |= haps(A1),

there are enough conjuncts in
∧
Oi to make sure done(a, ij) holds for every a ∈ A1

and there are enough different ij to for every occurrence of a in A1 (no agent is
scheduled to perform more than one action in parallel since

∧
Oi is satisfiable). We

take some subset of those to assign to f(A1, a). Similarly in order for
∧
Oi to entail

haps(A1; . . . ;Am+1) provided it entails haps(A1; . . . ;Am) there must be contribu-
tions in

∧
Oi of agents promising to execute an action inAm+1 after haps(A1; . . . ;Am)

(or in m + 1 timesteps unconditionally), and enough of them to entail haps(A1; . . . ;
Am+1). Assign some subset of those agents to actions in Am+1.

9

Theorem 2. Given a group norm η, a group of agents G, and agent contributions Di

for i ∈ G, the problem of whether an implementation of η by G exists is NP-complete.

Proof. By Theorem 1, the problem of finding an implementation can be reduced to the
problem of finding an assignment. For membership of NP, observe that an assignment
can be guessed in time polynomial in the size of the group norm and checked that it
satisfies the conditions C1-C3 in time polynomial in the group norm and the set of
agents’ contributions. For NP-hardness, we reduce SAT to the problem of finding an
assignment of agents to actions in a group norm. Let φ be a propositional formula in
CNF containing n variables and k clauses. Without loss of generality, we assume that
each clause is unique and none of them contains both pi and ¬pi for some variable pi.
The corresponding group norm will be

ηφ = c1; . . . ; ck

where cj is an action corresponding to making the jth clause in φ true. Let G contain
n agents, one for each propositional variable pi in φ. Each agent i has two offers. In-
tuitively, the offer Cti corresponds to setting pi to true and the offer Cfi corresponds to
setting pi to false.

Cti =
∧
pi∈cj

done(cj , i), Cfi =
∧
¬pi∈cj

done(cj , i)

Since we assume that each clause is unique, the agents offer to make each cj true at
most once. Now assume that we have a function f that assigns to clauses pairs (i, Cti)
or (i, Cfi). By C3, only one of Cti or Cfi is used for each i in this assignment. Hence
for each pi where i ∈ G (i was used in the assignment of agents), we can extract a
unique assignment of a truth value true or false to pi. Because of the way the offers
were defined, this assignments of truth values to pi for i ∈ G will make all the clauses
true.

3.1 Minimality

A natural and desirable property of an implementation of a group norm is that the agents
are not obliged to do more than the norm requires.

Definition 8 (Minimality). Let η be a group norm. Let O1, . . . , Ok be individual obli-
gations for agents in G, and I = O1 ∧ · · · ∧Ok.

– I is a minimal implementation of η if it is an implementation of η and there is no
implementation I ′ = O′1 ∧ · · · ∧O′k of η for which both I |= I ′ and I ′ 6|= I .

– I is an i-minimal implementation of η if there is no obligation O′i for i such that
(O1 ∧ · · · ∧ O′i ∧ . . . Ok) is an implementation of η for which both Oi |= O′i and
O′i 6|= Oi.

– I is an individually minimal implementation of η if it is an i-minimal implementa-
tion for every i ∈ G.

10

Clearly, a minimal implementation I of η is individually minimal. In our setting, the
opposite also holds:

Theorem 3. Let I = O1 ∧ · · · ∧ Ok be an implementation of a group norm η =
haps(A1; . . . ;AN) by G. Then I is a minimal implementation iff I is an individually
minimal implementation.

Proof. The left to right direction is obvious, so consider I = O1 ∧ · · · ∧ Ok. Since it
is an implementation of η, using Theorem 1 we can use an assignment f to write each
individual obligation Oi in the following normal form:

Oi = g(γi1 ∧ g(γi2 ∧ . . . gγiN) . . .)

where each γik is of the form done(a, i) (i is required to do a at step k) or > (no
requirement for i at step k), and there is a contribution Ci so that the number of times
done(a, i) occurs for every a is consistent with Ci. Now let Γj =

∧
i≤n γik . It is not

difficult to see that I is equivalent to

O = g(Γ1 ∧ g(Γ2 ∧ . . . gΓN) . . .)

Now, if I is not minimal, there is a logically weaker implementation I ′ = g(Γ ′1 ∧g(Γ ′2 ∧ . . . gΓ ′N) . . .). However, since no done(a, i) entails any done(a′, i′) unless
a = a′ and i = i′, the implementation I ′ can only be weaker than I if there is some Γj
and Γ ′j for which some Γj |= done(a, i) while Γ ′j 6|= done(b, i) for any action b (that
is, Γj requires i to do a at step j, while Γ ′j does not impose a requirement on i at j).
But then, Oi is not minimal, since replacing done(a, i) by > in Oi would be a weaker
obligation for i, and hence I is not individually minimal.

Given the result above, it is clear that the problem of computing a minimal im-
plementation is no harder than the problem of computing an implementation, since it
is possible to check if an implementation (or rather the corresponding assignment) is
individually minimal in polynomial time.

3.2 Fairness

Now we arrive at the main concern of this paper, that is how to define a notion of group
norm implementation that agrees with the social norms accepted by the agents as a way
to regulate the fairness of task assignments.

Some implementations of a group norm may be better than others from the point of
view of the group’s or the wider organisation’s notion of fairness as captured in social
norms. For example, fairness may require that all agents should contribute equally to
the implementation of the group norm, or that agents with less experience are required
to contribute less. LTL offers a natural setting to consider fairness constraints on im-
plementations. By fairness constraints in this setting we do not mean just the notion of
fairness as defined for processes in computer science (e.g., every request will be eventu-
ally granted). Instead we mean some additional constraints on possible implementations
that reflect the organisation’s view of what is reasonable to require from the agents. For

11

example, it could be that the organisation does not consider it fair that the same agent
performs an action a (for example, a work shift) twice in a row:

2(
∧
i∈G

(done(a, i)→ g¬done(a, i)))

Another example is that each agent gets a rest from all chores every seventh day:

2(
∧
i∈G

(¬χi ∨ g¬χi ∨ . . . ∨ g6¬χi))

where χi =
∨
a∈{d,g,v,w} done(a, i).

Definition 9 (Fair implementation). Let φ be an LTL formula expressing a fairness
constraint. An implementation of a group norm I is fair with respect to φ (or φ-fair) if
|= I → φ.

In other words, I is φ-fair if every run satisfying I also satisfies φ. Checking fairness
of an implementation can be done by checking whether I ∧¬φ is satisfiable. Note that,
since I essentially corresponds to a single finite run, it is possible to check whether it
satisfies φ in polynomial time (rather than PSPACE as in the general LTL satisfiability
problem).

If group norms are assumed to be fixed length sequences of actions, it arguably does
not make sense to consider arbitrary LTL formulas as fairness constraints. In fact, most
natural fairness constraints in human work allocation do not have the form ‘everyone
eventually gets a holiday’ but ‘everyone gets a holiday after working for nmonths’. For
this reason, we propose to restrict the syntax of fairness constraints to talk about fixed
finite patterns of actions.

Definition 10 (Fairness constraint). An LTL formula φ is a fairness constraint if it is
of the form 2ψ, where ψ only contains gmodalities.

Examples of fairness constraints 2ψ are as follows, where N is a given number:
(1) no agent i performs an action a twice in the next N steps, without another agent i
performing it in between those occurrences; (2) agents i1, . . . , im take perfect turns in
all occurrences of action a; (3) if action a happens k times in the next N steps, then at
least m different agents should be involved in their execution; (4) agent i is allowed to
do something other than any of a1, . . . , ak at least once in every k steps; and (5) if i
does a then j does it within k steps.

4 Repeating norms

In the previous section, we looked at group norms that correspond to performing some
group task/obligation once. In state-based terms, such norms correspond to achievement
goals: a sequence of actions that must be executed in order to achieve a certain desirable
state. In this section, we consider the case where a group norm relates, in state-based
terms, to a maintenance goal: some condition needs to be maintained in perpetuity. In

12

order to achieve this condition, some group task has to be executed periodically. For
example, every week the agents in a household need to execute some combination of
cleaning, shopping and cooking tasks: A1; . . . ;A7.

The norm itself requires them to iterate this sequence forever, which we write as
haps(A1; . . . ;A7)∞. We will refer to the number of sequentially composed actions in
the repeated sequence in η as the cycle of η, c(η) (in the example above, c(η) = 7).

An infinite repetition of a sequence A1; . . . ;AN can be defined in LTL as follows:

haps(A1; . . . ;AN)∞ = haps(A1; . . . ;AN)∧
2(haps(A1; . . . ;AN)→ gNhaps(A1; . . . ;AN))

Definition 11 (Repeating group norm with cycleN). A repeating norm with cycle N
is an obligation to repeat A1; . . . ;AN infinitely often: η = haps(A1; . . . ;AN)∞

The syntax for agent’s individual contribution schemes is similar to Definition 3,
apart from the addition of the norm cycle N : do(a, i)m,N means that the agent offers
to perform a at most m times in every N = c(η). The most straightforward way to
define this in LTL is to rule out all patterns of length N where the agent performings
a more than m times, or, equivalently, to state that in every pattern of length N there
are at least N − m steps when the agent is not performing a. Let Km,N = {K ⊆
{1, . . . N} | |K| = N −m}. Intuitively, this defines all possible combinations of a-free
steps in a pattern of length N if the agent does a at most m times. Let notK(a, i) for
k ∈ Km,N stand for

∧
k∈K

gk¬done(a, i). This formula says that the agent does not
do a on each of the time steps in K. Then do(a, i)m,N =

∨
K∈Km,N notK(a, i) says

that the agent does a at most m times in N steps. Finally, to make this apply not just to
the first N steps but indefinitely, the offer is prefixed with a 2:

Definition 12 (Individual contibution schemes for repeating norms). Given an agent
i, and a repeating norm η with cycle N , an individual contribution scheme Di for η is
defined as

∨
Ci where

Cji :=
∧

ak∈Ac
2do(ak, i)n

j
k,N

where njk ≤ N for all k.

An unconditional obligation for agent i in a repeating norm setting is an obligation
to perform an action a at step k in a cycle of length N .

Definition 13 (Unconditional individual obligation for repeating norms). Given an
agent i, and a repeating norm η with cycle N , an unconditional individual obligation
for i with respect to η is a formula of the form

©kdone(a, i) ∧2(done(a, i)→©Ndone(a, i))

where k ≤ N .

A conditional obligation requires an agent to perform an action every time when the
other agents have performed some actions.

13

Definition 14 (Conditional individual obligation for repeating norms). Given an
agent i, and a repeating norm η with cycleN , a conditional obligation for i is a formula
of the form

2(haps(A1; . . . ;Am)→ gm+1done(a, i))

where m < N .

An implementation of a repeating norm by a set of agents G is as before a conjunc-
tion of obligations I =

∧
Oi∈G such that |= I → η and I is consistent with agent

offers. A minimal implementation is defined as before, and the same type of fairness
constraints as in the previous section can be applied to repeating norms.

A single cycle assignment of agents to actions in η = haps(A1; . . . ;AN)∞ is de-
fined as an assignment for a non-repeating norm η′ = haps(A1; . . . ;AN). Clearly
any single cycle assignment repeated every N steps gives rise to an implementation
for a repeating norm. However for repeating norms it makes sense to consider imple-
mentations obtained by ‘gluing’ several different assignments together and repeating
the resulting pattern. Repetition affects fairness in a non-trivial way. Considering the
example fairness constraints in the previous section, we can see that ‘gluing’ together
two (even identical) assignments satisfying fairness constraint (2) stated at the end of
Section 3 may make the resulting implementation unfair (if the last occurrence of a in
the implementation is done by ik with k < m), and also two unfair implementations
(not satisfying fairness constraint (5) in Section 3, for instance) may become fair when
glued together.

A consequence of this is that when solving the problem of finding a φ-fair imple-
mentation of a repeating obligation η, it is not sufficient to consider only single cycle
assignments. If none of those when repeated correspond to a fair implementation of
η, this does not mean that η has no fair implementation. We may need to consider a
combination of several assignments. For example, let φ = 2(

∧
i∈G(done(a, i) →g¬done(a, i))) and η = haps(a)∞. The cycle of η is 1. Suppose there are two pos-

sible one cycle assignments for η, one where agent 1 does a, and another where agent
2 does a. If either of them alone is repeated, the resulting implementation is not fair:
either all occurrences of action a are done by agent 1, or all of them are done by agent
2. Clearly, if we combine these two one cycle assignments or produce a one cycle as-
signment to an ‘unravelling’ of η of length two: η2 = haps(a; a)∞, we can produce
an assignment that gives rise to a fair implementation: for example, the first a is done
by agent 1 and the second by agent 2. However to solve the problem of finding a φ-fair
implementation of a repeating norm η (if it exists) we need to know how long such an
unravelling should get before we give up.

For η = haps(A1; . . . ;AN)∞, we will call

ηm = haps(A1; . . . ;AN ; . . . ;A1; . . . ;AN)∞ (m times)

an m-unravelling of η.

Theorem 4. Let η be a group obligation with cycle N that has k different one cycle
assignments S1, . . . , Sk, and φ be a fairness constraint of modal depth d. If a φ-fair
implementation of η exists, then there exists a φ-fair implementation of η based on the
a single cycle assignment to an m-unravelling of η, where m ≤ max(k, kd/N+1).

14

Proof. Let τ be an assignment corresponding to a fair implementation of η. Without
loss of generality, we can assume that τ corresponds to a (possibly infinite) sequence
of one cycle assignments for η, Si1 , . . . , Sit , Given τ , we are going to construct
a sequence of assignments of length m, that is, some sequence τ ′ = S′1, . . . , S

′
m (a

single cycle assignment to ηm) that when repeated infinitely often, gives rise to a φ-fair
implementation of η.

Note that τ (or any other assignment of agents to actions) corresponds to a descrip-
tion of a run in terms of action propositions. Observe that a run violates φ if it has
a pattern of d consecutive states s1, . . . , sd that is a counterexample to φ. Clearly, τ
desribes a run that does not contain such a counterexample sequence of states (since it
corresponds to a fair implementation). Note also that none of single-cycle implemen-
tations of η that occur in τ contain such a sequence of states (otherwise τ would not
satisfy φ).

Let us first consider a simpler case when d < N . Then the only way a sequence
of single-cycle assignments Sj1 , . . . , Sjn would violate φ is when there is a sequence
on the ‘joint’ between two assignments Sjl and Sjl+1 that violates it. Let us build a
sequence of assignments of length at most k that does not have such a violating joint.
For convenience, let us say that Sjl and Sjl+1 compose if their concatenation does not
contain a subsequence violating φ. To start building our sequence of length at most k,
take the first assignments in τ , Sj1 . Clearly it composes with some other assignments,
since τ does not violate φ. If Sj1 composes with itself (there is a subsequence in τ that
has Sj1 ;Sj1 , we are done: τ ′ = Sj1 . Otherwise we consider the first two assignments
in τ , Sj1 ;Sj2 . If Sj2 composes with itself, we are done and τ ′ = Sj2 , or if it composes
with Sj1 , then τ ′ = Sj1 ;Sj2 . Otherwise we consider a 3-element prefix of τ . Note
that eventually we are going to encounter Sjf which composes with Sjf+1 that already
occurs in the prefix of the sequence (the maximal possible value for f is k, the total
number of single-cycle implementations). Then we set τ ′ to be the subsequence of
the current sequence that starts from the first occurrence of Sjf+1 and continues until
Sjf . Clearly, τ ′ has length at most k and nowhere in the ‘joints’ of the single cycle
implementations in τ ′ there is a counterexample to φ (including the joint of τ ′ to itself).

Now let d ≥ N . Then a counterexample sequence s1, . . . , sd can span multiple
single cycle assignments. Let d ≤ p · N (p iterations of N are required to produce a
counterexample to φ, so p ≤ (d/N) + 1). Then we make a set of ‘viable multi-cycle
assignments’ Z1, . . . , Zkp of all p-sequences of single-cycle assignments occurring in
τ . We treat them as we treated single cycle assignments Si before, as the building blocks
for τ ′. Similarly to the previous construction, we are bound to start to encounter the
same ‘viable multi-cycle assignments’ after kp steps. So τ ′ is of length at most kd/N+1.

This means that to construct a φ-fair implementation of η, we only need to consider
assignments to sequences of actions of length m ≤ max(k, kd/N+1). This gives us
an (exponential) algorithm for finding a φ-fair implementation of a repeating norm η
(generate all possible one cycle assignments and then check all concatenations of them
of length m for consistency with φ).

15

5 Related work

Social laws have long been recognised as an important mechanism to facilitate coor-
dination in multi-agent systems [9], and there exists an extensive literature on formal
approaches to social laws and norms, for example [23, 20, 17, 22, 1, 6, 12, 7, 8, 3]. Log-
ics for social laws often build upon dynamic or temporal logics such as LTL, CTL, ATL
and STIT. Most of this work specifies norms and their effects on the multi-agent system
semantically by labelling certain transitions as forbidden (in the case of prohibitions) or
labelling certain states as ‘green’ (good, or encouraged states) or ‘red’ (forbidden ones,
see e.g. [19]). In this paper, we only model obligations (rather than prohibitions) and
specify obligations in the object language.

Group norms have been studied in for example [2, 15]. Our definition of non-repeating
group norms is essentially the one from [15]. The emphasis of [15] is however on for-
malising synchronisation, and they abstract from the problem of computing individual
obligations for a group norm. In [2] group norms are considered at a much more abstract
level. In their framework, a group norm concerns making a state formula φ true, and the
set of agents responsible for carrying out (an abstract STIT-like) action to achieve φ and
the set of agents responsible for the violation are explicitly given as part of the norm.
Our approach is closer to [15] in that the notion of agents responsible for the violation
of a group norm given a particular implementation is definable from the set of individ-
ual obligations. An agent that does not fulfil an unconditional obligation is responsible
for a violation, and an agent with a conditional obligation the condition of which has
not been made true, is not responsible.

Team formation and coordination of joint actions has been extensively studied in
Artificial Intelligence, for example [13, 16, 24]. However the emphasis of that work is
on efficient and flexible team work rather than on fairness. An exception to this is the
work in [4], where the authors consider the problem of repeatedly choosing actions
(that could for example be actions of assigning jobs to people) in a fair way, where
fairness has a decision theoretic interpretation based on minimising loss for worse-off
beneficiaries of actions. The motivation of their work is very similar to our problem
of finding a fair implementation of a repeated norm, but they have a specific notion of
fairness and reduce the problem of fair selection of actions to an optimisation problem.

6 Conclusion

In this paper, we propose an approach to expressing and reasoning about implementa-
tions of group obligations and introduce the notion of fairness constraints. The approach
is a first step in formalising these notions, and has a number of limitations. We model
only obligations and do not consider prohibitions. In addition, the structure of group
obligations is quite rigid: we do not consider obligations to perform some action m
times during an interval of N days, instead we specify specific days on which those
m actions have to be performed. We also consider only a restricted class of fairness
constraints. Relaxing these limitations, and a more compact syntax for representing, for
example, individual offers, are the subject of future work.

16

Acknowledgements We thank the anonymous CLIMA 2014 referees for their insighful
comments that helped to improve the paper.

References

1. Ågotnes, T., van der Hoek, W., Wooldridge, M.: Conservative social laws. In: Proc. 20th
European Conference on Artificial Intelligence (ECAI 2012). pp. 49–54 (2012)

2. Aldewereld, H., Dignum, V., Vasconcelos, W.: We ought to; they do; blame the manage-
ment! – a conceptualisation of group norms. In: Proc. 15th Int. Workshop on Coordination,
Organisations, Institutions and Norms (COIN 2013) (2013)

3. Alechina, N., Dastani, M., Logan, B.: Reasoning about normative update. In: Proc. 23rd
International Joint Conference on Artificial Intelligence (IJCAI 2013) (2013)

4. Balan, G.C., Richards, D., Luke, S.: Long-term fairness with bounded worst-case losses.
Autonomous Agents and Multi-Agent Systems 22(1), 43–63 (2011)

5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theoretical
Computer Science, vol. 53. Cambridge University Press (2001)

6. Boella, G., Torre, L.: Delegation of power in normative multiagent systems. In: Proc. 8th
International Workshop on Deontic Logic in Computer Science, DEON 2006 (2006)

7. Broersen, J., Mastop, R., Meyer, J.J.C., Turrini, P.: A deontic logic for socially optimal
norms. In: Proc. 9th International Conference Deontic Logic in Computer Science (DEON
2008). vol. 5076, pp. 218–232. Springer LNCS (2008)

8. Bulling, N., Dastani, M., Knobbout, M.: Monitoring norm violations in multi-agent systems.
In: Proc. 12th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2013). pp. 491–498. IFAAMAS (2013)

9. Castelfranchi, C.: Modelling social action for AI agents. Artificial Intelligence 103(1-2),
157–182 (1998)

10. Cliffe, O., de Vos, M., Padget, J.: Specifying and reasoning about multiple institutions. In:
Coordination, Organizations, Institutions, and Norms in Agent Systems II. vol. 4386, pp.
67–85. Springer LNCS (2007)

11. Cohen, P.R., Levesque, H.J.: Intention is choice with committment. Artificial Intelligence
42(2-3), 213–261 (1990)

12. Dastani, M., Grossi, D., Meyer, J.J.C., Tinnemeier, N.: Normative multi-agent programs and
their logics. In: Proc. Workshop on Knowledge Representation for Agents and Multi-Agent
Systems. pp. 16–31. LNCS 5605 (2009)

13. Decker, K., Lesser, V.: Designing a family of coordination algorithms. In: Proc. 1st Interna-
tional Conference on Multiagent Systems (ICMAS). pp. 73–80 (1995)

14. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions editor. In:
Proc. of the 1st Int. Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’02). pp. 1045–1052 (2002)

15. Grossi, D., Dignum, F., Royakkers, L.M.M., Meyer, J.J.C.: Collective obligations and agents:
Who gets the blame? In: Deontic Logic in Computer Science. vol. 3065, pp. 129–145.
Springer LNCS (2004)

16. Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial Intelligence
86(2), 269–357 (1996)

17. van der Hoek, W., Roberts, M., Wooldridge, M.: Social laws in alternating time: effective-
ness, feasibility, and synthesis. Synthese 156(1), 1–19 (2007)

18. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multi-agent systems using the
MOISE+ model: Programming issues at the system and agent levels. International Journal
of Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)

17

19. Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75(1), 63–92 (2003)
20. Moses, Y., Tennenholtz, M.: Artificial social systems. Computers and AI 14(6), 533–562

(1995)
21. Schnoebelen, P.: The complexity of temporal logic model checking. In: Advances in Modal

Logic 4. pp. 393–436. King’s College Publications (2003)
22. Sergot, M.: Action and agency in norm-governed multi-agent systems. In: Proc. Engineering

Societies in the Agents World, 8th International Workshop (ESAW 2007). vol. 4995, pp.
1–54. Springer LNCS (2008)

23. Shoham, Y., Tennenholtz, M.: On the synthesis of useful social laws for artificial agent soci-
eties. In: Proc. of the 10th National Conference on Artificial Intelligence (1992)

24. Tambe, M., Zhang, W.: Towards flexible teamwork in persistent teams: Extended report.
Autonomous Agents and Multi-Agent Systems 3(2), 159–183 (2000)

