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Abstract. There exists a considerable body of work on epistemic logics for resource-bounded
reasoners. In this paper, we concentrate on a less studied aspect of resource-bounded reason-
ing, namely, on the ascription of beliefs and inference rules by the agents to each other. We
present a formal model of a system of bounded reasoners which reason about each other’s be-
liefs, and investigate the problem of belief ascription in a resource-bounded setting. We show
that for agents whose computational resources and memory are bounded, correct ascription
of beliefs cannot be guaranteed, even in the limit. We propose a solution to the problem of
correct belief ascription for feasible agents which involves ascribing reasoning strategies, or
preferences on formulas, to other agents, and show that if a resource-bounded agent knows the
reasoning strategy of another agent, then its ascription of beliefs to the other agent is correct
in the limit.

1. Introduction

There has been considerable work on epistemic logics for reasoners with
bounded inferential abilities or bounded memory (or both), e.g., (Hintikka,
1962; Rantala, 1982; Fagin and Halpern, 1985; Konolige, 1986; Fagin et al.,
1990; Elgot-Drapkin and Perlis, 1990; Halpern et al., 1994; Duc, 1995; Alechina
and Logan, 2002; Ågotnes, 2004; Ågotnes and Alechina, 2006; Albore et al.,
2006; Alechina et al., 2008; Artëmov and Kuznets, 2009). However this work
has not considered the problem of belief ascription for time- and memory-
bounded reasoners. In this paper we investigate multi-agent epistemic logics
which result from taking seriously the idea that agents have bounded memory
and their reasoning takes time. We consider agents which communicate and
reason about their own beliefs and the beliefs they ascribe to other agents.
Each agent has some initial beliefs (which may include beliefs about the
beliefs of other agents) and some inference rules which allow it to derive new
beliefs. In addition to ascribing beliefs to other agents, agents also ascribe
inference rules to each other: e.g., an agent may assume that another agent can
perform inference using the rule of resolution. Using such ascribed inference
rules agents can derive further beliefs about the beliefs of other agents; for
example, if agent 1 believes that agent 2 believes p∨ r and ¬p∨ q, and agent
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1 believes that agent 2 reasons using resolution, then agent 1 may ascribe
belief in r ∨ q to agent 2.

We investigate the problem of correct belief ascription in this setting under
various bounds on the agents’ computational and memory resources. We con-
sider several classes of structures which are models of a multi-agent epistemic
temporal logic. The first class of structures, which we call T0, corresponds to
systems where agents can perform an unbounded number of inferences in a
single moment of time and have unbounded memory. The second class of
structures, T1, bounds the agents’ computational ability to applying only a
single inference rule at a single moment of time, but still assumes unbounded
memory. In the third class of structures, T2, agents have both bounded com-
putational ability and bounded memory. We give a straightforward axiomati-
sation of those structures. Finally, we introduce a class of structures T3 which
is similar to T2 but has in addition a preference relation on the agent’s beliefs,
corresponding to the reasoning strategy of an agent.

We define correct belief ascription by agent i to agent j as follows: in
each state, if agent i believes that j believes a formula α, then j indeed
believes α. We show that under some natural conditions, correct ascription
of beliefs requires an agent with unbounded computational ability and un-
bounded memory (that is, correct belief ascription is possible for the agents
modelled by T0, but not T1 or T2). We also show that a weaker correctness
property, which we call correctness in the limit, holds for the agents modelled
by the structures in T1. Correctness in the limit means that for every state, if in
some future state i believes that j believes α, then in some (possibly different)
future state j indeed believes α. However, it turns out to be difficult to define
reasonable conditions on T2 structures which guarantee correct belief ascrip-
tion (even in the limit), even if the agents’ initial ascription of beliefs and
inference rules to each other are correct. The problem is that the agents apply
inference rules one step at a time, as in T1 structures, and in T2 structures they
also may overwrite or forget formulas since their memory is of bounded size.

We propose a solution to the problem of belief ascription under bounded
computational and memory resources which involves ascribing reasoning
strategies, or preferences on formulas, to agents. The intuition behind pref-
erence ascription is simple; if I know that another agent can infer a formula
which more closely accords with its preferences or one which is less pre-
ferred then I will assume that the other agent will derive the more preferred
formula at the next step. For example, given a choice between deriving a
more important formula p (such as P 6= NP ) or a formula q (which says
something trivial such as 1 = 1), we would expect an agent which prefers
more important formulas to derive p rather than q. We show that if an agent
i has at least partial information regarding the reasoning strategy of agent j,
then the ascription of beliefs by agent i to agent j is correct in the limit. The
main contribution of this paper is in precisely formulating the problem of
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belief ascription under differing resource bounds and in defining a notion of
reasoning strategy which allows which allows belief ascription by time- and
memory-bounded reasoners which is correct in the limit.1

The remainder of this paper is organised as follows. In section 2, we
present our model of reasoning agents, and in section 3 we say what it means
for one agent to correctly ascribe beliefs to another agent. In sections 4, 5
and 6 we define structures which characterise various bounds on the agent’s
computation and memory and investigate their implications for belief ascrip-
tion. We show that under bounded computation and memory, correct belief
ascription cannot be guaranteed, even in the limit. In section 7, we sketch a
solution to the problem of belief ascription under bounded resources which
involves giving the agents (partial) information about the reasoning strategies
of other agents. We consider related work in section 8 and conclude in section
9.

2. Model of reasoning agents

We consider a finite set of agents A = {1, . . . , n} which reason about their
own beliefs and their beliefs about the beliefs of other agents. We assume
that all agents have the same internal language where formulas are either
clauses (disjunctions of propositional variables and their negations) denoted
c, c1, . . . , or clauses prefixed by a sequence of belief operators Bi, e.g.
B1B2(p ∨ q). We use α, α1, . . . to range over formulas of the agents’ in-
ternal language. We assume that the clauses are built from a finite set of
propositional variables PROP and that the set of clauses is finite (clauses
do not contain duplicate disjuncts). We also assume that the depth of nesting
of belief operators is bounded by some fixed number b. More precisely, the
internal language Ω contains the following formulas α:

α = l | l ∨ . . . ∨ l | Bi1 . . . Bik(l ∨ . . . ∨ l)

where l is either a propositional variable from PROP or its negation, i1,. . . ,ik
∈ A, and k ≤ b. This language may seem (and in fact is) rather limited, but it
has clear analogues in existing agent programming languages, where instead
of clauses, beliefs are simply positive literals and the depth of the belief prefix
is 0 or 1 . The clauses are assumed to be represented in a fixed normal form
(no repetition of literals etc.) and relate to a fixed number of facts relevant to

1 In (Alechina et al., 2009), a different definition of a reasoning strategy is proposed, based
on an ordering of inference rules. However, while that definition is appropriate for, e.g., rule
firing strategies in rule-based systems, it leads to somewhat counterintuitive results. For ex-
ample, the decision whether to derive P 6= NP or 1 = 1 would depend not on the relative
importance of the statements but on which inference rules are employed in the derivation of
each statement.

kra08-gllc.tex; 27/08/2010; 9:02; p.3



4

the agent, and also have an ‘annotation’ (corresponding to the belief prefix)
which allows the agent to distinguish its own beliefs from beliefs of other
agents. In many agent programming languages, such annotation will have
just length 1 (to represent beliefs of other agents about some fact). However,
if the agent needs to introspect or to reason about other agent’s beliefs about
beliefs, the prefix will need to be longer. We introduce the bound on the depth
of the belief prefix in order to keep Ω finite. This assumption is crucial for the
axiomatisation results later in the paper but does not affect the general point
of the paper concerning the possibility of correct belief ascription.

Agents may have a priori beliefs about the beliefs of other agents or they
may acquire beliefs about the beliefs of other agents via communication.
Communication between the agents is assumed to be error free, and the agents
are assumed to be sincere. For example, if agent 1 tells agent 2 that p, then
agent 1 really does believe p and agent 2 believes that agent 1 believes p
(agent 2 believes B1p).

Agents reason about their own and others’ beliefs using a fixed set of
inference rules. We assume for the sake of concreteness that agents reason
using the rules of resolution and positive introspection and ascribe similar
inference capabilities to other agents. For example, if agent 1 believes p, then
it can acquire the belief B1p by positive introspection. Similarly, if agent 1
believes that agent 2 believes p ∨ q and ¬p (and agent 1 believes that agent
2 reasons using resolution), then agent 1 may believe that agent 2 believes
q.2 We assume that inference and communication takes time, and that the
system of agents evolves synchronously. At each step, each agent can perform
a (potentially unbounded) amount of computation (applying inference rules)
and/or send message(s) to other agents. Inferred and communicated beliefs
are added to the agents’ beliefs at the beginning of the next cycle.

Each agent has a memory, which is essentially the set of formulas the agent
believes at any point in time. The meta-language which we use to talk about
the agents’ beliefs contains belief operatorsBi (which are the same as the op-
erators in the agents’ internal language). We interpret Biα as true if and only
if α is contained in the agent i’s memory. For example,B1B2p is true if agent
1 has the formula B2p in its memory. In addition to applying belief operators
to formulas of the agents’ internal language, the meta-language contains the
usual boolean connectives and the temporal operators EX and EF which we
use to describe the evolution of the system. We assume a discrete branching
model of time; EXφ means that there is a possible future where in the next
moment of time, φ holds, and EFφ means that there is a possible future

2 Note that the assumption that the agents reason using resolution and positive introspec-
tion (and ascribe them to each other) is not essential for the main argument of this paper. This
particular set of inference rules has been chosen to make the logic concrete; we could have as-
sumed, for example, that the agents reason using modus ponens and conjunction introduction
instead of resolution, or that agents ascribe different sets of inference rules to other agents.
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where at some moment of time φ holds. The formulas of the meta-language
L are defined as follows:

φ = Biα | ¬φ | φ ∧ φ | EXφ | EFφ

where α is in Ω. Other boolean connectives are definable in the standard way.
We also define AXφ (in all successor states) as ¬EX¬φ and AGφ (in all
future states) as ¬EF¬φ. Note that the logic only allows us to reason about
the dynamics of agent’s beliefs; we do not have any propositional variables
referring to the state of the environment. It would not be technically diffi-
cult to introduce them, but we omit them since the point of the logics is to
reason about the correctness of belief ascription by the agents, not about the
correctness of agents’ beliefs about the environment.

The structures corresponding to the system sketched above are pairs (S,R),
where S is a non-empty set of states and R is a transition relation. The
structures give rise to models of branching time temporal logic when they
are unravelled into a tree structure. In what follows, we assume, without loss
of generality, that the models are tree structures with a distinguished root
node s0. The (global) states of the system are n-tuples of local states of the
agents. For simplicity, we can identify each local state si with a finite subset
of Ω - intuitively, the set of formulas believed by the agent. The definition
of R depends on the actions the agents can perform (given below), and on
the assumptions we make about the agents’ memory and computational re-
sources. We introduce four different versions of the structures in the sequel
corresponding to different assumptions about resource bounds, all of which
share the same truth definition.

A formula φ is true in a structure M and state s, M, s |= φ iff:

M, s |= Biα iff α ∈ si

M, s |= ¬φ iff M, s 6|= φ

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= EXφ iff there exists an s′ such that R(s, s′) and M, s′ |= φ

M, s |= EFφ iff there exists an R-path s = s0, . . . , sk, where k ≥ 0, such
that M, sk |= φ.

The transition relationR is determined by the actions which the agents can
perform. For an agent i to be able to perform an action a, the preconditions
of a must hold in i’s current state si. Executing the action updates the suc-
cessor state of i and possibly the states of other agents. There are five actions
corresponding to communication between agents, and applying the inference
rules of resolution and positive introspection to the agent’s own beliefs and
the beliefs it ascribes to other agents.

The actions have the following preconditions:
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Tell tell(i, α, j) (i telling j that α) can be executed by agent i 6= j in a state
s if α ∈ si. Note that this condition means that the agents are truthful.

Resolution res(i, c1, c2, l) can be executed by agent i in state s if c1, c2 ∈ si
and c1 and c2 resolve on l.

Positive introspection int(i, α) can be executed by agent i in state s if α ∈
si and the belief prefix of α has depth less than b.

Ascribed resolution ares(i, Bi1 . . . Bikc1, Bi1 . . . Bikc2, l) can be executed
by agent i in state s if Bi1 . . . Bikc1, Bi1 . . . Bikc2 ∈ si and c1 and c2

resolve on l.

Ascribed positive introspection aint(i, Bjα) can be executed by agent i 6=
j in state s if Bjα ∈ si and the belief prefix of Bjα has depth less than
b.

The effect of each of the several actions that an agent may perform is that
some formula is added to the state of an agent. The effect of executing an
action a in state s, eff (a, s), is a pair (α, j) which has the intuitive meaning
that α is added to the state of agent j in the successor state. For convenience,
we will denote the resolvent of c1 and c2 on l by resv(c1, c2, l). The effects
of actions are then as follows:

Tell eff (tell(i, α, j), s) = (Biα, j) (in the successor state, Biα is added to
the state of j)

Resolution eff (res(i, c1, c2, l), s) = (resv(c1, c2, l), i)

Positive introspection eff (int(i, α), s) = (Biα, i)

Ascribed resolution eff (ares(i, B̄c1, B̄c2, l), s) = (B̄ resv(c1, c2, l), i)
(where B̄ = Bi1 . . . Bik)

Ascribed positive introspection eff (aint(i, Bjα), s) = (BjBjα, i)

The intuition is that in the state s′ resulting from the agents executing some
set of actions Ac in a state s, the local state of agent i will be exactly si ∪
{α | (α, i) = eff (a, s) where a ∈ Ac}.

3. Ascribing beliefs

In this section we consider the problem of belief ascription in a resource-
bounded setting. First, we need some terminology:
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DEFINITION 1. The ascription of beliefs by agent i to agent j is correct in
state s if for every formula α, if i believes Bjα in s, then j believes α in s.
The ascription of beliefs by agent i to agent j is correct if it is correct in every
state s.

This is the property we would like the system to have, namely provided
the agents have correct initial beliefs about other agent’s beliefs, and know
the inference rules other agents use, that they continue to ascribe beliefs to
them correctly. Note that this is different from requiring a complete belief
ascription, that is that one agent knows (has a correct belief about) every
single belief of another agent. Such a property would clearly be unrealistic.

If plain correctness is impossible, correctness in the limit is also a useful
property:

DEFINITION 2. The ascription of beliefs by agent i to agent j is correct in
the limit in state s,

{α |M, s |= EFBiBjα} ⊆ {α |M, s |= EFBjα}

The ascription of beliefs by agent i to agent j is correct in the limit if it is
correct in the limit in the initial state s0.

In other words, if in some future possible state i believes that j believes α,
then in some (possibly different) future state j indeed believes α. Note that
correctness entails correctness in the limit, but not vice versa.

Our model of acquiring beliefs about beliefs of other agents is simple:
one agent can tell another agent something about its beliefs. We assume that
the agents are sincere in that they only tell other agents that α if they really
believe α. Given this model of belief acquisition, the question we want to
investigate is as follows. Suppose that the agents ‘start’ in a state where they
have correct beliefs about the beliefs of other agents, can they continue to
ascribe beliefs correctly? It turns out that this depends on the assumptions we
make about the bounds on the agents’ computational resources.

4. Unbounded computation, unbounded memory

In this section we define structures where the agents’ memory is assumed to
be unbounded and where the agents have unbounded computational ability
in the sense that each agent can execute all its available actions in a single
transition of the system (i.e., in a single tick of time). This is not completely
unbounded computational power, but is still an idealised notion given that any
number of inferences can be performed in constant time. Of the three systems
considered in this paper, this model of resource bounded agents is the closest
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to modelling the agents as logically omniscient. It is very similar to the step
logic model (Elgot-Drapkin and Perlis, 1990).

We denote the set of structures where the agents can execute all of their
actions in one step by T0.

Let Act(si) be the set of actions of i with preconditions enabled in si. Let
Act(s) =

⋃
i∈A Act(si). Let the set of the effects of all the actions in Act(s)

be Eff (s). Let Eff (si) = {α | (α, i) ∈ Eff (s)}.

DEFINITION 3. T0 is the set of structures where the transition relation R
satisfies the following condition in each state s = (s1, . . . , sn):

R(s, s′) iff s′ = (s1 ∪ Eff (s1), . . . , sn ∪ Eff (sn))

Note that in T0, each state has a unique successor, so the corresponding
temporal structures are linear. Note also that although we refer to the set of
structures defined above as corresponding to ‘unbounded’ computation, the
states are not closed under inference. The number of inference rules applied at
each step is unbounded, but the rules are not immediately applied again to the
newly derived formulas at the same time step. So these models correspond to
the step logic of Perlis et al. rather than to for example Konolige’s deduction
model of belief (Konolige, 1986) or algorithmic knowledge (Pucella, 2006)
where the set of beliefs is assumed to be deductively closed under inference,
and the time taken to achieve this closure is not taken into account. It would
be straightforward to introduce systems with deductively closed belief sets
as well, but we do not believe that they constitute an interesting case for the
study of resource-bounded belief ascription problem.

4.1. AXIOMATISATION OF T0

If we assume that Ω is finite (e.g., PROP is finite and the depth of nesting of
belief operators is bounded) it is possible to axiomatise T0 by adding to the
temporal logic axioms the successor axioms which exhaustively describe the
transition relation.

Let s = (s1, . . . , sn) be a state. We define the set of belief atoms true in s
as P (s) = {Biα | i ∈ A, α ∈ si} and the set of belief atoms which are false
in s as N(s) = {Biβ | i ∈ A, β ∈ Ω \ si}. The complete description d(s) of
state s is

d(s) =
∧
P (s) ∧

∧
Biβ∈N(s)

¬Biβ

Clearly, the successor state s′ of s in T0 should satisfy
∧
P (s), but in

addition, it should contain all the effects of all the actions available to each
of the agents in s. For every (α, j) ∈ Eff (s), we need to add Bjα to the
successor state. Let us define as E(s) the set of those formulas:

E(s) = {Bjα | (α, j) ∈ Eff (s)}
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Finally, the set of belief formulas not true in s′ are all those formulas which
were not true in s and are not the effects of the actions.

Hence the successor axiom for s in T0 becomes:

d(s)→ EX(
∧
P (s) ∧

∧
E(s) ∧

∧
Biβ∈(N(s)\E(s))

¬Biβ)

THEOREM 1. For a finite Ω, the set of valid formulas of T0 is completely
axiomatised by adding the set of successor axioms for T0 to the axioms and
inference rules below:

A0 Classical propositional logic

A1 2(φ→ ψ)→ (2φ→ 2ψ) for 2 ∈ {AX, AG}

A2 EFφ↔ (φ ∨ EX EF φ)

A3 AG(φ→ AXφ)→ (φ→ AGφ)

A4 EXφ→ AXφ

MP ` φ, ` φ→ ψ ⇒ ` ψ

N ` φ ⇒ ` 2φ for 2 ∈ {AX, AG}

Proof. We are proving weak completeness, namely that for every formula φ,
` φ ⇔ |= φ (φ is provable iff it is valid).

Soundness is straightforward. Note that the axioms A1 – A3 and the rule
N axiomatize two normal modalities AX and AG with two accessibility re-
lations (the successor relation and ‘in the future’ relation), the latter being the
reflexive transitive closure of the former (see, e.g., (Segerberg, 1977). Axiom
A4 is valid because the successor relation is deterministic.

To prove completeness, we build a satisfying model Mφ for a consistent
formula φ. First we define a finite set of formulas Cl(φ); the states in a
satisfying model are going to be maximal consistent subsets of Cl(φ). The
set Cl(φ) contains all subformulas of φ, all formulas of the form Biα where
α ∈ Ω and i ∈ A, is closed under single negations and the condition that if
EFψ ∈ CL(φ), then EX EFψ ∈ Cl(φ). We define the set of states in Mφ

to be the set of all maximal consistent subsets of Cl(φ). For every such state
s ⊆ Cl(φ), we set α ∈ si iff Biα ∈ s. The accessibility relation Rφ holds
between two sets of formulas s and s′ iff the formula

∧
ψ∈s ψ ∧EX

∧
ψ∈s′ ψ

is consistent; essentially, the formula says that s′ is the successor state of s.
Similarly to the Existence lemma in the PDL completeness proof given in for
example (Blackburn et al., 2001), we can show that if a formula of the form
EFψ is in s, then there is a state s′ such that the pair (s, s′) is in the reflexive
transitive closure of Rφ and ψ ∈ s′. This allows us to prove a truth lemma for
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Mφ, namely that for every ψ ∈ Cl(φ) and every state s, φ ∈ s iffMφ, s |= ψ.
Finally, the axiom A4 ensures that every state s has a single successor, and
the successor axioms ensure that the results of applying inference rules in s
belong to this successor, so the condition

Rφ(s, s′) iff s′ = (s1 ∪ Eff (s1), . . . , sn ∪ Eff (sn))

holds in Mφ. Since φ is consistent and φ ∈ Cl(φ), there is a state in Mφ

which satisfies φ. Although Mφ is not a tree model, it is trivial to unravel it
into a tree model while preserving the truth of φ and the properties of Rφ. So
we have built a T0 satisfying model for φ. 2

Note that for axiomatising T0, the successor relation alone and the axioms
A0, A1, A4 and the rule N for AX would be sufficient. We include EF in
the logic only in order to be able to express properties of belief ascription
precisely.

4.2. BELIEF ASCRIPTION PROPERTIES OF T0

THEOREM 2. For every M in T0, if the ascription of beliefs by agent i to
agent j is correct in s0, then the ascription of beliefs by agent i to agent j is
correct in all states.

Proof. Assume that in s0, for every α, if BiBjα is true then so is Bjα. Con-
sider some state s in the future, where BiBjβ holds. Agent i either was told
by j that β (and we assume that the agents are sincere, so Bjβ is true), or i
derived Bjβ from other correctly ascribed beliefs using ascribed resolution
and ascribed positive introspection. It is clear that if preconditions of ares
and aint hold for i, then preconditions of res and int hold for j in the same
state; so it is straigtforward to show by induction on the length of path from
s0 to s that if i derives Bjβ at step k then j derives β at the same step. 2

5. Bounded computation, unbounded memory

In this section we keep the assumption that the agents’ memories are un-
bounded, but introduce a more realistic model of the amount of computation
an agent can perform in a single tick of time. We define the transition relation
to be composed of a tuple of agent’s actions, with only one action for each
agent (other bounds on the number of actions that can be performed in a
single step can be formalised similarly).

For a tuple of actions ā = (a1, . . . , an) by all the agents in state s, let us
denote by Eff (ā, s) the set of effects of the actions a1, . . . , an executed in s.
Let Eff (ā, si) = {α | (α, i) ∈ Eff (ā, s)}.
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DEFINITION 4. T1 is the set of structures where the transition relation R
satisfies the following condition in each state s = (s1, . . . , sn): for every
tuple of actions ā = (a1, . . . , an) available in s, there exists an R-successor
s′ of s, such that

s′ = (s1 ∪ Eff (ā, s1), . . . , sn ∪ Eff (ā, sn)),

and these are the only R-successors of s.

Note that in T1, each state may have multiple successors, so the corresponding
temporal structures are branching.

5.1. AXIOMATISATION OF T1

The axiomatisation of T1 is similar to the axiomatisation of T0. We can
describe each state s = (s1, . . . , sn) by a conjunction of belief atoms and
negations of belief atoms

d(s) =
∧
P (s) ∧

∧
Biβ∈N(s)

¬Biβ

Each successor state s′ of s in T1 should satisfy
∧
P (s), but in addition, it

should contain the effects of some tuple ā = (a1, . . . , an) of actions available
to the agents in s. For every such ā ∈ Act(s) we have a different successor
axiom. For every (α, j) ∈ Eff (ā, s), we need to add Bjα to the successor
state. Let us define as E(ā, s) the set of those formulas:

E(ā, s) = {Bjα | (α, j) ∈ Eff (ā, s)}

Finally, the set of belief formulas not true in s′ are all those formulas which
were not true in s and are not the effects of actions in ā.

Hence the successor axiom for the action ā in s in T1 is

d(s)→ EX(
∧
P (s) ∧

∧
E(ā, s) ∧

∧
Biβ∈(N(s)\E(ā,s))

¬Biβ)

We also need to say that each successor of s is the result of applying one of
the actions possible in s (recall that Act(s) is finite):

d(s)→ AX
∨

ā∈Act(s)

(
∧
P (s) ∧

∧
E(ā, s) ∧

∧
Biβ∈(N(s)\E(ā,s))

¬Biβ)

THEOREM 3. For a finite Ω, the set of valid formulas of T1 is completely
axiomatised by adding the set of successor axioms for T1 to the axioms A0 –
A3 and rules MP and N.
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Proof. The proof is very similar to the completeness proof for T0. The succes-
sor axioms constrain the successor relation so that it satisfies the properties of
the successor relation in T1, and the axioms A2 and A3 force the accessibility
relation for AG to be the reflexive transitive closure of the successor relation.
2

5.2. BELIEF ASCRIPTION PROPERTIES OF T1

Suppose the agents i and j start in a state s0 where i correctly ascribes some
beliefs to j: for every formula α, if M, s0 |= BiBjα, then M, s0 |= Bjα.
Then if in some future state s, i derives, from correctly ascribed beliefs and
using correctly ascribed reasoning rules, that j believes α, then (since we
require that every possible action of j is realised in the model) at some other
state s′, j indeed will derive α.

THEOREM 4. For every M in T1, if the ascription of beliefs by agent i to
agent j is correct in s0, then the ascription of beliefs by agent i to agent j is
correct in the limit.

Proof. Assume that in s0 for every α if BiBjα is true, then Bjα is true. As
before, it is easy to show that if a sequence of actions for deriving Bjβ exists
for agent i, then there is also a sequence of actions which agent j can perform
to derive β. So from any state where a state satisfying BiBjβ is reachable,
there is also a path to a state where Bjβ is satisfied. However, the latter may
be a state corresponding to a later moment of time, or on a different branch
altogether. 2

Note that the agents are not guaranteed to have pointwise correct be-
lief ascription: i may guess wrongly which inference rule j will apply next,
and derive that j believes α before j actually believes α. In order to guess
correctly, the agents in T1 need to know not just the initial beliefs and the
inference rules of other agents, but also their reasoning strategy; we will
address this point later in the paper.

6. Bounded computation, bounded memory

In this section, we study agents that can perform a bounded amount of com-
putation at each step and that have memory of a fixed bounded size. For
simplicity, we assume that all agents have the same memory bound m, and,
since the internal language of the agents does not contain conjunction, we
identify m with the number of formulas the agent can believe simultane-
ously. This means that none of the agents can believe more than m formulas
simultaneously.
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When memory is bounded, we need to modify the actions available to the
agents. We have two choices: either the agents cannot derive any new formu-
las if their memory is full; or they have to overwrite (forget) some formula
which they derived earlier. We have chosen the second alternative, because
it allows us to consider more interesting and realistic agents which do not
stop after the first m inference steps but continue their reasoning indefinitely
by re-using their memory. The preconditions and effects of the actions must
change as a consequence. For example, if the number of agents n is greater
than the memory size m, it is impossible for each agent to tell something
to agent j, for agent j to derive some new formula, and to retain all of the
resulting formulas in j’s state.

We now give preconditions and effects for tuples of agents’ actions, and
provide each tuple of actions with an extra argument: a set of ‘overwriting
effects’ of the joint action, which essentially says which formulas are re-
moved from each agent’s memory. A set of overwriting effects o is a set of
pairs of the form (β, i), which intuitively says that β is to be removed from
si. A joint action is enabled if the normal preconditions of each individual
action hold, and the overwriting ensures that no agent’s memory overflows as
a result. For example, a resolution action by agent i with effect (c, i) together
with overwriting effects (c1, i), (c2, i) means that c will be added and c1 and
c2 will be removed from agent i’s state. On the other hand, an overwriting
effect (Bjα, i) will cancel the effect of a tell action tell(j, i, α) by agent j to
agent i. Note that the transition systems will have transitions corresponding
to every action combined with each possible overwriting effect (provided the
pair is enabled); this can be seen as modelling non-deterministic or random
overwriting.

Formally, an action tuple ā = (a1, . . . , an) together with a set of over-
writing effects o is enabled if each ai is enabled and in addition, for each
si,

|(si ∪ {α | (α, i) ∈ Eff (ā, s)}) \ {β | (β, i) ∈ o}| ≤ m
The effects of ā in combination with the overwriting effects o are Eff (ā, o, s) =
Eff (ā, s) \ o. We define Eff (ā, o, si) = {(α, i) ∈ Eff (ā, o, s)}.

DEFINITION 5. T2 is the set of structures where the transition relation R
satisfies the following condition in each state s = (s1, . . . , sn): for every pair
(ā, o) which is enabled in s, there exists an R-successor s′ of s, such that

s′ = (s1 ∪ Eff (ā, o, s1), . . . , sn ∪ Eff (ā, o, sn)),

and these are the only R-successors of s.
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6.1. AXIOMATISATION OF T2

We can axiomatise T2 using successor axioms, one for each state s, and a pair
consisting of a joint action ā and overwriting effects o which is enabled in s.

The belief atoms which are true in the next state after executing the ac-
tion with overwriting (ā, o) are: In(ā, o, s) = (P (s) ∪ E(s)) \ O(s), where
O(s) = {Biβ | (β, i) ∈ o(s)}. The set of belief atoms which are false are
Out(ā, o, s) = (N(s) \ E(s)) ∪O(s)).

d(s)→ EX(
∧
In(ā, o, s) ∧

∧
Bjβ∈Out(ā,o,s)

¬Bjβ)

Let us denote the set of all joint actions with overwriting which are enabled
in state s by Acto(s). To say that only those transitions are possible which
correspond to actions in Acto(s), we add the axiom

d(s)→ AX
∨

(ā,o)∈Acto(s)

(
∧
In(ā, o, s) ∧

∧
Bjβ∈Out(ā,o,s)

¬Bjβ)

THEOREM 5. For a finite Ω, the set of valid formulas of T2 is completely
axiomatised by adding the set of successor axioms for T2 to the axioms A0 –
A3 and rules MP and N.

Proof. Exactly the same as for T1. (An axiomatisation for a more complex
language containing modalities corresponding to memory counters is given
in (Alechina et al., 2009).) 2

6.2. BELIEF ASCRIPTION PROPERTIES OF T2

For the structures in T2, neither correct ascription not correct ascription in the
limit holds, even if the agents correctly ascribe beliefs in the initial state s0.

Consider the following example:
Agent 1 has beliefs p (that it invited agent 2 for dinner, for example) and

¬p∨q (that if agent 2 is invited, then agent 1 promises to be at home and cook
the dinner), and no other beliefs which entail q. Agent 1 tells agent 2 that p
and ¬p ∨ q. In some state s, therefore, agent 2 believes B1p and B1(¬p ∨ q)
and this belief ascription is correct. However, there is a successor state s′ of s
where agent 1 forgets one of its original beliefs, for example p, while agent 2
remembers B1p and B1(¬p ∨ q) and derives B1q. Then belief ascription by
agent 2 to agent 1 in s′ is first of all incorrect (but this may also happen in
T1 structures) but it is also incorrect in the limit: there is no time line starting
in s′ such that at some time in the future agent 1 believes q as agent 1 has
forgotten one of the premises necessary to derive it.
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This example highlights an inherent problem with modelling agents which
reason about each other’s beliefs in a step-wise, memory-bounded fashion.
The disparity between agent 1’s beliefs and the beliefs agent 2 ascribes to
agent 1 at each step is due both to the fact that at most one formula is derived
by each agent at any given step (and agent 2 may guess incorrectly which
inference rule agent 1 is going to use), and to memory limitations which cause
agents to forget formulas. An obvious alternative would be to do tentative
ascription of beliefs to other agents, i.e., to conclude that the other agent will
be in one of several possible belief states in the next state, e.g.

B2B1p ∧B2B1(¬p ∨ q)→ EX(B2((B1p ∧B1(¬p ∨ q) ∧B1q)∨

(¬B1p ∧B1(¬p ∨ q) ∧ ¬B1q) ∨ . . .))

However, this implies that one of the agents (agent 2 in this case) has a
much larger (exponentially larger!) memory and a more expressive internal
language to reason about the other agent’s beliefs.

It is clearly not sufficient for correct belief ascription in the resource-
bounded setting described above for the reasoners to ascribe to other agents
just a set of inferences rules or a logic such as KD45. They also need to be able
to ascribe to other agents a reasoning strategy or a preference order on the
set reasoning actions used by the other agents, which constrains the possible
transitions of each reasoner, and which directs each agent’s reasoning about
the beliefs of other agents.

7. Ascribing strategies

In this section, we introduce another class of structures where the agents’
choices of actions are determined by their reasoning strategies. Informally, a
reasoning strategy characterises the inferences that an agent may make when
in a given state.

First we need to define strategies formally. A reasoning strategy for agent
i, �i, is an order on the set Ω of possible beliefs. α �i β means that agent
i prefers deriving α to deriving β. We use the preference relation on the
sets of formulas to compare potential successor states with the current state.
Intuitively, agents do not make transitions to states which are less preferred
than the current state — this applies both to making inferences and to ‘paying
attention to’ formulas communicated by other agents. Only transitions result-
ing in a state which is at least as preferred as the current state are present in
T3 models. Recall the example given in the introduction; a state containing an
interesting new formula P 6= NP may be preferred to the current state, while
a state where we derive 1 = 1 at the cost of overwriting some other formula
may not be. Similarly, if a fellow reasoner communicates 1 = 1, a state where
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we acquire the formula Bj(1 = 1) at a cost of overwriting something useful
may not be preferred to the current state.

This intuition leads to the following definition of the preference relation
on the local states of agents.

DEFINITION 6. A (successor) state si′ is preferred to a (current) state si by
agent i (si′ �i si) if either si ⊆ si′ or |si ∪ si′| > m (meaning that some
formulas have to be overwritten), |si \ si′| = |si ∪ si′| − m (only as many
formulas are overwritten as is necessary to make the resulting set of size m),
and

∀β ∈ (si \ si′) ∀α ∈ si′ (α �i β)

(all overwritten formulas are less preferred than any formula in the successor
state si′).

Finally we define a class of structures where the transition relation is
constrained by the preference on derived beliefs.

DEFINITION 7. T3 is the set of structures where each agent i has an associ-
ated preference order �i on Ω and the transition relation R is as in T2, but is
further restricted as follows. An action with ovewriting (a, o) is only enabled
in a state s = (s1, . . . , sn) if it is enabled in T2 and in addition, the state
s′ = (s1′, . . . , sn′) resulting from applying (a, o) to s satisfies the condition
that for every i, si′ �i si.

Note that knowing an agent’s reasoning strategy does not imply perfect in-
formation about the inferences the agent will make. However, more informa-
tive orders �i, e.g., total orders, place greater constraints on the inferences
available to an agent.

We now define what it means for an agent to ascribe a strategy to another
agent. Observe that agent i can only ascribe future beliefs to agent j correctly
if the beliefs agent i is reasoning about will never be overwritten. Hence,
for correct (in the limit) ascription of beliefs to j, agent i needs to know
some of agent j’s ‘essential’, or most preferred beliefs: the ones which never
get overwritten. Let us denote by p(j) the set of agent j’s most preferred
beliefs such that |p(j)| ≤ m (where m is the bound on the size of the agents’
memory) and for every α ∈ p(j) and β ∈ Ω \ p(j), α �j β. Note that if
j’s preference order is not total, p(j) may be empty. We denote by p(i, j) the
set of those ‘unoverwritable beliefs’ of agent j that agent i knows about; note
that this is not necessarily the complete set of j’s most preferred beliefs, or
even a non-empty set.

The structures where agent i correctly ascribes a reasoning strategy to
agent j forms a subset of all T3 structures.

DEFINITION 8. Agent i correctly ascribes a reasoning strategy to agent j
if:
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− p(i, j) ⊆ p(j)

− ares(i, BjB̄c1, BjB̄c2, l) by i is only enabled if B̄c ∈ p(i, j), where c
is the resolvent of c1 and c2 on l.

− aint(i, Bjα) by i is only enabled if Bjα ∈ p(i, j).

− the effects of tell(i, α) by j are included in the overwriting effects of a
joint action if α 6∈ p(i, j).

THEOREM 6. LetM be a structure in T3 where agent i correctly ascribes a
reasoning strategy to agent j, and correctly ascribes beliefs to j in the initial
state. Then agent i’s ascription of beliefs to agent j is correct in the limit.

Proof. We need to prove that ifM, s0 |= EF BiBjα thenM, s0 |= EF Bjα.
The proof is the same as for T1, since if p(i, j) ⊆ p(j), we can ignore the pos-
sibility of formulas used in the ‘derivation’ ofBjα by i on the path witnessing
EF BiBjα being overwritten on any derivation path taken by j. Hence there
is a matching sequence of actions by j which witnesses EF Bjα. 2

Note that for the correctness of agent i’s ascription of beliefs to agent j to
be non-vacuous, we need an additional requirement that inferences involving
j’s beliefs be preferred to any other possible inferences in at least some states.

The intuition that in addition to applying inference rules, agents use some
kind of reasoning strategy which excludes pointless inferences is, we believe,
uncontroversial. It is however surprisingly difficult to formalise this intu-
ition. The discussion above shows that given some information about another
agent’s strategy, a resource-bounded agent can ascribe beliefs correctly (in
the limit) to the other agent. It remains an open question whether the notion
of correct strategy ascription considered above is in some sense the weakest
one which can guarantee correctness in the limit for belief ascription.

8. Related work

To give the reader an idea where the current proposal fits into the body of
research on epistemic logics for bounded reasoners, we include a brief sur-
vey of existing approaches, concentrating on those which have influenced the
work presented here.

In standard epistemic logic (see e.g., (Fagin et al., 1995; Meyer and van der
Hoek, 1995) for surveys) an agent’s (implicit) knowledge is modelled as
closed under logical consequence. This can clearly pose a problem when
using an epistemic logic to model resource-bounded reasoners, whose set of
beliefs is not generally closed with respect to their reasoning rules. Various
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proposals to modify possible worlds semantics in order to solve this problem
of logical omniscience (e.g., introducing impossible worlds as in (Hintikka,
1962; Rantala, 1982), or non-classical assignment as in (Fagin et al., 1990))
result in agent’s beliefs still being logically closed, but with respect to a
weaker logic.

Our work builds on another approach to solving this problem, namely
treating beliefs as syntactic objects rather than propositions (sets of possible
worlds). The approach goes back to Eberle (1974) and Moore and Hendrix
(1979). In (Fagin and Halpern, 1985), Fagin and Halpern proposed a model
of limited reasoning using the notion of awareness: an agent explicitly be-
lieves only the formulas which are in a syntactically defined awareness set.
Implicit beliefs are still closed under consequence, but explicit beliefs are
not, since a consequence of explicit beliefs is not guaranteed to belong to the
awareness set. However, the awareness model does not give any insight into
the connection between the agent’s awareness set and the agent’s resource
limitations, which is what we try to do in this paper.3 Konolige (1986) pro-
posed a different model of non-omniscient reasoners, the deduction model of
belief. In Konolige’s approach, reasoners are parameterised with sets of rules
which could, for example, be incomplete. However, the deduction model of
belief still models the beliefs of a reasoner as closed with respect to reasoner’s
deduction rules; it does not take into account the time it takes to produce
this closure, or any limitations on the agent’s memory. Step logic, introduced
in (Elgot-Drapkin and Perlis, 1990), gives a syntactic account of beliefs as
theories indexed by time points; each application of inference rules takes a
unit of time.

Yet another account of epistemic logic called algorithmic knowledge, which
treats explicit knowledge as something which has to be computed by an agent,
was introduced in (Halpern et al., 1994), and further developed in, e.g., (Fagin
et al., 1995; Pucella, 2006). In the algorithmic knowledge approach, agents
are assumed to possess a procedure which they use to produce knowledge. In
later work (Pucella, 2006), this procedure is assumed to be given as a set of
rewrite rules which are applied to the agent’s knowledge to produce a closed
set, so, like Konolige’s approach, algorithmic knowledge is concerned with
the result rather than the process of producing knowledge.

In (Duc, 1995; Duc, 1997) Duc proposed logics for non-omniscient epis-
temic reasoners which will believe all consequences of their beliefs eventu-
ally, after some interval of time. It was shown in (Ågotnes and Alechina,
2007) that Duc’s system is complete with respect to semantics in which the
set of agent’s beliefs is always finite. Duc’s system did not model the agents’
reasoning about each others’ beliefs.

3 We also completely dispense with the notion of implicit beliefs.
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Other relevant approaches where epistemic logics were given a temporal
dimension and each reasoning step took a unit of time include, for example,
Sierra et al. (1996), where each inference step is modelled as an action in
the style of dynamic logic, and Alechina et al. (2006) which proposes a logic
for verification of response-time properties of a system of communicating
rule-based agents (each rule firing or communication takes a unit of time).
In a somewhat different direction, Fisher and Ghidini (1999) proposed a
logic where agents reason about each others beliefs, but have no explicit
time or memory limit; however there is a restriction on the depth of belief
nestings (context switching by the agents). Epistemic logics for bounded-
memory agents were investigated in, for example, (Ågotnes, 2004; Ågotnes
and Alechina, 2006; Albore et al., 2006; Alechina et al., 2008), and the inter-
play between bounded recall and bounded memory (ability to store strategies
of only bounded size) was studied in (Ågotnes and Walther, 2007). How-
ever none of these papers concentrated on belief ascription by one resource-
bounded agent to another. In (Alechina et al., 2009) the problem of belief
ascription for time- and memory-bounded reasoners was introduced, however
as stated earlier, they proposed a different solution for this problem, namely
the introduction of a preference order on the set of all possible rule instances
in the language.

It should also be pointed out that the problem studied in this paper is of
correctly predicting what another agent will believe given limited information
about what it currently believes (of deriving correct conclusions from correct
premises), rather than a problem of belief revision (Alchourrón et al., 1985),
i.e., what an agent should do if it discovers the beliefs it has ascribed to an-
other agent are incorrect. It is also distinct from the problem of determining
the consequences of information updates as studied in dynamic epistemic
logic (e.g. (Baltag et al., 1998)). Adding new true beliefs in a syntactic ap-
proach such as ours is straightforward compared to belief update in dynamic
epistemic logic, which interprets beliefs as sets of possible worlds. Essen-
tially, in dynamic epistemic logic an agent acquires a new logically closed set
of beliefs at the next ‘step’ after an announcement is made, while we model
the gradual process of deriving consequences from a new piece of information
(and the agent’s previous beliefs).

9. Conclusion

We presented four classes of models for epistemic temporal logic, where the
agents have different restrictions on computational ability and memory capac-
ity. The agents can communicate; they can also ascribe beliefs and inference
rules to each other. We have shown that even with correct initial beliefs and
correct ascription of inference rules, it is impossible for resource-bounded
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agents to maintain correct belief ascription. We have also shown that agents
can maintain belief ascription which is ‘correct in the limit’ if they have some
information about the other agent’s preferences on the set of possible beliefs.

In future work, we plan to extend out framework to consider agents rea-
soning about resource limitations of other agents. At the moment the agents
have no way of forming beliefs about another agent’s memory limit m (note
that we can easily make this limit different for different agents). If the agents
could represent those limitations, then one agent could infer that another
agent does not believe some formula on the grounds that the latter agent’s
memory is bounded.
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