
State space search with prioritised
soft constraints

Natasha Alechina
School of Computer Science and IT,

University of Nottingham,
Nottingham NG8 1BB, UK.

email:nza@cs.nott.ac.uk

Brian Logan
School of Computer Science and IT,

University of Nottingham,
Nottingham NG8 1BB, UK.

email:bsl@cs.nott.ac.uk

Abstract

This paper addresses two issues: how to choose between solutions for a problem specified by multiple
criteria, and how to search for solutions in such situations. We argue against an approach common in
decision theory, reducing several criteria to a single ‘cost’ (e.g., using a weighted sum cost function)
and instead propose a way of partially ordering solutions satisfying a set of prioritised soft constraints.
We describe a generalisation of theA� search algorithm which uses this ordering and prove that under
certain reasonable assumptions the algorithm is complete and optimal.

Keywords: heuristic search, constraint satisfaction, multiobjective decision making, route planning.

1 Introduction

Consider the problem of an agent playing the game of ‘hide-and-seek’ which has to plan a route from its
current position to the ‘home’ position in a complex environment consisting of hills, valleys, impassable
areas and so on. The plan should satisfy a number of criteria, for example, it should be concealed from the
agent’s opponents, it should be as short as possible and be executable given the agent’s current resources
(e.g., fuel or energy). This problem is sometimes formulated as that of finding aminimum-cost(or low-
cost) route between two locations in a digitised map which represents a complex terrain of variable altitude,
where the cost of a route is an indication of its quality [1]. In this approach, planning is seen as a search
problem in space of partial plans, allowing many of the classic search algorithms such asA� [4] or variants
such asA�

� [9] to be applied. However, while such planners are complete and optimal (or optimal to some
bound�), it can be difficult to formulate the route planning task in terms of minimising a single criterion.

One way of incorporating multiple criteria (such as time, energy or visibility) into the planning process
is to define a cost function for each criterion and use, e.g. a weighted sum of these functions as the function
to be minimised. However the relationship between the weights and the solutions produced is complex,
and it is often not clear how the different cost functions should be combined to give the desired behaviour
across all magnitude ranges for the costs. This makes it hard to specify what kinds of plans a planner
should produce and hard to predict what it will do in any given situation; small changes in the weight of
one criterion can result in large changes in the resulting plans. Changing the cost function for a particular
criterion involves changing not only the weight for that cost, but the weights for all the other costs as well.
Moreover, if different criteria are more or less important in different situations, we need to find sets of
weights for each situation.

Rather than attempt to design a weighted sum cost function, it is often more natural to formulate such
problems in terms of a set of constraints which a solution should satisfy. In this paper, we focus on
optimisation constraints (requirements to minimise a cost) and upper bound constraints (requirements that
a cost be less than or equal to some value). We allow constraints to beprioritised, i.e., it is more important
to satisfy some constraints than others, andsoft, i.e., constraints which can be satisfied to a greater or lesser
degree. Such a framework is more general in admitting both optimisation problems (e.g., minimisation

1

constraints) and satisficing problems (e.g., upper bound constraints), which are difficult to model using
weighted sum cost functions.

TheA� search algorithm is ill-suited to dealing with problems formulated in terms of constraints. We
present a generalisation ofA�, A� with bounded costs (ABC) [7, 8], which searches for a solution which
best satisfies a set of prioritised soft constraints. In the next section we introduce state space search andA�.
In section 3 we define a preference order on solutions based on prioritised soft constraints and in section 4
we describe theABC search algorithm. In section 5 we show that, given certain reasonable assumptions
about the constraints,ABC is both complete and optimal. In section 6 we briefly discuss the relative
computational complexity ofABC andA�, and show that the behaviour ofABC cannot be emulated by
A� with any cost function (or by any state space search algorithm which uses the same order to order paths
and to determine which paths to discard). In section 7, we briefly describe an implemented route planning
system based onABC, and in section 8 we give a brief overview of related work in optimisation and
constraint satisfaction.

In the sequel, we will use route planning as a running example. However, we believe that it can be
applied in other problem domains which involve searching for a solution specified by multiple incommen-
surable criteria or prioritised soft constraints.

2 State space search

Search is a universal problem-solving technique in AI. It is useful when the sequence of actions required
to solve a problem are not knowna priori, but must be determined by systematic trial and error exploration
of the alternatives. In particular, route planning can be seen as a search problem.

A state space search problem consists of the following components:

� A stateis a complete description of the world for the purposes of problem-solving. For example, in a
chess game, the states might be the positions of the pieces on the board, in route planning, a location.
Some states are designated asgoal states, e.g. in route planning the goal states would be the desired
destination(s).

� An operatoris an action that transforms one state of the world into another state. In a chess game, the
operators might be the legal moves for the pieces given the current board position. In route planning
on a digitised map, the operators could be moves to a neighbouring cell.

� thestate spaceis the set of all states reachable from theinitial state (the state the world is in when
problem-solving begins) by any sequence of operator applications.

A path in the state space is any sequence of operator applications leading from one state to another. A
solutionis a path from an initial state to a goal state.

We assume that each application of an operator has an associated cost which depends on the operator
and the context in which the operator is applied. Apath cost functiong(p) is the sum of costs of operator
applications which constitute the pathp. The path cost can be seen as a measure of quality of the path. For
example, in the route planning problem, we might prefer solutions which minimise the distance travelled
or the time taken to reach a goal.

A search strategy which is guaranteed to find a solution (if one exists) is said to becomplete. If it also
finds the minimum cost solution it is said to beoptimal.

TheA� search algorithm is an example of an informed search strategy which uses additional informa-
tion about the likely cost of completing a path to a goal. This is expressed as aheuristic function, h(p),
which, given a pathp to some states, returns an estimate of the cost of the minimum cost path froms to a
goal state.A� uses an estimated total cost:

f(p) = g(p) + h(p)

to guide the search, so that the most promising paths (partial solutions) are considered first.A� is complete
if each operator costs at leastd for some positived. A� is optimal ifh(p) is always an underestimate of the
true cost of extending the pathp to a goal state.

2

3 Ordering paths

When solutions are evaluated on multiple criteria, devising a single cost function can be problematic.
Instead we use two partial orders on solutions: a preference order and a dominance order on paths in the
state space. Both orders are used by theABC search algorithm introduced in the next section. First we
need to introduce several notions.

Constraint order Constraintsare bounds on costs of solutions (where a solution has multiple costs, one
for each criterion of evaluation). A cost can be anything for which a (partial) order relation can be defined:
e.g., numbers, booleans, or more generally a label from an ordered set of labels (e.g., ‘tiny’, ‘small’,
‘medium’, ‘large’, ‘huge’) etc. A constraint is a requirement that a cost lies within a given range of values;
for example, ‘f(n) = true’, ‘ f(n) = 100’, ‘ f(n) < 10’, ‘ f(n) > 20’, or ‘f(n) � O + �’ (i.e. within
� of the optimum valueO). A constraint is satisfied if the cost is inside the required range, and violated
otherwise.

An important class of constraints are upper/lower bound constraints which define an upper or lower
bound on some property of the solution, such as the time required to execute a plan, its degree of visibility
etc. Another kind of constraint which we consider in detail, since they allow us to formulateABC as
a generalisation ofA�, are optimisation constraints which require that some property of the solution be
minimised or maximised, or more generally should lie within� of the minimum or maximum value (for
example that a plan should be as short as possible).

Suppose the requirements on a solution are given by a set of constraintsC1; : : : ; Cn. If a solution
p satisfies the same constraints as a solutionp0 and at least one more,p should be preferred top0. This
gives a very uninformative preference relation; for example, a solutionp which satisfies onlyC1 andp0

which satisfiesC2; : : : ; Cn are incomparable. In some cases, either the constraints are prioritised (e.g.,C1

is more important thanC2; : : : ; Cn taken together, and thereforep is preferred top0) or, more generally,
some combinations of constraints are more important to satisfy than others. The rest of this section aims to
make the notion of an order induced by constraints more precise.

We associate with every pathp a vector oft’s andf ’s of lengthn, where theith element of the vector is
t if Ci is satisfied, andf otherwise. The valuet is preferred tof (t v f), since it is always better to satisfy
a constraint than to violate it. This gives rise to the pointwise order on vectors of constraint values:

� t v f , t v t, f v f ;

� Let 1 � i � n andai; bi 2 ft; fg. Thenha1; : : : ; ani v hb1; : : : ; bni if for all i ai v bi;

� As usual,x < y if x v y and noty v x

� x � y if x v y andy v x.

We are interested in extensions of the pointwise order. An obvious example is MaxCSP [3], where the
more constraints are satisfied, the better (e.g., satisfying any three constraints is preferred to satisfying
any two constraints). Similarly, if the constraints are themselves ordered (prioritised), then the subsets of
fC1; : : : ; Cng could be ordered lexicographically.

Constraint orderv is any reflexive and transitive extension of the pointwise order defined above, for
example lexicographic order or the order in which only the number of satisfied constraints matter.

The orderv on the vectors gives rise to the order on paths:p < (v;�)p0 if the corresponding vectors
of constraint values are in the< (v;�) relation. A set of paths equivalent in the constraint order is called
a constraint equivalence class.

Cost order In addition to the constraint order, we associate with each path a vector of cost values
hv1; : : : ; vni and define a partial order� on these vectors, which we again assume to be at least the
pointwise order. For two pathsp andp0, p � p0 if � holds between the corresponding vectors of costs. We
call� theslack order.

In many cases it is most natural to prefer paths which over-satisfy the constraints, i.e., where there is
some ‘slack’ between the cost of a path and the bound on the cost defined by a constraint. For example, if
v1 andv2 are values andk1; k2 constants, thenv1 is preferred tov2 (v1 � v2) if:

3

Form of constraint on costv Conditions on costs

v < Oe + � v1 < v2
v < k1 v1 < v2
v > k1 v1 > v2
v = k1 jk1 � v1j < jk2 � v2j

In the case of route planning, solutions which over-satisfy time or energy constraints are often more robust
in the face of unexpected problems during the execution of the plan. Given a constraint that the time
required to execute a plan should be less than 1 hour, a route which takes 50 minutes satisfies this constraint
‘better’ than a route which takes 59 minutes. A route which takes two hours violates it ‘more’ than a
route which takes 1 hour 10 minutes. For example, if constraints are lexicographically ordered, the slack
order could be a lexicographic ordering of cost vectors. However, sometimes this doesn’t make sense;
being one minute late is just as bad as being two hours late. For this reason, and in those cases where
all solutions which satisfy the constraints are equally acceptable, we don’t require a strong slack order.
The only assumption which we use in the proofs in sections 5 and 6 is that the slack order is at least the
pointwise order.

Preference order Finally, we define the combination of the two orders which will be used to order
the paths in the search space. Given the two ordersv and�, the preference orderon paths is uniquely
determined by first ordering the paths with respect tov and then sub-ordering the equivalence classes with
respect to�. We denote the preference order by�pref . Note that�pref might still be a partial (not total)
order.

Dominance order Another order used in the algorithm is thedominance order. A pathp dominatesa
pathp0 if both paths terminate in the same state andp is preferred top0 in the pointwise order of costs.

The preference order on paths is used to direct the search and control backtracking.1 The dominance
order is used to decide which newly generated paths to keep and which to discard. Below (Theorem 3)
we show that all non-dominated paths to a state should be kept by the algorithm, even if some of them
are below others in the preference order. Typically the preference order will be more informative than the
dominance order.

4 The ABC algorithm

In the remainder of this paper we describe a generalisation ofA� search algorithm,A� with bounded costs
(ABC), which uses the preferences order defined above to search for a solution which best satisfies a set
of prioritised soft constraints, rather than the solution with lowest cost on a single cost function [7].

We define anABC search problem as consisting of:

� a set of states and operators as forA�;

� a set ofcost functions, one for each criterion on which solutions are to be evaluated;

� a set ofconstraintson acceptable values for each cost;

� an orderv over vectors of constraint values; and

� an order� over vectors of cost values.

A solutionto anABC search problem is a path from the start state to a goal state.
The search strategy ofABC is similar toA� (see Figure 1). We use two lists, anOPEN list of un-

expanded nodes (paths) ordered using the preference order, and aCLOSED list which records all non-
dominated expanded paths to each state visited by the algorithm. At each step, we take the first node from

1Favouring paths which over-satisfy the constraints has the additional advantage of reducing the likelihood that the path will
violate the constraint as the length of the path increases, reducing the amount of backtracking.

4

theOPENlist and put it onCLOSED. Call this noden. If n is a valid solution we return the path and stop.
Otherwise we generate all the successors ofn, and for each successor we cost it and determine its constraint
equivalence class. We remove fromOPENandCLOSEDall paths dominated by any of the successors ofn

and discard any successor which is dominated by any path onOPEN or CLOSED. We add any remaining
successors toOPEN, in preference order, and recurse.

OPEN [start]
CLOSED []

repeat
if OPEN is empty return false

remove n, the head of the OPEN list, from OPEN and place it on CLOSED

if n is a solution then return n

otherwise for every successor, n
0, of n

cost n
0 and determine its equivalence class

remove from OPEN and CLOSED all paths dominated by n
0

if n
0 is dominated by any path on OPEN or CLOSED, discard n

0

otherwise add n
0 to OPEN, in preference order

Figure 1: TheABC algorithm

5 Completeness and optimality ofABC

In this section we prove that, given some reasonable assumptions,ABC is both complete and optimal. By
anoptimal solutionwe mean a solutionp such that there is no solutionp0 which is strictly preferred top.
Note that there may be several different optimal solutions.

As for A�, completeness and optimality forABC hold only under some assumptions about operators
and cost functions. Here we formulate them for increasing cost functions; it is straightforward to formulate
analogous conditions for decreasing cost functions. We assume:

1. there are finitely many operators, and each application of an operator increases the cost of a path by
at least some minimal positive amountd; and

2. heuristic components in cost functions never overestimate the actual cost of the completion of a path.

We call a constraintadmissibleif it is an upper bound or minimisation constraint on an increasing cost
function satisfying the conditions above (or a lower bound or maximisation constraint on a decreasing cost
function satisfying analogous conditions).

Theorem 1 ABC with admissible constraints is complete.

Proof. Suppose that the problem consists in finding a solution satisfying admissible constraintsC1; : : : ; Cn.
For simplicity, assume that they all are upper bound or minimisation constraints corresponding to increas-
ing cost functionsf1; : : : ; fn. Suppose further that a solution does exist, and thats is an optimal solution.

Recall that the paths on theOPENlist are ordered by the preference order, i.e., first with respect to their
equivalence class and then each equivalence class is sub-ordered by a slack order. Suppose thats belongs
to thekth equivalence class.

5

It suffices to show that (1) all equivalence classes preceding thekth equivalence class are finite and
hence thekth equivalence class will be searched after a finite number of steps. Note that thekth equivalence
class itself need not be finite; if the search space is infinite, the last equivalence class for the given problem
is infinite. So, we also need to show that (2) within thekth equivalence class, a solution will be found after
a finite number of steps.

Recall that there are finitely many operators and an application of each of them increases the cost
on f1; : : : ; fn by at least fixed amountsd1; : : : ; dn, respectively. A path consisting ofm application of
operators costs at leastm � di for every functionfi. For every upper bound constraintfi(s) � r there
are therefore only finitely many paths which cost less thanr. Hence all equivalence classes which satisfy
at least one upper bound constraint are finite. In the case of minimisation constraints, the cost ofs on a
cost functionfi gives an upper bound on the optimum forfi and hence on the number of paths satisfying
a minimisation constraint onfi. We assume that the order of constraint equivalence classes is at least
pointwise and hence every class preceding thekth equivalence class satisfies some constraint which is not
satisfied by thekth class. So, there are only finitely many paths in the preceding equivalence classes. We
have proved (1).

If the kth class itself satisfies at least one admissible constraint, it is finite as well, and a solution will
be found regardless of the ordering of the class. In this case, the ordering of the class only matters for
finding the optimal solution. If thekth equivalence class is infinite, we use the fact that it is ordered by the
pointwise ordering over costs: a path which is cheaper on all cost functions is preferred. Eventually a path
leading to a goal will have lower costs than any other path and will be chosen for expansion. This proves
(2). 2

Theorem 2 ABC with admissible constraints is optimal.

Proof. The proof of the previous theorem did not rely on the slack ordering (apart from the pointwise
ordering on costs) or the fact that cost functions never overestimate the true cost of a path. It only used
the fact that costs are finite and increasing by a discrete amount at every step, so that even a solution with
overestimated cost will eventually become cheaper than any other path expanded so far. If, in addition, the
slack ordering is used and the true cost is never overestimated, the first solution found will be the cheapest.
The formal argument is the same as forA� [9]. 2

6 Comparison ofABC and A�

In the worst case,A� requires exponential space (and hence exponential time) to find a solution.ABC is a
strict generalisation ofA�: with a single admissible optimisation constraint its behaviour is identical toA�,
and in this case its worst-case performance is identical to that ofA�. However, in general, the performance
of ABC andA� are not directly comparable, since the problems solved byABC (e.g., problems involving
upper-bound constraints or multiple constraints) often cannot easily be reformulated in terms of minimising
a weighted-sum cost function. More importantly, the solutions found byABC (using two orderings) are
different from those found byA� (using only one order to order theOPEN list and determine which paths
to discard). While it is possible to replace the preference order used byABC with an order induced by a
weighted sum cost function and obtain the same ordering of theOPENlist, this weighted sum cost function
cannot be used to decide which paths are dominated and should be discarded.

6.1 Limitations of A�

Several variants ofA� which use either a weighted sum cost function (or other way to compute a single
overall cost from several costs), or a partial order over vectors of costs, have been proposed (e.g., [11, 12]).
In this section we show that none of these algorithms can replicate the behaviour ofABC with respect to
constraint satisfaction if the same ordering is used both to order and to prune theOPEN list. Essentially,
we make a simple point based on the observation that the order used to direct the search (order the paths
in theOPENlist) is normally much more informative than the order used to determine which paths can be
discarded (dominance order).

6

We say that a state space search algorithm is avariant ofA� if it generates solutions and keeps them
in anOPENlist just likeA� but possibly uses some other criterion to order and prune theOPENlist (e.g., a
partial order, or any function of multiple costs).

Theorem 3 A� or any variant ofA� which uses the same criterion to order paths and to determine which
paths to discard, is not guaranteed to find an optimal solution even if all constraints are admissible.

Proof. Suppose a search algorithm for constraint satisfaction is based onA� with some preference order
on vectors of costs. Only the most preferred (non dominated in the preference order) path to every state is
retained. The following counterexample shows that such an algorithm may fail to find an optimal solution
for a search problem with prioritised constraints.

Suppose there are two constraints,C1 andC2. Suppose further that two pathspa andpb to the same
staten are found (see Figure 2). The first path satisfies both constraints with very little slack on both of
them. The second path violates one of the constraints but satisfies another one with a lot of slack. Any
preference order which takes account of constraint satisfaction should prefer the first path to the second
one. If the same order is used to decide which paths to remember and which to discard, the second path
will be discarded. However, if the heuristics are too optimistic, there may be no completion ofpa to any
goal state which does not violate both constraints. At the same time there could be a continuation ofpb to a
goal state which still satisfies one of the constraints. Obviously, the latter would give a better solution than
a continuation ofpa, but the algorithm will not find it since it cannot backtrack topb, which was discarded.
If pb is ever regenerated, it will be discarded again since a ‘better’ path to the same state exists. If the
optimal solution involves a path throughn, the optimal solution will never be found. 2

start

end

n

p
a

p
b

Figure 2: Plan subsumption withA�.

6.2 Computational complexity

As might be expected, additional flexibility ofABC involves a certain overhead compared withA�. In
particular, we must remember all the non-dominated paths to each state visited by the algorithm. Slack
ordering requires an additionallogm comparisons ofk cost values, wherem is the number of paths in the
equivalence class andk is the number of criteria. In addition, we must update the constraint values of the
paths in theOPENlist when we obtain a better estimate of the optimum value for an optimisation constraint.

In some cases remembering all the non-dominated paths can be a significant overhead. However, there
are a number of possible solutions to this problem, including more intelligent initial processing of the
constraints and discretising the Pareto surface. For example we can require that the algorithm retain no
more thann paths to any given state, by discarding any path which is sufficiently similar to an existing path
to that state. In the limit, this reduces toA� where we only remember one path to each state.

7

7 A route planner based onABC

In this section, we present an example application of theABC algorithm. We describe a simple route plan-
ner based onABC for an agent which plays the game of ‘hide-and-seek’ in complex environments. The
goal of the agent is to get from a given position to the ‘home’ position subject to a number of constraints,
e.g., that the route should take less thant timesteps to execute or that the route should be hidden from the
agent’s opponents, and the function of the planner is to return a plan which best satisfies these constraints.

The current implementation of the route planner supports seven constraint types which bound the time
and effort taken to execute the plan or require that certain cells be visited or avoided, for example,con-
cealed routeconstraints enforce a requirement that none of the steps in the plan be visible by the agent’s
opponents.2 However, for reasons of brevity, we shall consider only time and energy constraints here. Time
constraints establish an upper bound on the time required to execute the plan assuming the agent is moving
at a constant speed of one cell per timestep. The time cost is simply the number of timesteps necessary to
execute the plan. Energy constraints bound a non-linear ‘effort’ function which returns a value expressing
the ease with which the plan could be executed—the cost function is based on the 3D distance travelled
with an additional non-linear penalty for going uphill. The energy costCi for stepi is of the form:

Ci = li �

�
((100� li) + 1:0)1:5 if gi > 0

1:0 otherwise

whereli is the length of stepi andgi is the gradient. The heuristic function for the time constraint is simply
the number of timesteps required to traverse the 2D distance from the current position to the goal and for
the energy constraint is the 3D distance from the current position to the goal.

In the following example, we consider the problem of planning from coordinates (50, 10) to (10, 45)
in an80� 80 grid of spot heights representing a 10km� 10km region of Southern California. The terrain
model is shown in Figure 3 (lighter shades of grey represent higher elevations).3 We use a lexicographic
ordering over constraints and costs, with the time constraint being more important than the energy con-
straint.4 The time taken to execute the plan should be less than 100 timesteps(t < 100) and the energy
cost should be less than 15,000 units(e < 15; 000). There is a conflict between the two constraints, in that
shorter plans involve traversing steeper gradients and so require more energy to execute.

Figure 3: Planning with two constraints.

2Note that the current implementation of the planner does not support optimisation constraints.
3We are grateful to Jeremy Baxter at DERA Malvern for providing the terrain model.
4For reasons of efficiency, the lexicographic ordering of costs necessary to ensure that the solution returned has maximum slack,

is optional.

8

Figure 3 shows the plan returned by theABC planner. The plan requires 63 timesteps and 14,736
units of energy to execute, i.e. it just satisfies the energy constraint. A straight line path would have
given maximum slack on the first (time) constraint, but the planner has traded slack on the more important
constraint to satisfy the second, less important, constraint (energy). The plan is optimal in the sense that
there is no plan which takes less time to execute and still satisfies the energy constraint. It is important
to stress that this plan could not be found by a planner based onA� using a single preference order, as
Theorem 3 from the previous section shows.

Finding the plan requires the generation 29,107 nodes and 9,195 insertions into theOPENlist, and takes
about about 40 seconds of CPU time on a Sun UltraSparc (300 MHz). As a rough comparison, with only
the energy constraint (i.e., equivalent toA� with energy as the cost function), the planner requires about
2.5 seconds of CPU time to find a plan, generates 6,110 nodes and performs 2,363 insertions into theOPEN

list.

8 Related work

Our work has similarities with work in both optimisation (e.g., heuristic search for path finding problems
and decision theoretic approaches to planning) and constraint satisfaction (e.g., planning as satisfiability).
Below we briefly compareABC with some of the related approaches.

8.1 Optimisation

Pareto optimisation Our emphasis on non-dominated solutions has some similarities with Pareto op-
timisation which also avoids the problem of devising an appropriate set of weights for a composite cost
function. However the motivation is different: the aim of Pareto optimisation is to return some or all of
the non-dominated solutions for further consideration by a human decision maker. In contrast,ABC will
return the most preferred solution from the region of the Pareto surface bounded by the constraints which
are satisfied in the highest constraint equivalence class.

Multiobjective A� There are several extensions of heuristic search techniques to multiobjective search
problems. Stewart and White [11] describe a generalisation ofA�, MultiobjectiveA� (MOA�), which
handles multiple conflicting and incommensurable objectives by returning the set of all non dominated
solutions.5 MOA� associates each path with a vector of costs, in which theith component of the vector
corresponds to the degree to which the path achieves theith objective (criterion). TheOPENlist is ordered
using a pointwise order on cost vectors in a manner similar to that described in section 3.MOA� expands
the nodes with overall lowest costs first; if the costs are incomparable,MOA� decides which nodes to
expand by using a domain-specific selection rule. Under the usual assumptions about cost functions (pos-
itive, bounded) and finite number of operators,MOA� is complete. Given the stronger assumption that
the heuristics are admissible,MOA� is guaranteed to produce all non-dominated solutions. (In the case in
which there is a single objective,MOA� is equivalent toA� modified to find all optimal paths.)

A MOA� problem withn criteria can be reformulated as anABC problem withn minimisation
constraints and no order over the constraints (i.e., preference order= pointwise order). Conversely, an
ABC problem with, e.g.,n unordered upper bound constraints, can be reformulated as aMOA� problem
with n criteria andn discontinuous cost functions. Where the constraints are not equally important,ABC ’s
preference order can be represented byMOA�’s ‘domain specific preference rule’. However,MOA�

does not appear to have been used to solve problems formulated as a set of prioritised soft constraints.
Rather it takes a more conventional optimising approach, in which the aim is to minimise costs. Non
dominated solutions are preferred, and all criteria implicitly have equal importance.MOA� returns all non
dominated solutions (i.e., the solutions on the Pareto surface), avoiding the problem of choosing between
incommensurable criteria. While it would be possible to extendABC to return all non dominated solutions,
it is not clear how the resulting set of solutions could be used to improve overall solution quality, and, in
general, the computational cost of generating all non dominated solutions would be prohibitive.6

5We are grateful to Patrice Perny for drawing our attention to this work.
6See also [11, page 813].

9

U
� Another approach to multiobjective heuristic search which has similar aims toABC is U� [12].

U� combines elements of both branch and bound search and dynamic programming. It is a best-first
search algorithm which returns a single, most preferred, solution. Each path is associated with a vector of
‘rewards’, in which each element of the vector corresponds to one of the problem criteria. Larger rewards
are ‘better’. TheOPENlist is ordered using a multiattribute preference function,u, which assigns a single
real value to each reward vector.u is assumed to be any isotone function; i.e.,u agrees with the pointwise
order on reward vectors.u is therefore a generalisation of a weighted sum cost function, and, in particular,
it allows non-additive accumulation of rewards.7

LikeABC,U� allows a preference ordering over criteria to be defined. However, whileABC uses dif-
ferent orderings to order theOPENlist (preference order) and to decide which paths to discard (dominance
order), the multiattribute preference function,u, is used both to select which solution to expand next, and
to decide which paths to discard. So by Theorem 3,U� cannot emulate behaviour ofA� with respect to
constraint satisfaction.

8.2 Constraint satisfaction

ABC also has a number of features in common with constraint satisfaction techniques. Conventional
algorithms for constraint satisfaction problems (CSPs) usually assume that: (a) all constraints are either
true or false, (b) all constraints are equally important (i.e., the solution to an over-constrained CSP is
not defined), and (c) the number of variables is known in advance. Generalisations of classical constraint
satisfaction problems include partial constraint satisfaction problems (PCSP), e.g., [3], and fuzzy constraint
satisfaction problems (FCSP) e.g., [2]. These generalised constraint satisfaction problems can be more
easily translated intoABC problems than into, e.g., heuristic search problems using a weighted sum cost
function.8

Partial constraint satisfaction In a partial constraint satisfaction problem the aim is to find a solution
satisfying the maximal number of most important constraints. A preference order on solutions is defined
(solutions satisfying a better set of constraints are preferred) which is a special case of the constraint order
defined in this paper. This means thatABC can be used to find a solution to a PCSP problem (and is a
complete and optimal algorithm for PCSP under the standard assumptions).

Fuzzy constraint satisfaction Fuzzy constraint satisfaction also supports prioritisation of constraints:
each constraint has a numerical degree of importance associated with it, ranging from 0 (totally unimpor-
tant) to 1 (hard constraint). The degree to which a solution satisfies a constraint is also characterised by a
number between 0 (violated) and 1 (completely satisfied). A vector of degrees of satisfaction is associated
with every solution in which theith component is the degree to which theith constraint is satisfied. To take
the relative importance of constraints into account, the actual degree of satisfaction is adjusted. For exam-
ple, a solution is assumed to satisfy a constraint which has importance� to a degree which is the maximum
of 1�� and the actual degree of satisfaction. That is, if a constraint with importance 0.7 is totally violated,
it is assumed to be satisfied with degree 0.3. The objective in FCSP is to find a solution which satisfies
all constraintsto the maximal degree. Several approaches to combining degrees of satisfaction have been
proposed, e.g., a solution which satisfies the constraints with degreesu1; : : : ; un is preferred to a solution
which satisfies the constraints with degreesv1; : : : ; vn if min(u1; : : : ; un) > min(v1; : : : ; vn) [2]; see
also [10]. While this objective is different from the applicationsABC was designed for,ABC can be
modified to work with the preference order arising from the FCSP approach.

Iterative techniques In common with more conventional techniques, both PCSP and FCSP assume that
the number of variables is known in advance. In many cases this assumption is violated, for example, in
route planning the number of steps in the plan is not normally known in advance. Several authors, for

7It is possible to generaliseABC to work with non-additive (but increasing) cost functions as well.
8We are not claiming thatABC is necessarily an efficient way to solve conventional constraint satisfaction problems;ABC is best

suited to constraint satisfaction problems where the number of variables is not known in advance and solution has to be constructed
stepwise from some initial state.

10

example [5, 6], have described iterative techniques which can be applied when the number of variables
is unknown. However, these techniques are incapable of handling prioritised or soft constraints, and the
problems to which they have been applied are considerably smaller than the route planning problems which
have been solved byABC, which typically involve more than 100,000 states and plans of more than 500
steps.

9 Conclusions and further work

In this paper, we have presented a new approach to formulating and solving multi-criterion search problems
with incommensurable criteria.

We have argued that it is often difficult or impossible to formulate many real world problems in terms of
minimising a single weighted sum cost function. By using a set of prioritised soft constraints to represent
the requirements on the solution we avoid the difficulties of formulating an appropriate set of weights for
a composite cost function. Constraints provide a means of more clearly specifying problem-solving tasks
and more precisely evaluating the resulting solutions: a solution can be characterised as satisfying some
constraints (to a greater or lesser degree) and only partially satisfying or not satisfying others. The prefer-
ence ordering�pref blurs the conventional distinction between absolute (hard) constraints and preference
(soft) constraints. In our approach, all constraints are preferences that the problem-solver will try to satisfy,
trading off slack on a more important constraint to satisfy another, less important, constraint.

We have described a new search algorithm,A� with bounded costs, which searches for a solution
which best satisfies a set of prioritised soft constraints, and shown that for an important class of constraints
the algorithm is complete and optimal. LikeA� and multiobjective search techniques,ABC requires
monotonic cost functions and good heuristics. However it has many of the advantages of PCSP/FCSPs
and iterative constraint satisfaction techniques. The utility of our approach and the feasibility of theABC

algorithm has been illustrated by an implemented route planner which is capable of planning routes in
complex terrains satisfying a variety of constraints.

The present work is the first step in the development of a hybrid approach to search with prioritised soft
constraints. It raises many new issues related to preference orderings over solutions (‘slack ordering’) and
the relevance of different constraint orderings for different kinds of problems. More work is also necessary
to characterise the performance implications ofABC relative toA�. However, we believe that the increase
in flexibility of our approach outweighs the increase in computational cost associated withABC.

Acknowledgements

We wish to thank Aaron Sloman and the members of the Cognition and Affect and EEBIC (Evolutionary
and Emergent Behaviour Intelligence and Computation) groups at the School of Computer Science, Uni-
versity of Birmingham for useful discussions and comments. This research is partially supported by a grant
from the Defence Evaluation and Research Agency (DERA Malvern). We are grateful to Patrice Perny for
drawing our attention to the work onMOA� andU�.

References

[1] C. Campbell, R. Hull, E. Root, and L. Jackson. Route planning in CCTT. InProceedings of the
Fifth Conference on Computer Generated Forces and Behavioural Representation, pages 233–244.
Institute for Simulation and Training, 1995.

[2] D. Dubois, H. Fargier, and H. Prade. Possibility theory in constraint satisfaction problems: Handling
priority, preference and uncertainty.Applied Intelligence, 6:287–309, 1996.

[3] E. C. Freuder and R. J. Wallace. Partial constraint satisfaction.Artificial Intelligence, 58:21–70, 1992.

[4] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum
cost paths.IEEE Transactions on Systems Science and Cybernetics, SSC–4(2):100–107, 1968.

11

[5] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic search.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence, AAAI-96, pages
1194–1201. AAAI Press/MIT Press, 1996.

[6] V. Liatsos and B. Richards. Least commitment—an optimal planning strategy. InProceedings of the
16th Workshop of the UK Planning and Scheduling Special Interest Group, pages 119–133. University
of Durham, Dec 1997.

[7] B. Logan. Route planning with ordered constraints. InProceedings of the 16th Workshop of the UK
Planning and Scheduling Special Interest Group, pages 133–144. University of Durham, Dec 1997.

[8] B. Logan and N. Alechina.A� with bounded costs. InProceedings of the Fifteenth National Confer-
ence on Artificial Intelligence, AAAI-98, pages 444–449. AAAI Press/MIT Press, 1998.

[9] J. Pearl.A�

� — an algorithm using search effort estimates.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 4(4):392–399, 1982.

[10] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems: Hard and easy
problems. InProceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
IJCAI 95, volume 1, pages 631–639. Morgan Kaufmann, 1995.

[11] B. S. Stewart and C. C. White III. MultiobjectiveA�. Journal of the Association for Computing
Machinery, 38:775–814, 1991.

[12] C. C. White III, B. S. Stewart, and R. L. Carraway. Multiobjective, preference-based search in acyclic
or-graphs.European Journal of Operational Research, 56:357–363, 1992.

12

